Chemical Composition of Nanoglobular Material on the Surface of Rubber Regenerate Prepared by Explosive Circulation Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Wettability of Rubber Crumbs
3.2. XPS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva-De Hoyos, L.E.; Sánchez-Mendieta, V.; Camacho-López, M.A.; Trujillo-Reyes, J.; Vilchis-Nestor, A.R. Plasmonic and fluorescent sensors of metal ions in water based on biogenic gold nanoparticles. Arab. J. Chem. 2020, 13, 1975–1985. [Google Scholar] [CrossRef]
- El Madani, M.; Harir, M.; Zrineh, A.; El Azzouzi, M. Photodegradation of imazethapyr herbicide by using slurry and supported TiO2: Efficiency comparison. Arab. J. Chem. 2015, 8, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Shaban, Y.A. Solar light-induced photodegradation of chrysene in seawater in the presence of carbon-modified n-TiO2 nanoparticles. Arab. J. Chem. 2019, 12, 652–663. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; He, W.; Huang, J.; Xu, J.; Li, G. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor. Sci. Total Environ. 2021, 772, 145507. [Google Scholar] [CrossRef]
- Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste tyre valorization by catalytic pyrolysis—A review. Renew. Sustain. Energy Rev. 2020, 129, 109932. [Google Scholar] [CrossRef]
- Hoyer, S.; Kroll, L.; Sykutera, D. Technology comparison for the production of fine rubber powder from end of life tyres. Procedia Manuf. 2020, 43, 193–200. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A review. J. Compos. Sci. 2020, 4, 103. [Google Scholar] [CrossRef]
- Herrera-Sosa, E.S.; Martínez-Barrera, G.; Barrera-Díaz, C.; Cruz-Zaragoza, E.; Ureña-Núñez, F. Recovery and modification of waste tire particles and their use as reinforcements of concrete. Int. J. Polym. Sci. 2015, 2015, 234690. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, A.; Boyadjian, C.; Ahmad, M.N.; Zeaiter, J. Solar pyrolysis of waste rubber tires using photoactive catalysts. Waste Manag. 2018, 77, 10–21. [Google Scholar] [CrossRef]
- Sofi, A. Effect of waste tyre rubber on mechanical and durability properties of concrete—A review. Ain Shams Eng. J. 2018, 9, 2691–2700. [Google Scholar] [CrossRef]
- Mei, J.; Xu, G.; Ahmad, W.; Khan, K.; Amin, M.N.; Aslam, F.; Alaskar, A. Promoting sustainable materials using recycled rubber in concrete: A review. J. Clean. Prod. 2022, 1, 133927. [Google Scholar] [CrossRef]
- Nabok, A.A. Method and Device for Destroying Worn Out Tyres. RU2057014C1, 27 March 1996. [Google Scholar]
- Nabok, A.A.; Zakharov, A.S. Armored Chamber for Grinding Used Tires. RU2471622C2, 10 January 2013. [Google Scholar]
- Misin, V.M.; Buryak, A.K.; Zolotarevskii, V.I.; Krivandin, A.V.; Misharina, T.A.; Nikulin, S.S.; Tarasov, A.E. Specifics of the surface of tire crumb regenerate produced by the explosive circulation method. Prot. Met. Phys. Chem. Surf. 2019, 55, 1256–1262. [Google Scholar] [CrossRef]
- Zarkhin, L.S.; Sheberstov, S.V.; Panfilovich, N.V.; Manevich, L.I. Mechanodegradation of polymers. The method of molecular dynamics. Russ. Chem. Rev. 1989, 58, 381–393. [Google Scholar] [CrossRef]
- Misin, V.M.; Zakharov, A.S.; Krivandin, A.V.; Shatalova, O.V.; Zolotarevsky, V.I.; Nabok, A.A. Morphology of the rubber crumb of regenerate produced at the explosive-circulation installation. Nanomater. Nanotechnol. 2012, 3, 45–54. (In Russian) [Google Scholar]
- Burchell, T.D. (Ed.) Carbon Materials for Advanced Technologies; PERGAMON; Elsevier Science: Amsterdam, The Netherlands; Lausanne, Switzerland; New York, NY, USA; Oxford, UK; Shannon, Ireland; Singapore; Tokyo, Japan, 1999; ISBN 0-08-042683-2. [Google Scholar]
