Interstellar Benzene Formation Mechanisms via Acetylene Cyclotrimerization Catalyzed by Fe+ Attached to Water Ice Clusters: Quantum Chemistry Calculation Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cernicharo, J.; Heras, A.M.; Tielens, A.G.G.N.; Pardo, J.R.; Herpin, F.; Guélin, M.; Waters, L.B.F.M. Infrared space observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. 2001, 546, L123–L126. [Google Scholar] [CrossRef] [Green Version]
- Tielens, A.G.G.M. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 2008, 46, 289–337. [Google Scholar] [CrossRef] [Green Version]
- Bohme, D.K. PAH [polycyclic aromatic hydrocarbons] and fullerene ions and ion/molecule reactions in interstellar and circumstellar chemistry. Chem. Rev. 1992, 92, 1487–1508. [Google Scholar] [CrossRef]
- Reizer, E.; Viskiocz, B.; Fiser, B. Formation and growth of polycyclic aromatic hydrocarbons: A min-review. Chemosphere 2022, 291, 132793. [Google Scholar] [CrossRef] [PubMed]
- Mcewan, M.J.; Scott, G.B.I.; Adams, N.G.; Babcock, L.M.; Terzieva, R.; Herbst, E. New H and H2 reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds. Astrophys. J. 1999, 513, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.; Atreya, S.; Coustenis, A. Mechanisms for the formation of benzene in the atmosphere of Titan. J. Geophys. Res. 2003, 108, 5014. [Google Scholar] [CrossRef] [Green Version]
- Lories, X.; Vandooren, J.; Peeters, D. Cycle formation from acetylene addition on C4H3 radicals. Phys. Chem. Chem. Phys. 2010, 12, 3762–3771. [Google Scholar] [CrossRef]
- Jones, B.M.; Zhang, F.; Kaiser, R.I.; Jamal, A.; Mebel, A.M.; Cordiner, M.A.; Charnley, S.B. Formation of benzene in the interstellar medium. Proc. Nat. Acad. Sci. USA 2011, 108, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.L.K.; McGuire, B.A.; McCarthy, M.C. Gas-phase synthetic pathways to benzene and benzonitrile: A combined microwave and thermochemical investigation. Phys. Chem. Chem. Phys. 2019, 21, 2946–2956. [Google Scholar] [CrossRef]
- Robertson, C.; Hyland, R.; Lacey, A.J.D.; Havens, S.; Habershon, S. Identifying barrierless mechanisms for benzene formation in the interstellar medium using permutationally invariant reaction discovery. J. Chem. Theory Comput. 2021, 17, 2307–2322. [Google Scholar] [CrossRef]
- Caster, K.L.; Selby, T.M.; Osborn, D.L.; Le Picard, S.D.; Goulay, F. Product detection of the CH(X2Π) radical reaction with cyclopentadiene: A novel route to benzene. J. Phys. Chem. A 2021, 125, 6927–6939. [Google Scholar] [CrossRef] [PubMed]
- Schore, N.E. Transition-metal-mediated cycloaddition reactions of alkynes in organic synthesis. Chem. Rev. 1988, 88, 1081–1119. [Google Scholar] [CrossRef]
- Lautens, M.; Klute, W.; Tam, W. Transition metal-mediated cycloaddition reactions. Chem. Rev. 1996, 96, 49–92. [Google Scholar] [CrossRef] [PubMed]
- Trotus, I.T.; Zimmermann, T.; Schuth, F. Catalytic reactions of acetylene: A feedstock for the chemical industry revisited. Chem. Rev. 2014, 114, 1761–1782. [Google Scholar] [CrossRef]
- Roglans, A.; Pla-Quintana, A.; Solà, M. Mechanistic studies of transition-metal-catalyzed [2 + 2 + 2] cycloaddition reactions. Chem. Rev. 2021, 121, 1894–1979. [Google Scholar] [CrossRef]
- Vogiatzis, K.D.; Polynski, M.V.; Kirkland, J.K.; Townsend, J.; Hashemi, A.; Liu, C.; Pidko, E.A. Computational approach to molecular catalysis by 3d transition metals: Challenges and opportunities. Chem. Rev. 2019, 119, 2453–2523. [Google Scholar] [CrossRef] [Green Version]
- Badger, G.M.; Lewis, G.E.; Napier, I.M. The formation of aromatic hydrocarbons at high temperature. Part VIII. The pyrolysis of acetylene. J. Chem. Soc. 1960, 2825–2827. [Google Scholar] [CrossRef]
- Houk, K.N.; Candour, R.W.; Strozier, R.W.; Rondan, N.G.; Paquette, L.A. Barriers to thermally allowed reactions and the elusiveness of neutral homoaromaticity. J. Am. Chem. Soc. 1979, 101, 6797–6802. [Google Scholar] [CrossRef]
