Optimization of κ-Selenocarrageenase Production by Pseudoalteromonas sp. Xi13 and Its Immobilization
Abstract
:1. Introduction
2. Results and Discussion
2.1. κ-Selenocarrageenase Activity and Response Surface Test Results
2.2. Enzymatic Properties of κ-Selenocarrageenase
2.3. Optimization of Vacuum Freeze-Drying Process
2.4. Stability of Lyophilized κ-Selenocarrageenase
2.5. Optimization of Enzyme Immobilization
2.6. Stability of Immobilized κ-Selenocarrageenase
2.7. Selenium Content of the Enzymatic Degradation Product by κ-Selenocarrageenase Preparations
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Microbial Strain and Cultivation
3.3. Preparation of κ-Selenocarrageenase and Its Activity Assay
3.4. Optimization of Fermentation Conditions of Strain Xi13 by RSM
3.5. The Enzymatic Properties of κ-Selenocarrageenase
3.6. Preparation of Lyophilized κ-Selenocarrageenase
3.7. Preparation of Immobilized κ-Selenocarrageenase
3.8. Determination of the Selenium Content in Selenium Oligosaccharides
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Conrad, M.; Proneth, B. Selenium: Tracing Another Essential Element of Ferroptotic Cell Death. Cell Chem. Biol. 2020, 27, 409–419. [Google Scholar] [CrossRef]
- Paśko, P.; Galanty, A.; Zagrodzki, P.; Żmudzki, P.; Bieniek, U.; Prochownik, E.; Domínguez-Álvarez, E.; Bierła, K.; Łobiński, R.; Szpunar, J.; et al. Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity. Microchem. J. 2022, 179, 107509. [Google Scholar] [CrossRef]
- Alban, S.; Schauerte, A.; Franz, G. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr. Polym. 2002, 47, 267–276. [Google Scholar] [CrossRef]
- Suzuki, N.; Kitazato, K.; Takamatsu, J.; Saito, H. Antithrombotic and anticoagulant activity of depolymerized fragment of the glycosaminoglycan extracted from Stichopus japonicus Selenka. Thromb. Haemost. 1991, 65, 369–373. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Mani, S.; Malarvizhi, R.; Sali, V.K.; Vasanthi, H.R. Immunomodulatory activity of brown algae Turbinaria ornata derived sulfated polysaccharide on LPS induced systemic inflammation. Phytomedicine 2021, 89, 153615. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, P.J.; Carlucci, M.J.; Damonte, E.B.; Matsuhiro, B.; Zuñiga, E.A. Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): Structural analysis and biological activity. Phytochemistry 2000, 53, 81–86. [Google Scholar] [CrossRef]
- Yu, M.; Ji, Y.; Qi, Z.; Cui, D.; Xin, G.; Wang, B.; Cao, Y.; Wang, D. Anti-tumor activity of sulfated polysaccharides from Sargassum fusiforme. Sadui Pharm. J. 2017, 25, 464–468. [Google Scholar] [CrossRef]
- Hiroishi, S.; Sugie, K.; Yoshida, T.; Morimoto, J.; Taniguchi, Y.; Imai, S.; Kurebayashi, J. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga. Cancer Lett. 2001, 167, 145–150. [Google Scholar] [CrossRef]
- Zhu, B.; Ning, L. Purification and Characterization of a New κ-Carrageenase from the Marine Bacterium Vibrio sp. NJ-2. J. Microbiol. Biotechnol. 2016, 26, 255–262. [Google Scholar] [CrossRef]