- Jin, F.-L.; Park, S.-J. Preparation and characterization of carbon fiber-reinforced thermosetting composites: A review. Carbon Lett. 2015, 2, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Gao, H.; Li, S.; Nie, J.; Sun, F.; Zhu, X. Surface modification of carbon fiber by electro-polymerization: Continuous production, thickness control, colorization, and preparation of CFRP. ACS Appl. Polym. Mater. 2020, 7, 2594–2601. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Misra, B.N. Grafting: A versatile means to modify polymers techniques, factors and applications. Prog. Polym. Sci. 2004, 8, 767–814. [Google Scholar] [CrossRef]
- Desmet, T.; Morent, R.; Geyter, N.D.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 9, 2351–2378. [Google Scholar] [CrossRef] [Green Version]
- El-Sawy, N.M.; Ali, Z.I. Iron(III) complexed with radiation-grafted acrylic acid onto poly(tetrafluoroethylene- co-perfluorovinyl ether) films. J. Appl. Polym. Sci. 2007, 6, 4065–4071. [Google Scholar] [CrossRef]
- Barsbay, M.; Güven, O. RAFT mediated grafting of poly(acrylic acid) (PAA) from polyethylene/polypropylene (PE/PP) nonwoven fabric via preirradiation. Polymer 2013, 18, 4838–4848. [Google Scholar] [CrossRef]
- Bessa, P.S.; Ladchumanandasivan, R.; Steffens, F.; Oliveira, F.R. Dyeing of meta-aramid fibres previously functionalized with poly(diallyldimethylammonium chloride). Key Eng. Mater. 2019, 812, 107–113. [Google Scholar] [CrossRef]
- Tsuchida, M.; Osawa, Z. Effect of ageing atmospheres on the changes in surface free energies of oxygen plasma-treated polyethylene films. Colloid Polym. Sci. 1994, 7, 770–776. [Google Scholar] [CrossRef]
- Severini, F.; Formaro, L.; Pegoraro, M.; Posca, L. Chemical modification of carbon fiber surfaces. Carbon 2002, 5, 735–741. [Google Scholar] [CrossRef]
- Li, J.; Yao, S.; Xiao, F.; Amirkhanian, S.N. Surface modification of ground tire rubber particles by cold plasma to improve compatibility in rubberised asphalt. Int. J. Pavement Eng. 2022, 23, 651–662. [Google Scholar] [CrossRef]
- He, L.; Ma, Y.; Liu, Q.; Mu, Y. Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete. Constr. Build. Mater. 2016, 1, 403–407. [Google Scholar] [CrossRef]
- Ossola, G.; Wojcik, A. UV modification of tire rubber for use in cementitious composites. Cem. Concr. Compos. 2014, 52, 34–41. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, S.; Guo, X.; Duan, W. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement. Appl. Surf. Sci. 2017, 409, 325–342. [Google Scholar] [CrossRef]
- Cao, X.-W.; Luo, J.; Cao, Y.; Yin, X.-C.; He, G.-J.; Peng, X.-F.; Xu, B.-P. Structure and properties of deeply oxidized waster rubber crumb through long time ozonization. Polym. Degrad. Stab. 2014, 109, 1–6. [Google Scholar] [CrossRef]
- Song, P.; Wan, C.; Xie, Y.; Zhang, Z.; Wang, S. Stepwise exfoliation of bound rubber from carbon black nanoparticles and the structure characterization. Polym. Test. 2018, 71, 115–124. [Google Scholar] [CrossRef]
- Gnanaraj, J.; Lee, R.; Levine, A.; Wistrom, J.; Wistrom, S.; Li, Y.; Li, J.; Akato, K.; Naskar, A.; Paranthaman, M. Sustainable waste tire derived carbon material as a potential anode for lithium-ion batteries. Sustainability 2018, 10, 2840. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T.; Saenz-Arana, R.; Hernandez, C.; Guinto, T.; Ahsan, M.A.; Bragg, D.T.; Wang, H.; Alvarado-Tenorio, B.; Noveron, J.C. Conversion of waste tire rubber into a high-capacity adsorbent for the removal of methylene blue, methyl orange, and tetracycline from water. J. Environ. Chem. Eng. 2018, 6, 3070–3082. [Google Scholar] [CrossRef]
