Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of DLP-3
2.1.1. Physicochemical Properties and Monosaccharide Composition of DLP-3
2.1.2. SEM Analysis of DLP-3
2.1.3. FT-IR Analysis
2.1.4. Methylation Analysis
2.1.5. NMR Analysis of DLP-3
2.1.6. Congo Red Test
2.2. In Vitro Antioxidant Activities of DLP-3
2.2.1. Superoxide Radical Scavenging Activity
2.2.2. ABTS Radical Scavenging Activity
2.2.3. Hydroxyl Radical Scavenging Assay
2.3. Antibacterial Activity of DLP-3
2.4. Anticancer Activity of DLP-3
3. Materials and Methods
3.1. Materials
3.2. Extraction and Purification of DLP
3.3. Characterization of DLP-3
3.4. Antioxidant Activity
3.4.1. Superoxide Radical Scavenging Assay
3.4.2. ABTS Radical Scavenging Assay
3.4.3. Hydroxyl Radical Scavenging Assay
3.5. Antibacterial Activity of DLP-3
3.5.1. Agar Diffusion Assay
3.5.2. Minimum Inhibitory Concentration (MIC) Determination
3.6. Anticancer Properties
3.6.1. Cell Lines and Cell Culture
3.6.2. Cell Proliferation Assay and Colony Formation Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, L.; Li, T.; Liu, F.; Liu, D.; Xu, Y.; Yang, Y.; Zhao, Y.; Wei, H. Ultrasonic-assisted enzymatic extraction and characterization of polysaccharides from Dandelion (Taraxacum officinale) leaves. Int. J. Biol. Macromol. 2019, 126, 11391. [Google Scholar] [CrossRef]
- Cai, L.; Chen, B.; Yi, F.; Zou, S. Optimization of extraction of polysaccharide from Dandelion root by response surface methodology: Structural characterization and antioxidant activity. Int. J. Biol. Macromol. 2019, 140, 907–919. [Google Scholar] [CrossRef]
- Ren, F.; Li, J.; Yuan, X.; Wang, Y.; Yuan, Z. Dandelion polysaccharides exert anticancer effect on hepatocellular carcinoma by inhibiting PI3K/AKT/mTOR pathway and enhancing immune response. J. Funct. Foods 2019, 55, 263–274. [Google Scholar] [CrossRef]
- Martinez, M.; Poirrier, P.; Chamy, R.; Prüfer, D.; Schulze-Gronover, C.; Jorquera, L.; Ruiz, G. Taraxacum officinale and related species-An ethnopharmacological review and its potential as a commercial medicinal plant. J. Ethnopharmacol. 2015, 169, 9427. [Google Scholar] [CrossRef]
- Lis, B.; Jedrejek, D.; Stochmal, A.; Olas, B. Assessment of effects of phenolic fractions from leaves and petals of Dandelion in selected components of hemostasis. Food. Res. Int 2018, 107, 605–612. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Łysoń, E.; Telesiński, A. The chemical composition and antioxidant properties of common Dandelion leaves compared with sea buckthorn. Can. J. Plant. Sci. 2017, 97, 1–27. [Google Scholar] [CrossRef]
- Liang, Y.; Duan, H.; Zhang, P.; Han, H.; Gao, F.; Li, Y.; Xu, Z. Extraction and isolation of the active ingredients of dandelion and its antifungal activity against Candida albicans. Mol. Med. Rep. 2020, 21, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Chen, G.Z.; Zhou, S.K.; Xu, R.R.; Wu, C.L. In vitro anti-tumor activity in sgc-7901 human gastric cancer cells treated with dandelion extract. Trop. J. Pharm. Res 2018, 17, 65. [Google Scholar] [CrossRef] [Green Version]
- Jędrejek, D.; Kontek, B.; Lis, B.; Stochmal, A.; Olas, B. Evaluation of antioxidant activity of phenolic fractions from the leaves and petals of Dandelion in human plasma treated with H2O2 and H2O2/Fe. Chem.-Biol. Interact. 2017, 262, 29–37. [Google Scholar] [CrossRef]
- Wirngo, F.E.; Lambert, M.N.; Jeppesen, P.B. The Physiological Effects of Dandelion (Taraxacum officinale) in Type 2 Diabetes. Rev. Diabet. Stud. 2016, 13, 113–131. [Google Scholar] [CrossRef]