- Bach, R.D.; Wolber, G.J.; Schlegel, H.B. The origin of the barriers to thermally allowed, six-electron, pericyclic reactions: The effect of homo-homo interactions in the trimerization of acetylene. J. Am. Chem. Soc. 1985, 107, 2837–2841. [Google Scholar] [CrossRef]
- Abbet, S.; Sanchez, A.; Heiz, U.; Schneider, W.-D.; Ferrari, A.M.; Pacchioni, G.; Rösch, N. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough! J. Am. Chem. Soc. 2000, 122, 3453–3457. [Google Scholar] [CrossRef]
- Zecchina, A.; Bertarione, S.; Damin, A.; Scarano, D.; Lamberti, C.; Prestipino, C.; Spoto, G.; Bordiga, S. Temperature resolved FTIR spectroscopy of Cr2+/SiO2 catalysts: Acetylene and methylacetylene oligomerization. Phys. Chem. Chem. Phys. 2003, 5, 4414–4417. [Google Scholar] [CrossRef]
- Marks, J.H.; Ward, T.B.; Brathwaite, A.D.; Ferguson, S.; Duncan, M.A. Cyclotrimerization of acetylene in gas phase V+(C2H2)n complexes: Detection of intermediates and products with infrared spectroscopy. J. Phys. Chem. A 2019, 123, 6733–6743. [Google Scholar] [CrossRef]
- McDonald, D.C.; Sweeny, B.C.; Viggiano, A.A.; Ard, S.G.; Shuman, N.S. Cyclotrimerization of acetylene under thermal conditions: Gas-phase kinetics of V+ and Fe+ + C2H2. J. Phys. Chem. A 2021, 125, 9327–9337. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.; Geng, L.; Yin, B.; Zhang, H.; Luo, Z.; Hansen, K. Cyclotrimerization of acetylene on clusters Con+/Fen+/Nin+ (n = 1−6). J. Phys. Chem. A 2021, 125, 10392–10400. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cheng, R.; He, X.; Liu, B. Reactivity and regioselectivity of methylacetylene cyclotrimerization over the Phillips Cr/silica catalyst: A DFT study. ACS Catal. 2013, 3, 1172–1183. [Google Scholar] [CrossRef]
- Martinez, M.; del Carmen Michelini, M.; Rivalta, I.; Risso, N.; Sicilia, E. Acetylene cyclotrimerization by early second-row transition metals in the gas phase. A theoretical study. Inorg. Chem. 2005, 44, 9807–9816. [Google Scholar] [CrossRef]
- Deng, Z.-P.; Wang, Y.-C.; Mou, D.; Sun, Y.; Da, H.; Gao, J.-D. Theoretical investigation on acetylene cyclotrimerization catalyzed by TiO2 and Ti. J. Phys. Org. Chem. 2019, 32, e3934. [Google Scholar] [CrossRef]
- Takayanagi, T. Two-state reactivity in the acetylene cyclotrimerization reaction catalyzed by a single atomic transition-metal ion: The case for V+ and Fe+. Comput. Theor. Chem. 2022, 1211, 113682. [Google Scholar] [CrossRef]
- Mattila, S.; Lundqvist, P.; Gröningsson, P.; Meikle, P.; Stathakis, R.; Fransson, C.; Cannon, R. Abundances and density structure of the inner circumstellar ring around SN 1987A. Astrophys. J. 2010, 717, 1140–1156. [Google Scholar] [CrossRef]
- Ruf, A.; d’Hendecourt, L.L.S.; Schmitt-Kopplin, P. Data-driven astrochemistry: One step further within origin of life puzzle. Life 2018, 8, 18. [Google Scholar] [CrossRef]
- Walmsley, C.M.; Bachiller, R.; Pineau des Forêts, G.; Schilke, P. Detection of FeO toward Sagittarius B2. Astrophys. J. 2002, 566, L109–L112. [Google Scholar] [CrossRef]
- Furuya, R.S.; Walmsley, C.M.; Nakanishi, K.; Schilke, P.; Bachiller, R. Interferometric observations of FeO towards Sagittarius B2. Astron. Astrophys. 2003, 409, L21–L24. [Google Scholar] [CrossRef]
- Zack, L.N.; Halfen, D.T.; Ziurys, L.M. Detection of FeCN (X4Δi) in IRC+10216: A new interstellar molecule. Astrophys. J. Lett. 2011, 733, L36. [Google Scholar] [CrossRef]
- Bilalbegović, G.; Maksimović, A.; Mohaček-Grošev, V. Missing Fe: Hydrogenated iron nanoparticles. Mon. Not. R. Astron. Soc. Lett. 2017, 466, L14–L18. [Google Scholar] [CrossRef] [Green Version]
- Fioroni, M. Astrochemistry of transition metals? The selected cases of [FeN]+, [FeNH]+ and [(CO)2FeN]+: Pathways toward CH3NH2 and HNCO. Phys. Chem. Chem. Phys. 2014, 16, 24312–24322. [Google Scholar] [CrossRef] [PubMed]