- Moghaddamzadeh, S.; Rodrigue, D. The effect of polyester recycled tire fibers mixed with ground tire rubber on polyethylene composites. Part I: Morphological analysis. Prog. Rubber Plast. Recycl. Technol. 2018, 34, 200–220. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Chen, Y.-K.; Rodrigue, D. Production of thermoplastic elastomers based on recycled PE and ground tire rubber: Morphology, mechanical properties and effect of compatibilizer addition. Int. Polym. Process. 2018, 33, 525–534. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Hernández Santana, M.; Verdejo, R.; López-Manchado, M.A. Giving a second opportunity to tire waste: An alternative path for the development of sustainable self-healing styrene–butadiene rubber compounds overcoming the magic triangle of tires. Polymers 2019, 11, 2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Wang, X.; Jia, D. Recycling of waste rubber powder by mechano-chemical modification. J. Cleaner Prod. 2020, 245, 118716. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Araujo-Morera, J.; Pulido de Los Reyes, L.; Verdugo Manzanares, R.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. An effective and sustainable approach for achieving self-healing in nitrile rubber. Eur. Polym. J. 2020, 139, 110032. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, M.; Li, J.; Lin, F.; Ma, W.; Yan, B.; Chen, G. Transformation of nitrogen, sulfur and chlorine during waste tire pyrolysis. J. Anal. Appl. Pyrolysis 2021, 153, 104987. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Verdugo-Manzanares, R.; González, S.; Verdejo, R.; Lopez-Manchado, M.A.; Hernández Santana, M. On the use of mechano-chemically modified ground tire rubber (GTR) as recycled and sustainable filler in styrene-butadiene rubber (SBR) composites. J. Compos. Sci. 2021, 5, 68. [Google Scholar] [CrossRef]
- Li, S.; Wan, C.; Wang, S.; Zhang, Y. Separation of core-shell structured carbon black nanoparticles from waste tires by light pyrolysis. Compos. Sci. Technol. 2016, 135, 13–20. [Google Scholar] [CrossRef]
- Hood, Z.D.; Adhikari, S.P.; Evans, S.F.; Wang, H.; Li, Y.; Naskar, A.K.; Chi, M.; Lachgar, A.; Paranthaman, M.P. Tire-derived carbon for catalytic preparation of biofuels from feedstocks containing free fatty acids. Carbon Resour. Convers. 2018, 1, 165–173. [Google Scholar] [CrossRef]
- He, M.; Gu, K.; Wang, Y.; Li, Z.; Shen, Z.; Liu, S.; Wei, J. Development of high-performance thermoplastic composites based on polyurethane and ground tire rubber by in-situ synthesis. Resour. Conserv. Recycl. 2021, 173, 105713. [Google Scholar] [CrossRef]
- Phiri, M.M.; Phiri, M.J.; Formela, K.; Hlangothi, S.P. Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development—A review. Compos. Part B 2021, 204, 108429. [Google Scholar] [CrossRef]
- Liang, H.; Gagné, J.D.; Faye, A.; Rodrigue, D.; Brisson, J. Ground tire rubber (GTR) surface modification using thiol-ene click reaction: Polystyrene grafting to modify a GTR/polystyrene (PS) blend. Prog. Rubber Plast. Recycl. Technol. 2020, 36, 81–101. [Google Scholar] [CrossRef]
- Ragulin, V.V.; Vol’nov, A.A. Technology of Tire Production; Khimiya: Moscow, Russia, 1981. [Google Scholar]
- Martin, J.M.; Smith, W.K.; Bhatia, S.C. Handbook of Rubber Technology: Natural, Synthetic Rubber and Technology of Vulcanisation; CBS Pub & Dist: New Delhi, India, 2007; ISBN 978-81-239-1053-6. [Google Scholar]
- Erman, B.; Mark, J.E.; Roland, C.M. (Eds.) The Science and Technology of Rubber, 4th ed.; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2013; ISBN 978-0-12-394584-6. [Google Scholar]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: Chichester, UK; New York, NY, USA, 1992; ISBN 978-0-471-93592-6. [Google Scholar]
- Naumkin, A.A.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. X-ray Photoelectron Spectroscopy Database XPS, Version 4.1, NIST Standard Reference Database 20 (2000). Available online: https://doi.org/10.18434/T4T88K (accessed on 18 August 2022).
