Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Isolation and Purification of FML
2.3. FML Content Determination
2.4. Physicochemical Properties of FML
2.4.1. UV–Visible Spectrum Analysis
2.4.2. Analysis by Fourier Transform Infrared (FT-IR) Spectroscopy
2.4.3. Analysis by LC-MS/MS-Liquid Chromatography with Tandem Mass Spectrometry
HPLC Conditions
MS/MS Conditions
2.4.4. Analysis by Nuclear Magnetic Resonance Spectroscopy (NMR)
2.5. Antioxidant Activity of Mycelial Polysaccharides In Vitro
2.5.1. DPPH Radical Scavenging Activity
2.5.2. Hydroxyl Radical Scavenging Activity
2.5.3. Superoxide Anion Radical Scavenging Activity
2.5.4. ABTS Radical Scavenging Activity
2.6. Preparation of Erythrocyte Suspensions
2.7. AAPH-Treated Erythrocyte Hemolysis Assay
2.8. Investigation of the Antioxidant Ability
2.9. Scanning Electron Microscope (SEM) Analysis
2.10. Statistical Analysis
3. Results
3.1. Isolation and Purification of FML
3.2. Physicochemical Property Analysis
3.3. The Antioxidant Activity In Vitro
3.3.1. Ability of FML to Scavenge DPPH
3.3.2. Ability of FML to Scavenge HO·
3.3.3. Superoxide Anion Radical Scavenging Activity
3.3.4. ABTS Radical Scavenging Capacity
3.4. Effects of FML on AAPH-Induced Erythrocyte Hemolysis
3.5. Accumulation of MDA in Erythrocytes after FML Treatment
3.6. Changes in CAT, SOD, and GSH-Px Activity in Erythrocytes after FML Treatment
3.7. Effect of FML Treatment on the Erythrocyte Cell Membrane
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liwen, Z.; Shulan, S.; Yue, Z.; Jianming, G.; Sheng, G.; Dawei, Q.; Zhen, O.; Jin-Ao, D. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and tgf- β/smads signaling pathway. Biomed. Pharmacother. 2019, 112, 108675. [Google Scholar]
- Li, D.; Chen, G.; Ma, B.; Zhong, C.; He, N. Metabolic profiling and transcriptome analysis of mulberry leaves provide insights into flavonoid biosynthesis. J. Agric. Food Chem. 2020, 68, 1494–1504. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, X.; Chen, Z.; Zhang, Y.; Zhang, Y. Mulberry anthocyanin biotransformation by intestinal probiotics. Food Chem. 2016, 213, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Katsube, T.; Yamasaki, M.; Shiwaku, K.; Ishijima, T.; Matsumoto, I.; Abe, K.; Yamasaki, Y. Effect of flavonol glycoside in mulberry (morus alba l.) Leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J. Sci. Food Agric. 2010, 90, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Song, C.; Feng, X.; Wang, Y.; Meng, T.; Li, S.; Bai, Y.; Du, B.; Sun, Q. Isolation and hypoglycemic effects of water extracts from mulberry leaves in northeast china. Food Funct. 2020, 11, 3112–3125. [Google Scholar] [CrossRef]
- Kim, G.; Jang, H. Flavonol content in the water extract of the mulberry (morus alba l.) Leaf and their antioxidant capacities. J. Food Sci. 2011, 76, C869–C873. [Google Scholar] [CrossRef]
- Ju, W.; Kwon, O.; Kim, H.; Sung, G.; Kim, H.; Kim, Y. Qualitative and quantitative analysis of flavonoids from 12 species of korean mulberry leaves. J. Food Sci. Technol. 2018, 55, 1789–1796. [Google Scholar] [CrossRef] [Green Version]
- Xv, Z.; He, G.; Wang, X.; Shun, H.; Chen, Y.; Lin, S. Mulberry leaf powder ameliorate high starch-induced hepatic oxidative stress and inflammation in fish model. Anim. Feed Sci. Tech. 2021, 278, 115012. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, J.; Zheng, S.; Liang, F.; Luo, Y.; Huang, K.; Xu, W.; He, X. Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota. Food Funct. 2019, 10, 4771–4781. [Google Scholar] [CrossRef]