- Khambhaty, Y.; Mody, K.; Jha, B.; Gohel, V. Statistical optimization of medium components for κ-carrageenase production by Pseudomonas elongata. Enzyme Microb. Technol. 2007, 40, 813–822. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Y.; Wang, X.; Qu, C.; Miao, J. Complete genome sequence of Bacillus sp. N1-1, a κ-selenocarrageenan degrading bacterium isolated from the cold seep in the South China Sea. Mar. Genom. 2020, 54, 100771. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, G.; Sakata, T.; Kakimoto, D. Carrageenase from marine Cytophaga. I. The production and characteristics of carrageenase from marine Cytophaga. Nippon. Suisan Gakkaishi 1983, 49, 1689–1694. [Google Scholar] [CrossRef] [Green Version]
- Barbeyron, T.; Michel, G.; Potin, P.; Henrissat, B.; Kloareg, B. ι-Carrageenases Constitute a Novel Family of Glycoside Hydrolases, Unrelated to That of κ-Carrageenases. J. Biol. Chem. 2000, 275, 35499–35505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, E.; Can, K.; Sezgin, M.; Yilmaz, M. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresour. Technol. 2011, 102, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, D.; Hartl, S.; Gerlza, T.; Trojacher, C.; Kungl, A.; Khinast, J.; Roblegg, E. Comparing freeze drying and spray drying of interleukins using model protein CXCL8 and its variants. Eur. J. Pharm. Biopharm. 2021, 168, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Alptekin, Ö.; Tükel, S.S.; Yıldırım, D.; Alagöz, D. Immobilization of catalase onto Eupergit C and its characterization. J. Mol. Catal. B Enzym. 2010, 64, 177–183. [Google Scholar] [CrossRef]
- Wang, X.; Liang, C.; Yang, X.; Chen, F.; Li, R.; Qu, C.; Miao, J. Complete genome sequence of Pseudoalteromonas sp. Xi13 capable of degrading κ-selenocarrageenan isolated from the floating ice of Southern Ocean. Mar. Genom. 2022, 61, 100917. [Google Scholar] [CrossRef]
- Salehi, Z.; Rasouli, A.; Doosthosseini, H. p-nitrophenol Degradation Kinetics and Mass Transfer Study by Ralstonia eutropha as a Whole Cell Biocatalyst. Polycyc. Aromat. Compd. 2021, 41, 292–305. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, L.; Lu, X.; Zeng, S.; Zhang, Y.; Xu, H.; Zheng, B. Medium Optimization and Fermentation Kinetics for κ-Carrageenase Production by Thalassospira sp. Fjfst-332. Molecules 2016, 21, 1479. [Google Scholar] [CrossRef]
- Amany, S.Y.; Ehab, A.B.; Mohamed, A.E.S.; Samy, A.E.A. Production of k-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr. J. Microbiol. Res. 2012, 6, 6618–6628. [Google Scholar] [CrossRef]
- Li, S.; Jia, P.; Wang, L.; Yu, W.; Han, F. Purification and characterization of a new thermostable κ-carrageenase from the marine bacterium Pseudoalteromonas sp. QY203. J. Ocean Univ. China 2013, 12, 155–159. [Google Scholar] [CrossRef]
- Sun, F.; Ma, Y.; Wang, Y.; Liu, Q. Purification and characterization of novel κ-carrageenase from marine Tamlana sp. HC4. Chin. J. Oceanol. Limnol. 2010, 28, 1139–1145. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, B.; Zhang, Y.; Sun, W.; Pu, Z.; Bao, Y. Purification and characterization of a cold-adapted κ-carrageenase from Pseudoalteromonas sp. ZDY3. Protein Expr. Purif. 2021, 178, 105768. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-L.; Li, Y.; Chi, Z.; Chi, Z.-M. Purification and characterization of κ-carrageenase from the marine bacterium Pseudoalteromonas porphyrae for hydrolysis of κ-carrageenan. Process Biochem. 2011, 46, 265–271. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Xu, J.-H.; Hu, Y. Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. J. Mol. Catal. B: Enzym. 2000, 10, 523–529. [Google Scholar] [CrossRef]