- Wang, H.B. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the Dandelion Taraxacum officinale. Carbohyd. Polym. 2014, 103, 140–142. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.; Zhou, X.; Dong, W.; Wang, Q.; Xiao, C.; Zhang, S. Effect of Dandelion root extract on growth performance, immune function and bacterial community in weaned pigs. Food. Agr. Immunol. 2019, 30, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Li, Y.; Wang, C.; Zhang, N.; Zhu, X.; Wu, R.; Wu, J. Purification, characterization and antitumor activity of an exopolysaccharide produced by Bacillus velezensis SN-1. Int. J. Biol. Macromol. 2020, 156, 354–361. [Google Scholar] [CrossRef]
- Li, M.; Ma, F.; Li, R.; Ren, G.; Yan, D.; Zhang, H.; Wu, R.; Wu, J. Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment: Process parameters, structural characteristics, and antioxidant activities. Int. J. Biol. Macromol. 2020, 160, 979–990. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zhang, H.; Liu, Y.; Wang, W.; You, S.; Hu, X.; Song, M.; Wu, R.; Wu, J. Anti-cancer Potential of Polysaccharide Extracted from Polygonatum sibiricum on HepG2 Cells via Cell Cycle Arrest and Apoptosis. Front. Nutr. 2022, 9, 938290. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; MartiQuijal, F.J.; Barba, F.J.; Altintas, Z. Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int. J. Biol. Macromol. 2022, 202, 494–507. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, A.; Lu, Z.; Qin, C.; Hu, J.; Yin, J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohyd. Res. 2017, 453–454, 1–9. [Google Scholar] [CrossRef]
- Zhang, R.J.; Shi, Y.; Zheng, J.; Mao, X.M.; Liu, Z.Y.; Chen, Q.X.; Wang, Q. Effects of polysaccharides from abalone viscera (Haliotis discus hannai Ino) on MGC 803 cells proliferation. Int. J. Biol. Macromol. 2018, 106, 8047. [Google Scholar] [CrossRef]
- Li, C.; Dong, Z.; Zhang, B.; Huang, Q.; Liu, G.; Fu, X. Structural characterization and immune enhancement activity of a novel polysaccharide from Moringa oleifera leaves. Carbohyd. Polym. 2020, 234, 115897. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, M.; Yao, X.; Yu, L. Purification, structural characterization, and antioxidant activity of the COP-W1 polysaccharide from Codonopsis tangshen Oliv. Carbohyd. Polym. 2020, 236, 116020. [Google Scholar] [CrossRef]
- Li, M.; Yan, D.; Hu, X.; Ren, G.; Zhang, H.; Wang, Z.; Teng, Z.; Wu, R.; Wu, J. Structural, rheological properties and antioxidant activities of polysaccharides from mulberry fruits (Murus alba L.) based on different extraction techniques with superfine grinding pretreatment. Int. J. Biol. Macromol. 2021, 183, 1774–1783. [Google Scholar] [CrossRef]
- He, P.F.; He, L.; Zhang, A.Q.; Wang, X.L.; Qu, L.; Sun, P.L. Structure and chain conformation of a neutral polysaccharide from sclerotia of Polyporus umbellatus. Carbohyd. Polym. 2017, 155, 61–67. [Google Scholar] [CrossRef]
- Cai, L.; Wan, D.; Yi, F.; Luan, L. Purification, preliminary characterization and hepatoprotective effects of polysaccharides from dandelion root. Molecules 2017, 22, 1409. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Chen, L.; Liu, T. Dandelion polysaccharide suppresses lipid oxidation in antarctic krill (Euphausia superba). Int. J. Biol. Macromol. 2019, 133, 1164–1167. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, W.; Jiang, Y.; Wang, H.; Chen, G.; Guo, M. Physicochemical, structural, and biological properties of polysaccharides from dandelion. Molecules 2019, 24, 1485. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Ran, C.; Li, C.; Xiong, Z.; Ma, L. Comparisons of prebiotic activity of polysaccharides from shoot residues of bamboo (Chimonobambusa quadrangularis) via different ethanol concentrations. J. Food. Biochem. 2020, 44, e13171. [Google Scholar] [CrossRef]
