Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia
Abstract
:1. Introduction
2. Results
2.1. Daboia siamensis and Agkistrodon halys Envenomation Causes Persistent Thrombocytopenia without Inducing Significant Coagulopathy in Patients
2.2. Macrophage Depletion Alleviates Viper Envenomation-Induced Thrombocytopenia In Vivo
2.3. Viper Venoms induce Platelet Desialylation and Platelet Internalization by Macrophages In Vitro
2.4. Macrophage Depletion Alleviates Viper Envenomation-Induced Thrombocytopenia In Vivo
3. Discussion
4. Materials and Methods
4.1. Snakebite Patients
4.2. Material
4.3. Animal Studies
4.4. Platelet Desialylation Detection and NEU-1 Expression on Platelet Surface
4.5. Western Blot
4.6. Platelet Internalization by Macrophages
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gutierrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, S.; Slagboom, J.; Alomran, N.; Pla, D.; Alhamdi, Y.; King, S.I.; Bolton, F.M.; Gutiérrez, J.M.; Vonk, F.J.; Toh, C.-H. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Commun. Biol. 2018, 1, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maduwage, K.; Isbister, G.K. Current Treatment for Venom-Induced Consumption Coagulopathy Resulting from Snakebite. PLoS Neglect. Trop. D 2014, 8, e3220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isbister, G.K. Snakebite Doesn’t Cause Disseminated Intravascular Coagulation: Coagulopathy and Thrombotic Microangiopathy in Snake Envenoming. Semin. Thromb. Hemost. 2010, 36, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Alirol, E.; Sharma, S.K.; Bawaskar, H.S.; Kuch, U.; Chappuis, F. Snake Bite in South Asia: A Review. PLoS Neglect. Trop. D 2010, 4, e603. [Google Scholar] [CrossRef] [Green Version]
- Gn, Y.M.; Ponnusamy, A.; Thimma, V. Snakebite Induced Thrombotic Microangiopathy Leading to Renal Cortical Necrosis. Case Rep. Nephrol. 2017, 2017, 1348749. [Google Scholar] [CrossRef] [Green Version]
- Dineshkumar, T.; Dhanapriya, J.; Sakthirajan, R.; Thirumalvalavan, K.; Kurien, A.A.; Balasubramaniyan, T.; Gopalakrishnan, N. Thrombotic microangiopathy due to Viperidae bite: Two case reports. Indian J. Nephrol. 2017, 27, 161–164. [Google Scholar]
- Withana, M.; Rodrigo, C.; Gnanathasan, A.; Gooneratne, L. Presumptive thrombotic thrombocytopenic purpura following a hump-nosed viper (Hypnale hypnale) bite: A case report. J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 26. [Google Scholar] [CrossRef] [Green Version]
- Lalloo, D.G.; Theakston, R.D.G. Snake antivenoms: Antivenoms. J. Toxicol. Clin. Toxicol. 2003, 41, 277–290. [Google Scholar] [CrossRef]
- Warrell, D.A. Snake bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
- Bolt, H.M. New aspects in snake venom toxicology. Arch. Toxicol. 2021, 95, 1865–1866. [Google Scholar] [CrossRef] [PubMed]
- Than, T.; Hutton, R.; Lwin, M.; Han, K.E.; Soe, S.; Swe, T.N.; Phillips, R.; Warrell, D. Haemostatic disturbances in patients bitten by Russell’s viper (Vipera russelli siamensis) in Burma. Br. J. Haematol. 1988, 69, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Su, H.-Y.; Huang, S.-W.; Mao, Y.-C.; Liu, M.-W.; Lee, K.-H.; Lai, P.-F.; Tsai, M.-J. Clinical and laboratory features distinguishing between Deinagkistrodon acutus and Daboia siamensis envenomation. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 24. [Google Scholar] [CrossRef]