- Muzyed, S.; Howlader, M.M.; Tuvikene, R. Fermentation optimization, purification and biochemical characterization of ι-carrageenase from marine bacterium Cellulophaga baltica. Int. J. Biol. Macromol. 2021, 166, 789–797. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, Y.; Li, J.; Wu, C.; Ni, H.; Xiao, A. Fermentation optimization and enzyme characterization of a new ι-Carrageenase from Pseudoalteromonas carrageenovora ASY5. Electron. J. Biotechnol. 2018, 32, 26–34. [Google Scholar] [CrossRef]
- Romano, N.; Schebor, C.; Mobili, P.; Gómez-Zavaglia, A. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus. Food Res. Int. 2016, 90, 251–258. [Google Scholar] [CrossRef]
- Prosapio, V.; Norton, I. Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. Food Sci. Technol. 2017, 80, 401–408. [Google Scholar] [CrossRef]
- Darvishi, F.; Destain, J.; Nahvi, I.; Thonart, P.; Zarkesh-Esfahani, H. Effect of Additives on Freeze-Drying and Storage of Yarrowia lipolytica Lipase. Appl. Biochem. Biotechnol. 2012, 168, 1101–1107. [Google Scholar] [CrossRef]
- Gerlach, T.; Nugroho, D.L.; Rother, D. The Effect of Visible Light on the Catalytic Activity of PLP-Dependent Enzymes. ChemCatChem 2021, 13, 2398–2406. [Google Scholar] [CrossRef] [PubMed]
- Lante, A.; Tinello, F.; Lomolino, G. Effect of UV light on microbial proteases: From enzyme inactivation to antioxidant mitigation. Innov. Food Sci. Emerg. Technol. 2013, 17, 130–134. [Google Scholar] [CrossRef]
- Seenuvasan, M.; Malar, C.G.; Preethi, S.; Balaji, N.; Iyyappan, J.; Kumar, M.A.; Kumar, K.S. Fabrication, characterization and application of pectin degrading Fe3O4–SiO2 nanobiocatalyst. Mater. Sci. Eng. C 2013, 33, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Braccini, I.; Pérez, S. Molecular basis of C2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhu, J.; Shi, J.; Liu, Y.; Shao, D.; Jiang, C. Immobilized enzymes from Geotrichum spp. improve wine quality. Appl. Microbiol. Biotechnol. 2017, 101, 6637–6649. [Google Scholar] [CrossRef]
- Shen, J.; Chang, Y.; Chen, F.; Dong, S. Expression and characterization of a κ-carrageenase from marine bacterium Wenyingzhuangia aestuarii OF219: A biotechnological tool for the depolymerization of κ-carrageenan. Int. J. Biol. Macromol. 2018, 112, 93–100. [Google Scholar] [CrossRef]
- Mai, T.H.A.; Tran, V.N.; Le, V.V.M. Biochemical studies on the immobilized lactase in the combined alginate–carboxymethyl cellulose gel. Biochem. Eng. J. 2013, 74, 81–87. [Google Scholar] [CrossRef]
- Xiao, A.; Xu, C.; Lin, Y.; Ni, H.; Zhu, Y.; Cai, H. Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. Electron. J. Biotechnol. 2016, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shuit, S.H.; Yee, K.F.; Lee, K.T.; Subhash, B.; Tan, S.H. Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: An overview. RSC Adv. 2013, 3, 9070–9094. [Google Scholar] [CrossRef]
- Kheirolomoom, A.; Khorasheh, F.; Fazelinia, H. Influence of external mass transfer limitation on apparent kinetic parameters of penicillin G acylase immobilized on nonporous ultrafine silica particles. J. Biosci. Bioeng. 2002, 93, 125–129. [Google Scholar] [CrossRef]