- Kouadri, I.; Layachi, A.; Makhlouf, A.; Satha, H. Optimization of extraction process and characterization of water-soluble polysaccharide (Galactomannan) from Algerian biomass; Citrullus colocynthis seeds. Int. J. Polym. Anal. Charact. 2018, 23, 1455343. [Google Scholar] [CrossRef]
- Petera, B.; Delattre, C.; Pierre, G.; Wadouachi, A.; Elboutachfaiti, R.; Engel, E.; Poughon, L.; Michaud, P.; Fenoradosoa, T.A. Characterization of arabinogalactan-rich mucilage from Cereus triangularis cladodes. Carbohyd. Polym. 2015, 127, 372–380. [Google Scholar] [CrossRef]
- Huamaní-Meléndez, V.J.; Mauro, M.A.; Darros-Barbosa, R. Physicochemical and rheological properties of aqueous Tara gum solutions. Food Hydrocoll. 2021, 111, 106195. [Google Scholar] [CrossRef]
- Benaoun, F.; Delattre, C.; Boual, Z.; Ursu, A.V.; Vial, C.; Gardarin, C.; Wadouachi, A.; Cerf, D.L.; Varacavoudin, T.; Didi, M.; et al. Structural characterization and rheological behavior of a heteroxylan extracted from Plantago notata lagasca (plantaginaceae) seeds. Carbohyd. Polym. 2017, 175, 96. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Zhang, M.; Yang, X.; Wei, X. Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots. Carbohyd. Polym. 2019, 227, 115362. [Google Scholar] [CrossRef]
- Shakhmatov, E.G.; Toukach, P.V.; Makarova, E.N. Structural studies of the pectic polysaccharide from fruits of punica granatum. Carbohyd. Polym. 2020, 235, 115978. [Google Scholar]
- Shakhmatov, E.G.; Belyy, V.A.; Makarova, E.N. Structure of acid-extractable polysaccharides of tree greenery of picea abies. Carbohyd. Polym. 2018, 199, 320–330. [Google Scholar]
- Zhang, Y.; Zeng, Y.; Cui, Y.; Liu, H.; Dong, C.; Sun, Y. Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley. Carbohyd. Polym. 2020, 235, 115969. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, C.; Xu, P.; Zhu, J.; Yang, Z.; Hong, R.; Luo, Q. Structural characterization and in vitro antitumor activity of a polysaccharide from artemisia annual (Huang huahao). Carbohyd. Polym. 2019, 213, 361–369. [Google Scholar] [CrossRef]
- Xia, L.; Ji, D.; Zhu, M.; Lu, Y.; Chen, D. Juniperus pingii var. wilsonii acidic polysaccharide: Extraction, characterization and anticomplement activity. Carbohyd. Polym. 2020, 231, 115728. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Gu, J.; Ji, C.; Duan, Y.; Zhang, H. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. Int. J. Biol. Macromol. 2019, 123, 1002–1011. [Google Scholar] [CrossRef]
- Xiong, F.; Li, X.; Zheng, L.; Hu, N.; Cui, M.; Li, H. Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods. Carbohyd. Polym. 2019, 218, 46–52. [Google Scholar] [CrossRef]
- Hu, H.B.; Liang, H.P.; Li, H.M.; Yuan, R.N.; Jiao, S.; Zhang, L.L.; Han, M.H.; Wu, Y. Isolation, purification, characterization and antioxidant activity of polysaccharides from the stem barks of Acanthopanax leucorrhizus. Carbohyd. Polym. 2018, 196, 359–367. [Google Scholar] [CrossRef]
- Mirzadeh, M.; Arianejad, M.R.; Khedmat, L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohyd. Polym. 2019, 229, 115421. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Fan, L.; Ai, L.; Shan, L. Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus Jujuba cv. Jinsixiaozao. Carbohydr. Polym. 2011, 84, 390–394. [Google Scholar] [CrossRef]