- Powell, C.J. Elemental binding energies for X-ray photoelectron spectroscopy. Appl. Surf. Sci. 1995, 89, 141–149. [Google Scholar] [CrossRef]
- Dementjev, A.P.; Maslakov, K.I.; Naumkin, A.V. Relationship between the C KVV Auger line shape and layered structure of graphite. Appl. Surf. Sci. 2005, 245, 128–134. [Google Scholar] [CrossRef]
- Powell, C.J.; Jablonski, A. NIST electron inelastic-mean-free-path database—Version 1.2. 2010. Available online: https://doi.org/10.18434/T48C78 (accessed on 18 August 2022).
- Grüneis, A.; Kummer, K.; Vyalikh, D.V. Dynamics of graphene growth on a metal surface: A time-dependent photoemission study. New J. Phys. 2009, 11, 073050. [Google Scholar] [CrossRef]
- Rodriguez, N.M.; Anderson, P.E.; Wootsch, A.; Wild, U.; Schlögl, R.; Paál, Z. XPS, EM, and catalytic studies of the accumulation of carbon on Pt black. J. Catal. 2001, 197, 365–377. [Google Scholar] [CrossRef]
- Babeł, K.; Jurewicz, K. KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 2008, 46, 1948–1956. [Google Scholar] [CrossRef]
No of Exp. | Sample | Mass of Test Portion of Crumb, g | Mixing Time | Mass of Floated Part, g (% of Reference Mass) | Mass of Settled Part, g (% of Reference Mass) |
---|---|---|---|---|---|
1 | RC 0-1 | 91 | 30 min | 36 (39.6%) | 55 (60.4%) |
2 | RC 0-1 | 97 | 30 min + 12 h | 16 (16.5%) | 81 (83.5%) |
3 | RC 1-3 | 100 | 5 min | 6 (6%) | 94 (94%) |
4 | RC 1-3 | 100 | 5 min | 7 (7%) | 93 (93%) |
5 | RC 3-5 | 59 | 5 min | 5 (8.5%) | 54 (91.5%) |
6 | RC 5-10 | 100 | 5 min | 8 (8%) | 92 (92%) |
Sample | C | O | Mg | Si | Zn | S | O (Si) | O (Mg) | S (Zn) | O/C |
---|---|---|---|---|---|---|---|---|---|---|
RC 0-1a | 91.5 | 5.2 | 0.3 | 1.1 | 0.5 | 1.4 | 4.2 | 3.8 | 0.9 | 0.06 |
RC 0-1b | 91.3 | 5.5 | 1.8 | 0.5 | 1.0 | 5.0 | 5.0 | 0.5 | 0.06 | |
RC 0-1c | 91.0 | 5.7 | 1.7 | 0.6 | 1.0 | 4.0 | 4.0 | 0.4 | 0.06 | |
RC 1-3a | 99.0 | 0.8 | 0.2 | 0.5 | 0.5 | 0.01 | ||||
RC 1-3b | 91.8 | 5.4 | 1.7 | 0.5 | 0.7 | 3.7 | 3.8 | 0.2 | 0.06 | |
RC 1-3c | 95.8 | 3.1 | 0.7 | 0.2 | 0.3 | 2.4 | 2.4 | 0.1 | 0.03 | |
RC 3-5a | 94.4 | 3.8 | 1.5 | 0.3 | 2.3 | 2.3 | 0.04 | |||
RC 3-5b | 92.9 | 4.7 | 0.1 | 1.6 | 0.3 | 0.5 | 3.1 | 3.1 | 0.2 | 0.05 |
RC 3-5c | 90.6 | 6.0 | 0.3 | 1.8 | 0.3 | 1.0 | 4.2 | 3.9 | 0.7 | 0.07 |
RC 3-5 * | 90.8 | 6.0 | 2.3 | 0.4 | 0.5 | 0.07 |
Sample | C−Si | C−C/C−H | C−S | C−O−C | C=O | C(O)O | O/C | |
---|---|---|---|---|---|---|---|---|
RC 0-1a | Eb | 284.2 | 285.0 | 286.0 | 287.4 | |||