- Kojima, Y.; Kimura, T.; Nakagawa, K.; Asai, A.; Hasumi, K.; Oikawa, S.; Miyazawa, T. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J. Clin. Biochem. Nutr. 2010, 47, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Ming, C.; Lan, M.; Zong-Li, W.; Jian-Yong, L.; Tian-Liang, L.; Metha, W.; Bi-Zhi, H. Assessment of mulberry leaf as a potential feed supplement for animal feeding in p.r. China. Asian Austral. J. Anim. 2019, 32, 1145. [Google Scholar]
- Chang, W.C.; Sei, C.K.; Soon, S.H.; Bong, K.C.; Hye, J.A.; Min, Y.L.; Sang, H.P.; Soo, K.K. Antioxidant activity and free radical scavenging capacity between korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar]
- Hassan, H.U.; Raja, N.I.; Abasi, F.; Mehmood, A.; Qureshi, R.; Manzoor, Z.; Shahbaz, M.; Proćków, J. Comparative study of antimicrobial and antioxidant potential of olea ferruginea fruit extract and its mediated selenium nanoparticles. Molecules 2022, 27, 5194. [Google Scholar] [CrossRef]
- He, X.; Li, H.; Gao, R.; Zhang, C.; Liang, F.; Sheng, Y.; Zheng, S.; Xu, J.; Xu, W.; Huang, K. Mulberry leaf aqueous extract ameliorates blood glucose and enhances energy expenditure in obese c57bl/6j mice. J. Funct. Foods 2019, 63, 103505. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X.; Tu, Y.; Wang, B.; Lou, C.; Ma, T.; Diao, Q. Effects of mulberry leaf flavonoid and resveratrol on methane emission and nutrient digestion in sheep. Anim. Nutr. 2015, 1, 362–367. [Google Scholar] [CrossRef]
- Kim, S.Y.; Gao, J.J.; Lee, W.C.; Ryu, K.S.; Lee, K.R.; Kim, Y.C. Antioxidative fiavonoids from the leaves of morus alba. Nat. Prod. 1999, 22, 81–85. [Google Scholar]
- Kayo, D.; Takashi, K.; Mitsuko, M.; Yumiko, K.; Yasuo, F. Studies on the constituents of the leaves of morus alba L. Chem. Pharm. Bull. 2001, 49, 151–153. [Google Scholar]
- Takuya, K.; Naoto, I.; Yasuhiro, K.; Yoshimitsu, Y.; Kuninori, S.; Yosuke, Y. Antioxidant flavonol glycosides in mulberry (morus alba l.) Leaves isolated based on ldl antioxidant activity. Food Chem. 2005, 97, 25–31. [Google Scholar]
- Guo, N.; Zhu, Y.; Jiang, Y.; Li, H.; Liu, Z.; Wang, W.; Shan, C.; Fu, Y. Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Ind. Crop. Prod. 2020, 148, 112287. [Google Scholar] [CrossRef]
- Li, Q.; Liu, F.; Liu, J.; Liao, S.; Zou, Y. Mulberry leaf polyphenols and fiber induce synergistic antiobesity and display a modulation effect on gut microbiota and metabolites. Nutrients 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wang, Q.; Tong, W.; Xiong, J.; Wei, Q.; Zhou, W.; Yin, Z.; Yin, X.; Wang, L.; Chen, Y.; et al. Extraction and antioxidant activity of flavonoids of morus nigra. Int. J. Clin. Exp. Med. 2015, 8. [Google Scholar]
- Allen, Y.C.; Yi, C.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar]
- Peláez-Acero, A.; Garrido-Islas, D.B.; Campos-Montiel, R.G.; González-Montiel, L.; Medina-Pérez, G.; Luna-Rodríguez, L.; González-Lemus, U.; Cenobio-Galindo, A.D.J. The application of ultrasound in honey: Antioxidant activity, inhibitory effect on α-amylase and α-glucosidase, and in vitro digestibility assessment. Molecules 2022, 27, 5825. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Chang, S.; Liu, J.; Li, H.; Xu, P.; Wang, P.; Wang, X.; Zhao, M.; Zhao, B.; Wang, L.; et al. Physicochemical properties, antioxidant and antidiabetic activities of polysaccharides from quinoa (Chenopodium quinoa willd.) Seeds. Molecules 2020, 25, 3840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, T.; Jiang, J.; Wong, Y.; Yang, F.; Zheng, W. Selenium-containing allophycocyanin purified from selenium-enrichedspirulina platensis attenuates aaph-induced oxidative stress in human erythrocytes through inhibition of ros generation. J. Agric. Food Chem. 2011, 59, 8683–8690. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Ning, Z.; Chen, L.; Wei, Q.; Yuan, E.; Yang, J.; Ren, J. Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (aaph)-induced oxidative stress through inhibition of reactive oxygen species generation. J. Agric. Food Chem. 2014, 62, 8648–8654. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, J.; Liu, H.; Brennan, C.S.; Liu, J.; Zou, X. Protective effects of the flavonoid fraction obtained from pomelo fruitlets through ultrasonic-associated microwave extraction against aaph-induced erythrocyte hemolysis. RSC Adv. 2019, 9, 16007–16017. [Google Scholar] [CrossRef] [Green Version]
- Remigante, A.; Spinelli, S.; Straface, E.; Gambardella, L.; Caruso, D.; Falliti, G.; Dossena, S.; Marino, A.; Morabito, R. Açaì (euterpe oleracea) extract protects human erythrocytes from age-related oxidative stress. Cells 2022, 11, 2391. [Google Scholar] [CrossRef]
- Remigante, A.; Spinelli, S.; Straface, E.; Gambardella, L.; Caruso, D.; Falliti, G.; Dossena, S.; Marino, A.; Morabito, R. Antioxidant activity of quercetin in a h2o2-induced oxidative stress model in red blood cells: Functional role of band 3 protein. Int. J. Mol. Sci. 2022, 23, 10991. [Google Scholar] [CrossRef]
- Remigante, A.; Spinelli, S.; Basile, N.; Caruso, D.; Falliti, G.; Dossena, S.; Marino, A.; Morabito, R. Oxidation stress as a mechanism of aging in human erythrocytes: Protective effect of quercetin. Int. J. Mol. Sci. 2022, 23, 7781. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- Inès, T.; Walid, E.; Hédia, H.; Ali, F.; Maria, D.G.C. Identification and quantification of phenolic acids and flavonol glycosides in tunisian morus species by HPLC-DAD and HPLC-MS. J. Funct. Foods 2012, 4, 367–374. [Google Scholar]
- Flaczyk, E.; Kobus-Cisowska, J.; Przeor, M.; Korczak, J.; Remiszewski, M.; Korbas, E.; Buchowski, M. Chemical characterization and antioxidative properties of polish variety of morus alba l. Leaf aqueous extracts from the laboratory and pilot-scale processes. Agric. Sci. 2013, 4, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharm. Biol. 2018, 56, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Eric, W.C.C.; Siu, K.W.; Joseph, T.; Tomomi, I.; Hung, T.C. Phenolic constituents and anticancer properties of morus alba(white mulberry) leaves. J. Integr. Med. 2020, 18, 189–195. [Google Scholar]
- Thabti, I.; Elfalleh, W.; Tlili, N.; Ziadi, M.; Campos, M.G.; Ferchichi, A. Phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of morus species. Int. J. Food Prop. 2014, 17, 842–854. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Liang, H.; Li, H.; Yuan, R.; Sun, J.; Zhang, L.; Han, M.; Wu, Y. Isolation, purification, characterization and antioxidant activity of polysaccharides from the stem barks of acanthopanax leucorrhizus. Carbohyd. Polym. 2018, 196, 359–367. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, N.; Tong, Q.; Jin, Z.; Xu, X. Rotary magnetic field combined with pipe fluid technique for efficient extraction of pumpkin polysaccharides. Innov. Food Sci. Emerg. 2016, 35, 103–110. [Google Scholar] [CrossRef]
- Çimen, M.B. Free radical metabolism in human erythrocytes. Clin. Chim. Acta 2007, 390, 1–11. [Google Scholar] [CrossRef]
- Raneva, V.; Shimasaki, H.; Ishida, Y.; Ueta, N.; Niki, E. Antioxidative activity of 3,4-dihydroxyphenylacetic acid and caffeic acid in rat plasma. Lipids 2001, 36, 1111. [Google Scholar] [CrossRef]
- Miki, M.; Tamai, H.; Mino, M.; Yamamoto, Y.; Niki, E. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by α-tocopherol. Arch. Biochem. Biophys. 1987, 258, 373–380. [Google Scholar] [CrossRef]