- Yan, J.K.; Li, L.; Wang, Z.M.; Leung, P.H.; Wang, W.Q.; Wu, J.Y. Acidic degradation and enhanced antioxidant activities of exopolysaccharides from Cordyceps Sinensis mycelial culture. Food Chem. 2009, 117, 641–646. [Google Scholar] [CrossRef]
- Mohanta, B.; Sen, D.J.; Mahanti, B.; Nayak, A.K. Antioxidant potential of herbal polysaccharides: An overview on recent researches. Sens. Int. 2022, 3, 100158. [Google Scholar] [CrossRef]
- Luo, A.X.; He, X.J.; Zhou, S.D.; Fan, Y.J.; Luo, A.S.; Chun, Z. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohyd. Polym. 2010, 79, 1014–1019. [Google Scholar] [CrossRef]
- Khemakhem, I.; Abdelhedi, O.; Trigui, I.; Ayadi, M.A.; Bouaziz, M. Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int. J. Biol. Macromol. 2018, 106, 425–432. [Google Scholar] [CrossRef]
- Kungel, P.T.A.N.; Correa, V.G.; Correa, R.C.G.; Peralta, R.A.; Soković, M.; Calhelha, R.C.; Bracht, A.; Ferreira, I.C.F.R. Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex paraguariensis). Int. J. Biol. Macromol. 2018, 114, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Sheng, K.; Yan, E.; Qiao, J.; Lv, F. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int. J. Biol. Macromol. 2012, 50, 840–843. [Google Scholar] [CrossRef]
- Hashemifesharaki, R.; Xanthakis, E.; Altintas, Z.; Guo, Y.; Gharibzahedi, S.M.T. Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohyd. Polym. 2020, 240, 116301. [Google Scholar] [CrossRef]
- Zhao, J.L.; Zhang, M.; Zhou, H.L. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules 2019, 24, 1605. [Google Scholar] [CrossRef] [Green Version]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Characterizing the novel surfactantstabilized nanoemulsions of stinging nettle essential oil: Thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. J. Mol. Liq. 2016, 224, 1332–1340. [Google Scholar] [CrossRef]
- Hajji, M.; Hamdi, M.; Sellimi, S.; Ksouda, G.; Laouer, H.; Li, S.; Nasri, M. Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohyd. Polym. 2018, 206, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Wu, K.; Yang, Y.; Yang, Y.; Wang, Y.; Li, J. Dandelion Polysaccharide Exerts Anti-Angiogenesis Effect on Hepatocellular Carcinoma by Regulating VEGF/HIF-1α Expression. Front. Pharm. 2020, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, X.; Xie, H.; Li, X.; Shi, L. Structural characterization and antitumor activity of a polysaccharide from ramulus mori. Carbohyd. Polym. 2018, 190, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhao, Y.; Jiao, Y.; Shi, T.; Yang, X. ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells. PLoS ONE 2013, 8, e64266. [Google Scholar] [CrossRef]
- Cleary, J.A.; Kelly, G.E.; Husband, A.J. The effect of molecular weight and beta-1,6-linkages on priming of macrophage function in mice by (1,3)-beta-d-glucan. Immunol. Cell. Biol. 1999, 77, 395–403. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, F.; Xu, X.; Zhang, L. Extended chain conformation of β-glucan and its effect on antitumor activity. J. Mater. Chem. B 2017, 5, 5623–5631. [Google Scholar] [CrossRef]
- Bai, R.; Li, W.; Li, Y.; Ma, M.; Wang, Y.; Zhang, J.; Hu, F. Cytotoxicity of two water-soluble polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) l.t.shen against human hepatocellular carcinoma HepG2 cells and its mechanism. Int. J. Biol. Macromol. 2018, 120, 1544–1550. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Biochem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Filisetti-Cozzi, T.; Carpita, N.C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Nie, C.; Zhu, P.; Ma, S.; Wang, M.; Hu, Y. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce. Carbohyd. Polym. 