W | 1.03 | 1.03 | 1.03 | 1.03 | ||||
Irel | 0.07 | 0.80 | 0.13 | 0.01 | 0.08 | |||
RC 0-1a * | Eb | 284.2 | 285.0 | 285.6 | 286.1 | |||
W | 1.03 | 1.03 | 1.03 | 1.03 | ||||
Irel | 0.07 | 0.79 | 0.03 | 0.11 | 0.06 | |||
RC 0-1b | Eb | 284.1 | 285.0 | 286.0 | 287.1 | 289.1 | ||
W | 1.03 | 1.03 | 1.04 | 1.03 | 1.10 | |||
Irel | 0.04 | 0.76 | 0.17 | 0.02 | 0.01 | 0.12 | ||
RC 0-1c | Eb | 284.2 | 285.0 | 286.1 | 287.9 | 289.0 | ||
W | 1.03 | 1.03 | 1.03 | 1.03 | 1.10 | |||
Irel | 0.08 | 0.82 | 0.09 | 0.01 | 0.01 | 0.08 | ||
RC 1-3a | Eb | 285.0 | 286.0 | |||||
W | 1.02 | 1.03 | ||||||
Irel | 0.92 | 0.08 | 0.04 | |||||
RC 1-3b | Eb | 284.1 | 285.0 | 286.0 | ||||
W | 1.02 | 1.03 | 1.03 | |||||
Irel | 0.06 | 0.87 | 0.07 | 0.04 | ||||
RC 1-3c | Eb | 283.4 | 285.0 | 286.0 | ||||
W | 1.03 | 1.03 | 1.03 | |||||
Irel | 0.02 | 0.91 | 0.07 | 0.04 | ||||
RC 3-5a | Eb | 284.2 | 285.0 | 286.0 | ||||
W | 1.17 | 1.17 | 1.17 | |||||
Irel | 0.05 | 0.84 | 0.11 | 0.06 | ||||
RC 3-5b | Eb | 284.2 | 285.0 | 286.0 | ||||
W | 1.0 | 1.15 | 1.11 | |||||
Irel | 0.06 | 0.83 | 0.11 | 0.06 | ||||
RC 3-5c | Eb | 284.2 | 285.0 | 286.0 | 287.1 | |||
W | 1.09 | 1.09 | 1.09 | 1.09 | ||||
Irel | 0.03 | 0.73 | 0.21 | 0.03 | 0.14 | |||
RC 3-5c * | Eb | 284.2 | 285.0 | 285.6 | 286.0 | 287.1 | ||
W | 1.09 | 1.09 | 1.09 | 1.09 | 1.09 | |||
Irel | 0.07 | 0.70 | 0.04 | 0.16 | 0.03 | 0.11 |
Sample | Zn-S | C−S | C-SOx | |
---|---|---|---|---|
RC 0-1a | Eb | 162.0 | 163.7 | 169.1 |
W | 1.3 | 1.35 | 1.3 | |
Irel | 0.50 | 0.41 | 0.09 | |
RC 0-1b | Eb | 162.3 | 163.9 | |
W | 1.3 | 1.35 | ||
Irel | 0.58 | 0.42 | ||
RC 0-1c | Eb | 162.3 | 163.7 | |
W | 1.3 | 1.3 | ||
Irel | 600 | 500 | ||
RC 1-3b | Eb | 162.0 | 163.7 | 169.1 |
W | 1.3 | 1.3 | 1.3 | |
Irel | 0.55 | 0.32 | 0.13 | |
RC 1-3c | Eb | 161.9 | 163.4 | 169.1 |
W | 1.24 | 1.3 | 1.3 | |
Irel | 0.38 | 0.43 | 0.19 | |
RC 3-5b | Eb | 162.2 | 163.8 | |
W | 1.3 | 1.3 | ||
Irel | 0.47 | 0.53 | ||
RC 3-5c | Eb | 162.1 | 163.7 | 169.1 |
W | 1.3 | 1.3 | 1.3 | |
Irel | 0.45 | 0.41 | 0.14 |
Sample | H2Oph | ZnO | MgO | S-O | C(O *)O | Si-O | C=O | C-O-C | C(O)O * | H2Och | H2Ot | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RC 0-1a | Eb | 530.9 | 531.5 | 532.0 | 532.3 | 532.8 | 534.0 | |||||
W | 1.05 | 1.03 | 1.03 | 1.05 | 1.05 | 1.1 | ||||||
Irel | 0.06 | 0.08 | 0.21 | 0.08 | 0.45 | 0.13 | 0.13 | |||||
RC 0-1b | Eb | 531.0 | 531.9 | 532.1 | 532.3 | 532.9 | 533.9 | 534.4 | ||||