- Fioroni, M.; DeYonker, N.J. H2 Formation on cosmic grain siliceous surfaces grafted with Fe+: A silsesquioxanes-based computational model. ChemPhysChem 2016, 17, 3390–3394. [Google Scholar] [CrossRef]
- Fioroni, M. Astro-organometallics of Fe, Co, Ni: Stability, IR fingerprints and possible locations. Comput. Theor. Chem. 2016, 1084, 196–212. [Google Scholar] [CrossRef]
- Methikkalam, R.R.J.; Ghosh, J.; Bhuin, R.G.; Bag, S.; Ragupathy, G.; Pradeep, T. Iron assisted formation of CO2 over condensed CO and its relevance to interstellar chemistry. Phys. Chem. Chem. Phys. 2020, 22, 8491–8498. [Google Scholar] [CrossRef]
- Tarakeshwar, P.; Buseck, P.R.; Timmes, F.X. On the structure, magnetic properties, and infrared spectra of iron pseudocarbynes in the interstellar medium. Astrophys. J. 2019, 879, 2. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Nakatomi, T.; Koido, S.; Watabe, Y.; Takayanagi, T. Spin-inversion mechanisms in the reactions of transition metal cations (Sc+, Ti+, V+, Cr+, Mn+, Fe+, Co+, Ni+, and Cu+) with OCS in the gas phase: A perspective from automated reaction path search calculations. Int. J. Quantum Chem. 2019, 119, e25908. [Google Scholar] [CrossRef]
- Takayanagi, T.; Saito, K.; Suzuki, H.; Watabe, Y.; Fujihara, T. Computational analysis of two-state reactivity in β-hydride elimination mechanisms of Fe(II) and Co(II)-alkyl complexes. Organometallics 2019, 38, 3582–3589. [Google Scholar] [CrossRef]
- Murakami, T.; Takayanagi, T. Triplet-quintet spin-crossover efficiency in β-hydrogen transfer between Fe(C2H5)+ and HFe(C2H4)+. Comput. Theor. Chem. 2022, 1217, 113888. [Google Scholar] [CrossRef]
- Cheng, G.-J.; Zhang, X.; Chung, L.W.; Xu, L.; Wu, Y.-D. Computational organic chemistry: Bridging theory and experiment in establishing the mechanisms of chemical reactions. J. Am. Chem. Soc. 2015, 137, 1706–1725. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Otomo, T.; Ogino, K.; Hashimoto, Y.; Takayanagi, T. Nuclear quantum effects in H2 adsorption dynamics on a small water cluster studied with ring-polymer molecular dynamics simulations. ACS Earth Space Chem. 2022, 6, 1390–1396. [Google Scholar] [CrossRef]
- Shields, R.M.; Temelso, B.; Archer, K.A.; Morrell, T.E.; Shields, G.C. Accurate predictions of water cluster formation, (H2O)n=2−10. J. Phys. Chem. A 2010, 114, 11725–11737. [Google Scholar] [CrossRef] [Green Version]
- Spezia, R.; Martínez-Nuñez, E.; Vazques, S.; Hase, W.L. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. Philos. Trans. R. Soc. A 2017, 375, 20170035. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Hase, W.L. Perspective: Chemical dynamics simulations of non-statistical reaction dynamics. Philos. Trans. R. Soc. A 2017, 375, 20160204. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murakami, T.; Takayanagi, T. Interstellar Benzene Formation Mechanisms via Acetylene Cyclotrimerization Catalyzed by Fe+ Attached to Water Ice Clusters: Quantum Chemistry Calculation Study. Molecules 2022, 27, 7767. https://doi.org/10.3390/molecules27227767
Murakami T, Takayanagi T. Interstellar Benzene Formation Mechanisms via Acetylene Cyclotrimerization Catalyzed by Fe+ Attached to Water Ice Clusters: Quantum Chemistry Calculation Study. Molecules. 2022; 27(22):7767. https://doi.org/10.3390/molecules27227767
Chicago/Turabian StyleMurakami, Tatsuhiro, and Toshiyuki Takayanagi. 2022. "Interstellar Benzene Formation Mechanisms via Acetylene Cyclotrimerization Catalyzed by Fe+ Attached to Water Ice Clusters: Quantum Chemistry Calculation Study" Molecules 27, no. 22: 7767. https://doi.org/10.3390/molecules27227767
APA StyleMurakami, T., & Takayanagi, T. (2022). Interstellar Benzene Formation Mechanisms via Acetylene Cyclotrimerization Catalyzed by Fe+ Attached to Water Ice Clusters: Quantum Chemistry Calculation Study. Molecules, 27(22), 7767. https://doi.org/10.3390/molecules27227767