- Roche, M.; Tarnus, E.; Rondeau, P.; Bourdon, E. Effects of nutritional antioxidants on aaph- or ages-induced oxidative stress in human sw872 liposarcoma cells. Cell Biol. Toxicol. 2009, 25, 635–644. [Google Scholar] [CrossRef]
- Ron, M. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, M.; Shadnoush, M.; Sohrabvandi, S.; Khorshidian, N.; Mortazavian, A.M. Encapsulation systems for delivery of flavonoids: A review. Biointerface Res. Appl. Chem. 2021, 11, 13934–13951. [Google Scholar]
- Mary, C.P.V.; Vijayakumar, S.; Shankar, R. Metal chelating ability and antioxidant properties of curcumin-metal complexes—A dft approach. J. Mol. Graph. Model. 2018, 79, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Holtomo, O.; Nsangou, M.; Fifen, J.J.; Motapon, O. Dft study of the effect of solvent on the h-atom transfer involved in the scavenging of the free radicals (·)ho2 and (·)o2(-) by caffeic acid phenethyl ester and some of its derivatives. J. Mol. Model. 2014, 20, 2509. [Google Scholar] [CrossRef]
- Martínez, A.; Galano, A.; Vargas, R. Free radical scavenger properties of α-mangostin: Thermodynamics and kinetics of hat and raf mechanisms. J. Phys. Chem. B 2011, 115, 12591–12598. [Google Scholar] [CrossRef] [PubMed]
- Xican, L.; Yulu, X.; Ke, L.; Aizhi, W.; Hong, X.; Qian, G.; Penghui, X.; Yerkingul, M.; Wei, Z.; Jiasong, G.; et al. Antioxidation and cytoprotection of acteoside and its derivatives: Comparison and mechanistic chemistry. Molecules 2018, 23, 498. [Google Scholar]
- Peng, C.; Lin, H.; Chung, D.; Huang, C.; Wang, C. Mulberry leaf extracts prevent obesity-induced nafld with regulating adipocytokines, inflammation and oxidative stress. J. Food Drug Anal. 2018, 26, 778–787. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, T.; Jiang, Y.; Gong, L.; Yang, B. Identification of prenylated phenolics in mulberry leaf and their neuroprotective activity. Phytomedicine 2021, 90, 153641. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tang, Y.; Osman, E.E.A.; Wan, J.; Jiang, W.; Yang, G.; Xiong, J.; Zhu, Q.; Hu, J. Bioassay-guided isolation of new flavonoid glycosides from platanus × acerifolia leaves and their staphylococcus aureus inhibitory effects. Molecules 2022, 27, 5357. [Google Scholar] [CrossRef]
- Federico, A.; Cardaioli, E.; Da, P.P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci. 2012, 322, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992, 6, 3051–3064. [Google Scholar] [CrossRef]
- Salucci, S.; Burattini, S.; Battistelli, M.; Baldassarri, V.; Maltarello, M.C.; Falcieri, E. Ultraviolet b (uvb) irradiation-induced apoptosis in various cell lineages in vitro. Int. J. Mol. Sci. 2012, 14, 532–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbos, K.A.; Claro, L.M.; Borges, L.; Santos, C.A.; Weffort-Santos, A.M. Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts. Nutr. Res. 2008, 28, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Yamakoshi, J.; Sano, A.; Tokutake, S.; Saito, M.; Kikuchi, M.; Kubota, Y.; Kawachi, Y.; Otsuka, F. Oral intake of proanthocyanidin-rich extract from grape seeds improves chloasma. Phytother. Res. 2004, 18, 895–899. [Google Scholar] [CrossRef]
Compound | Formula (M) | Ion Mode | MW (g/mol) | Quantitative Ion Pairs (Da) | Retention Time (min) | Calculated Conc. (ng/mL) | |
---|---|---|---|---|---|---|---|
Rutoside | C27H30O16 | ESI- | 610.52 | 609.300/300.100 | 7.09 | 125,000 | |
Hyperoside | C21H20O12 | ESI- | 464.38 | 462.837/254.940 | 9.37 | 68,300 | |
Catechin | C15H14O6 | ESI- | 290.2681 | 289.100/245.000 | 5.32 | 163 | |
Myricitrin | C21H20O12 | ESI- | 464.38 | 462.901/270.937 | 7.27 | 44,500 | |
Isoquercitrin | C21H20O12 | ESI- | 448.38 | 463.000/254.900 | 9.34 | 43.1 | |
Kaempferol 3- rutinoside | C27H30O15 | ESI- | 594.518 | 592.914/254.911 | 7.98 | 15,700 | |