W | 1.05 | 1.03 | 1.03 | 1.03 | 1.1 | 1.03 | 1.15 | |||||
Irel | 0.06 | 0.05 | 0.30 | 0.09 | 0.38 | 0.05 | 0.07 | 0.13 | ||||
RC 0-1c | Eb | 531.0 | 531.9 | 532.0 | 532.3 | 532.7 | 533.8 | 534.1 | ||||
W | 1.05 | 1.03 | 1.05 | 1.03 | 1.05 | 1.03 | 1.15 | |||||
Irel | 264 | 279 | 879 | 264 | 1230 | 279 | 75 | |||||
0.08 | 0.09 | 0.27 | 0.08 | 0.38 | 0.09 | 0.02 | 0.1 | |||||
RC 1-3a | Eb | 531.3 | 531.8 | 532.7 | ||||||||
W | 1.05 | 1.05 | 1.1 | |||||||||
Irel | 0.15 | 0.21 | 0.63 | 0.15 | ||||||||
RC 1-3b | Eb | 530.9 | 531.7 | 531.7 | 532.6 | 534.1 | ||||||
W | 1.05 | 1.05 | 1.03 | 1.1 | 1.05 | |||||||
Irel | 0.08 | 0.01 | 0.28 | 0.57 | 0.07 | 0.08 | ||||||
RC 1-3c | Eb | 530.9 | 531.7 | 531.8 | 532.5 | 534.0 | ||||||
W | 1.05 | 1.05 | 1.03 | 1.1 | 1.05 | |||||||
Irel | 0.13 | 0.05 | 0.18 | 0.57 | 0.07 | 0.13 | ||||||
RC 3-5a | Eb | 530.8 | 531.9 | 532.7 | 533.9 | |||||||
W | 1.03 | 1.04 | 1.1 | 1.04 | ||||||||
Irel | 0.02 | 0.85 | 0.12 | 0.02 | 0.02 | |||||||
RC 3-5b | Eb | 530.5 | 531.0 | 531.9 | 532.7 | 533.9 | ||||||
W | 1.05 | 1.05 | 1.03 | 1.08 | 1.05 | |||||||
Irel | 0.03 | 0.02 | 0.29 | 0.55 | 0.11 | 0.14 | ||||||
RC 3-5c | Eb | 530.5 | 531.0 | 531.7 | 531.9 | 532.3 | 534.0 | |||||
W | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | ||||||
Irel | 0.03 | 0.07 | 0.10 | 0.43 | 0.17 | 0.19 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumkin, A.V.; Misin, V.M.; Maslakov, K.I. Chemical Composition of Nanoglobular Material on the Surface of Rubber Regenerate Prepared by Explosive Circulation Technology. Molecules 2022, 27, 7621. https://doi.org/10.3390/molecules27217621
Naumkin AV, Misin VM, Maslakov KI. Chemical Composition of Nanoglobular Material on the Surface of Rubber Regenerate Prepared by Explosive Circulation Technology. Molecules. 2022; 27(21):7621. https://doi.org/10.3390/molecules27217621
Chicago/Turabian StyleNaumkin, Alexander Vasylievich, Vyacheslav Mikhailovich Misin, and Konstantin Igorevich Maslakov. 2022. "Chemical Composition of Nanoglobular Material on the Surface of Rubber Regenerate Prepared by Explosive Circulation Technology" Molecules 27, no. 21: 7621. https://doi.org/10.3390/molecules27217621
APA StyleNaumkin, A. V., Misin, V. M., & Maslakov, K. I. (2022). Chemical Composition of Nanoglobular Material on the Surface of Rubber Regenerate Prepared by Explosive Circulation Technology. Molecules, 27(21), 7621. https://doi.org/10.3390/molecules27217621