- Geormalar, C.; Seenuvasan, M.; Kumar, K.S.; Kumar, A.; Parthiban, R. Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochem. Eng. J. 2020, 158, 107574. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Eisl, I.; Nidetzky, B. Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal. Today 2016, 259, 66–80. [Google Scholar] [CrossRef]
- Smith, J.; Mountfort, D.; Falshaw, R. A zymogram method for detecting carrageenase activity. Anal. Biochem. 2005, 347, 336–338. [Google Scholar] [CrossRef] [PubMed]
Factor | QS | DOF | MS | F-Value | Pr > F |
---|---|---|---|---|---|
Model | 31.14 | 9 | 3.46 | 28.04 | 0.0001 *** |
A | 1.51 | 1 | 1.51 | 12.22 | 0.0101 * |
B | 1.23 | 1 | 1.23 | 9.99 | 0.0159 * |
C | 1.15 | 1 | 1.15 | 9.35 | 0.0184 * |
AB | 0.85 | 1 | 0.85 | 6.92 | 0.0339 * |
AC | 0.83 | 1 | 0.83 | 6.73 | 0.0357 * |
BC | 0.13 | 1 | 0.13 | 1.06 | 0.3371 |
A2 | 16.09 | 1 | 16.09 | 130.36 | <0.0001 *** |
B2 | 6.57 | 1 | 6.57 | 53.26 | 0.0002 *** |
C2 | 0.82 | 1 | 0.82 | 6.64 | 0.0366 * |
Residual | 0.86 | 7 | 0.12 | ||
Lack of Fit | 0.6 | 3 | 0.2 | 3.04 | 0.1552 |
Pure Error | 0.26 | 4 | 0.066 | ||
Cor Total | 32.01 | 16 |
Experimental Enzyme Activity (U/mL) | Mean Value (U/mL) | Predicted Enzyme Activity (U/mL) | |
---|---|---|---|
1 | 8.372 | 8.416 | 8.495 |
2 | 8.407 | ||
3 | 8.468 |
Enzyme Solution Thickness (mm) | Dehydration Time (h) | Enzyme Solution/Dehydration Time (mL/h) | Relative Enzyme Activity (%) |
---|---|---|---|
3 | 15 | 10.69 | 83.63 |
4 | 20 | 10.79 | 93.24 |
5 | 24 | 11.3 | 100 |
6 | 30 | 10.99 | 83.65 |
7 | 35 | 10.97 | 78.62 |
A (µg/g) | B (µg/g) | C (µg/g) | |
---|---|---|---|
56.25 | 43.62 | 47.3 | |
Experimental Value | 55.64 | 43.07 | 47.01 |
55.3 | 43.68 | 46.86 | |
Mean Value | 55.73 | 43.45 | 47.06 |
Level | Factor | ||
---|---|---|---|
A: κ-Selenocarrageenan % | B: CaCl2 mmol/L | C: Temperature °C | |
−1 | 1 | 2 | 30 |
0 | 1.5 | 4 | 35 |
1 | 2 | 6 | 40 |
Run | A | B | C | Y (U/mL) |
---|---|---|---|---|
1 | 1.5 | 6 | 30 | 6.442 |
2 | 1 | 2 | 35 | 4.395 |
3 | 1.5 | 4 | 35 | 8.731 |
4 | 1.5 | 2 | 30 | 7.163 |
5 | 2 | 4 | 30 | 7.342 |
6 | 1.5 | 4 | 35 | 8.301 |
7 | 1 | 6 | 35 | 4.832 |
8 | 2 | 6 | 35 | 4.932 |
9 | 1.5 | 2 | 40 | 7.198 |
10 | 1.5 | 4 | 35 | 8.301 |
11 | 1.5 | 4 | 35 | 8.301 |
12 | 2 | 4 | 40 | 5.238 |
13 | 1 | 4 | 30 | 5.718 |
14 | 2 | 2 | 35 | 6.343 |
15 | 1 | 4 | 40 | 5.437 |
16 | 1.5 | 6 | 40 | 5.753 |
17 | 1.5 | 4 | 35 | 8.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Wang, X.; Xu, H.; Liu, C.; Li, R.; Zhang, Y.; Qu, C.; Miao, J. Optimization of κ-Selenocarrageenase Production by Pseudoalteromonas sp. Xi13 and Its Immobilization. Molecules 2022, 27, 7716. https://doi.org/10.3390/molecules27227716
Deng Y, Wang X, Xu H, Liu C, Li R, Zhang Y, Qu C, Miao J. Optimization of κ-Selenocarrageenase Production by Pseudoalteromonas sp. Xi13 and Its Immobilization. Molecules. 2022; 27(22):7716. https://doi.org/10.3390/molecules27227716
Chicago/Turabian StyleDeng, Yashan, Xixi Wang, Hui Xu, Cui Liu, Ran Li, Yuanyuan Zhang, Changfeng Qu, and Jinlai Miao. 2022. "Optimization of κ-Selenocarrageenase Production by Pseudoalteromonas sp. Xi13 and Its Immobilization" Molecules 27, no. 22: 7716. https://doi.org/10.3390/molecules27227716
APA StyleDeng, Y., Wang, X., Xu, H., Liu, C., Li, R., Zhang, Y., Qu, C., & Miao, J. (2022). Optimization of κ-Selenocarrageenase Production by Pseudoalteromonas sp. Xi13 and Its Immobilization. Molecules, 27(22), 7716. https://doi.org/10.3390/molecules27227716