2018, 236, 13271. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yan, X.; Liang, J.; Li, S.; He, H.; Xiong, Q.; Lai, X.; Hou, S.; Huang, S. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohyd. Polym. 2018, 198, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, G. Extraction, derivatization and antioxidant activity of bitter gourd polysaccharide. Int. J. Biol. Macromol. 2019, 140, 14–20. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2018, 125, 11125. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Z.; Guo, Z.; Zhao, Z.; Zhao, Y.; Wang, X. Structural investigation of a polysaccharide from the mycelium of Enterobacter cloacae and its antibacterial activity against extensively drug-resistant E. cloacae producing SHV-12 extended-spectrum β-lactamase. Carbohydr. Polym. 2018, 195, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, G.; Cheng, C.; Yuan, B.; Huang, D.; Cheng, S.; Cao, C.; Chen, G. Purification, characterization and anti-tumor activities of polysaccharides from Ecklonia kurome obtained by three different extraction methods. Int. J. Biol. Macromol. 2019, 10, 216. [Google Scholar] [CrossRef] [PubMed]
Numbers | Characteristic Fragments (m/z) | Methylated Sugar | Molar Ratio (%) | Linkage Type |
---|---|---|---|---|
1 | 43, 45, 57, 85, 87, 99, 101, 113, 117, 161, 173, 233 | 2,3,6-Me3-Glcp | 22.29 | →4)-Glcp-(1→ |
2 | 43, 85, 102, 118, 127, 162, 201, 261 | 2,3-Me2-Glcp | 14.74 | →4,6)-Glcp-(1→ |
3 | 43, 45, 71, 87, 99, 101, 117, 129, 161, 189, 233 | 2,3,4-Me3-Galp | 12.55 | →6)-Galp-(1→ |
4 | 43, 45, 71, 87, 99, 101, 113, 129, 161, 173, 205 | 3,4,6-Me3-Manp | 20.19 | →2)-Manp-(1→ |
5 | 43, 45,59, 71, 87, 102, 113, 118, 129, 162, 173, 233 | 2,3,6-Me3-Manp | 11.27 | →4)-Manp-(1→ |
6 | 59, 71, 87, 102, 118, 129, 145, 161 | 2,3,5-Me3-Araf | 15.84 | Araf-(1→ |
7 | 57,72,89,102,113,118,162 | 2,3,4-Me3-Rhap | 3.12 | Rhap-(1→ |
Sugar Residue | C1/H1 | C2/H2 | C3/H3 | C4/H4 | C5/H5 | C6/H6 |
---|---|---|---|---|---|---|
→4)-α-d-Glcp-(1→ | 5.40 | 3.60 | 3.72 | 3.60 | 3.72 | 4.01 |
98.74 | 67.59 | 71.16 | 72.78 | 69.27 | 67.59 | |
→4,6)-α-d-Glcp-(1→ | 4.89 | 3.54 | 3.88 | 3.54 | 4.01 | 3.80 |
99.25 | 69.27 | 73.46 | 74.38 | 70.88 | 64.10 | |
→6)-α-d-Galp-(1→ | 5.10 | 3.66 | 4.03 | 3.83 | 4.28 | 4.03 |
97.67 | 72.78 | 76.48 | 70.48 | 76.48 | 68.58 | |
→2)-α-d-Manp-(1→ | 5.13 | 4.28 | - | - | - | 3.74 |
100.27 | 74.02 | - | - | - | 61.28 | |
→4)-α-d-Manp-(1→ | 5.39 | 3.88 | 3.43 | 3.72 | 3.52 | 3.72 |
99.78 | 63.24 | 75.20 | 80.71 | 74.38 | 69.85 | |
β-l-Araf-(1→ | 5.20 | 4.01 | 4.12 | 3.80 | 3.70 | - |
92.22 | 81.37 | 76.48 | 77.96 | 63.24 | - | |
α-l-Rhap-(1→ | 5.39 | 3.83 | 3.66 | 3.45 | 4.01 | 1.27 |
109.26 | 76.48 | 67.59 | 71.69 | 69.27 | 15.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, H.; Hu, X.; Liu, Y.; Liu, Y.; Song, M.; Wu, R.; Wu, J. Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules 2022, 27, 7641. https://doi.org/10.3390/molecules27217641
Li M, Zhang H, Hu X, Liu Y, Liu Y, Song M, Wu R, Wu J. Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules. 2022; 27(21):7641. https://doi.org/10.3390/molecules27217641
Chicago/Turabian StyleLi, Mo, Henan Zhang, Xinyu Hu, Yumeng Liu, Yanfeng Liu, Meijun Song, Rina Wu, and Junrui Wu. 2022. "Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities" Molecules 27, no. 21: 7641. https://doi.org/10.3390/molecules27217641
APA StyleLi, M., Zhang, H., Hu, X., Liu, Y., Liu, Y., Song, M., Wu, R., & Wu, J. (2022). Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules, 27(21), 7641. https://doi.org/10.3390/molecules27217641