Paeoniflorin | C23H28O11 | ESI- | 480.47 | 479.100/120.900 | 5.90 | 3570 | |
Epicatechin | C15H14O6 | ESI- | 290.27 | 289.100/109.000 | 4.97 | 64.2 | |
Taxifolin | C15H12O7 | ESI- | 304.25 | 303.100/124.900 | 6.85 | 518 | |
Quercetin | C15H10O7 | ESI- | 302.24 | 301.000/150.900 | 10.1 | 886 | |
Luteolin | C15H10O6 | ESI- | 286.23 | 285.100/132.900 | 10.1 | 95.6 | |
Morin | C15H10O7 | ESI- | 302.24 | 300.825/150.986 | 10.1 | 698 | |
Astragalin | C21H20O11 | ESI- | 286.25 | 446.901/226.984 | 8.06 | 16,700 | |
Quercitrin | C21H20O11 | ESI- | 448.38 | 446.901/254.942 | 8.03 | 18,600 | |
Isorhamnetin-3-O-glucoside | C22H22O12 | ESI- | 478.4 | 477.100/313.900 | 8.33 | 3.65 | |
Curculigoside | C22H26O11 | ESI- | 466.44 | 465.100/136.900 | 8.33 | 23.0 | |
Hesperidin | C28H34O15 | ESI- | 610.56 | 609.300/301.100 | 6.97 | 180,000 | |
Cynaroside | C21H20O11 | ESI- | 448.37 | 446.891/284.780 | 7.99 | 16,200 | |
Vitexin | C21H20O10 | ESI- | 432.38 | 431.100/310.900 | 8.21 | 4990 | |
Kaempferol | C15H10O6 | ESI- | 756.66 | 285.100/185.100 | 11.2 | 209 | |
Guaiaverin | C20H18O11 | ESI- | 434.35 | 432.871/299.937 | 7.45 | 12,300 | |
Licochalcone-A | C21H22O4 | ESI- | 338.4 | 337.300/120.000 | 13.8 | 15.2 | |
Ginsenoside Rg2 | C42H72O13 | ESI- | 785.03 | 783.500/475.200 | 12.1 | 116 | |
Ginsenoside C-K | C36H62O8 | ESI- | 622.88 | 621.500/161.000 | 14.2 | 211 | |
Ginsenoside Rc | C53H90O22 | ESI- | 1079.27 | 1077.600/945.700 | 12.0 | 230 | |
Ginsenoside Rg1 | C42H72O14 | ESI- | 801.01 | 799.500/475.300 | 11.5 | 1150 | |
Ginsenoside Rf | C42H72O14 | ESI- | 801.02 | 799.500/475.250 | 11.4 | 4.54 | |
Ginsenoside F1 | C36H62O9 | ESI- | 638.87 | 637.600/475.300 | 12.0 | 3140 | |
Ginsenoside Rb2 | C53H90O22 | ESI- | 1079.27 | 1077.600/783.500 | 11.5 | 110 | |
Ginsenoside Rd | C48H82O18 | ESI- | 947.15 | 945.600/621.500 | 12.1 | 71.2 | |
Ginsenoside Re | C48H82O18 | ESI- | 947.17 | 946.000/783.500 | 12.2 | 284 | |
Hesperetin | C16H14O6 | ESI- | 302.28 | 301.100/150.900 | 9.94 | 1190 | |
Polydatin | C20H22O8 | ESI- | 390.38 | 391.100/229.100 | 6.63 | 318 | |
Cyanidin 3-O-glucoside | C21H21ClO11 | ESI+ | 484.84 | 448.861/286.932 | 7.94 | 64,800 | |
Cyanidin 3-O-rutinoside | C27H31O15 | ESI+ | 594 | 594.874/286.961 | 7.74 | 39,600 | |
Isorhamnetin-3-O-glucoside | C22H22O12 | ESI+ | 624.54 | 624.870/316.943 | 8.01 | 191 | |
Naringenin | C15H12O5 | ESI+ | 272 | 272.968/147.102 | 10.4 | 341 | |
Apigenin 7-glucoside | C21H20O10 | ESI+ | 432.38 | 433.200/271.100 | 8.19 | 6680 | |
Cyanidin | C21H28O8 | ESI+ | 322.7 | 286.900/109.100 | 11.1 | 19,500 |
Samples | IC50(mg/mL) | |||
---|---|---|---|---|
DPPH | ·OH | O2− | ABTS | |
Vc | 0.0105 | 0.3524 | 0.2355 | 0.0082 |
FML | 0.0452 | 0.5242 | 3.1768 | 0.0319 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Tan, W.; Feng, X.; Feng, K.; Zhong, W.; Liao, C.; Liu, Y.; Li, S.; Hu, W. Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules 2022, 27, 7625. https://doi.org/10.3390/molecules27217625
Zheng Q, Tan W, Feng X, Feng K, Zhong W, Liao C, Liu Y, Li S, Hu W. Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules. 2022; 27(21):7625. https://doi.org/10.3390/molecules27217625
Chicago/Turabian StyleZheng, Qinhua, Weijian Tan, Xiaolin Feng, Kexin Feng, Wenting Zhong, Caiyu Liao, Yuntong Liu, Shangjian Li, and Wenzhong Hu. 2022. "Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes" Molecules 27, no. 21: 7625. https://doi.org/10.3390/molecules27217625
APA StyleZheng, Q., Tan, W., Feng, X., Feng, K., Zhong, W., Liao, C., Liu, Y., Li, S., & Hu, W. (2022). Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules, 27(21), 7625. https://doi.org/10.3390/molecules27217625