- Fujita, M.; Yamashita, S.; Kawamura, Y.; Tsuruta, R.; Kasaoka, S.; Okabayashi, K.; Maekawa, T. Viper (Agkistrodon halys blomhoffii “Mamushi”) bite with remarkable thrombocytopenia. Nihon Kyukyu Igakukai Zasshi 2005, 16, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Freedman, J. Platelets in hemostasis and thrombosis: Role of integrins and their ligands. Transfus. Apher. Sci. 2003, 28, 257–264. [Google Scholar] [CrossRef]
- Heemskerk, J.; Mattheij, N.; Cosemans, J. Platelet-based coagulation: Different populations, different functions. J. Thromb. Haemost. 2013, 11, 2–16. [Google Scholar] [CrossRef]
- Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; Lavalle, C.; McKeown, T.; Marshall, A.H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016, 53, 409–430. [Google Scholar] [CrossRef]
- Mackeigan, D.T.; Ni, T.; Shen, C.; Stratton, T.W.; Ni, H. Updated Understanding of Platelets in Thrombosis and Hemostasis: The Roles of Integrin PSI Domains and their Potential as Therapeutic Targets. Cardiovasc. Haematol. Disord.-Drug Targets (Former. Curr. Drug Targets-Cardiovasc. Hematol. Disord.) 2020, 20, 260–273. [Google Scholar] [CrossRef]
- Offerman, S.R.; Barry, J.D.; Schneir, A.; Clark, R.F. Biphasic rattlesnake venom-induced thrombocytopenia. J. Emerg. Med. 2003, 24, 289–293. [Google Scholar] [CrossRef]
- Odeleye, A.A.; Presley, A.E.; Passwater, M.E.; Mintz, P.D. Rattlesnake venom-induced thrombocytopenia. Ann. Clin. Lab. Sci. 2004, 34, 467–470. [Google Scholar]
- Cheng, C.-L.; Mao, Y.-C.; Liu, P.-Y.; Chiang, L.-C.; Liao, S.-C.; Yang, C.-C. Deinagkistrodon acutus envenomation: A report of three cases. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, B.S.; Barish, R.A.; Rudman, M.S. Refractory thrombocytopenia despite treatment for rattlesnake envenomation. N. Engl. J. Med. 2004, 350, 1912–1913; discussion 1912. [Google Scholar] [PubMed]
- Seifert, S.A.; Cano, D.N. Late, new-onset thrombocytopenia following rattlesnake envenomation without early thrombocytopenia or post-antivenom platelet increase. Clin. Toxicol. 2020, 58, 424–425. [Google Scholar] [CrossRef]
- Webster, M.L.; Sayeh, E.; Crow, M.; Chen, P.; Nieswandt, B.; Freedman, J.; Ni, H. Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by antiplatelet GPIIbIIIa versus GPIbα antibodies. Blood 2006, 108, 943–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.; Zhu, L.; Tao, L.; Bao, J.; Yang, M.; Simpson, E.K.; Li, C.; van der Wal, D.E.; Chen, P.; Spring, C.M. Relative efficacy of steroid therapy in immune thrombocytopenia mediated by anti-platelet GPIIbIIIa versus GPIbα antibodies. Am. J. Hematol. 2012, 87, 206–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, P.A.; Segel, G.B.; Burack, W.R.; Sachs, U.J.; Lissenberg-Thunnissen, S.N.; Vidarsson, G.; Bayat, B.; Cserti-Gazdewich, C.M.; Callum, J.; Lin, Y. FcγRI and FcγRIII on splenic macrophages mediate phagocytosis of anti-glycoprotein IIb/IIIa autoantibody-opsonized platelets in immune thrombocytopenia. Haematologica 2021, 106, 250. [Google Scholar] [CrossRef] [Green Version]
- Van Rooijen, N.; Sanders, A. Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 1994, 174, 83–93. [Google Scholar] [CrossRef]
- Deppermann, C.; Kratofil, R.M.; Peiseler, M.; David, B.A.; Zindel, J.; Castanheira, F.V.E.S.; van der Wal, F.; Carestia, A.; Jenne, C.N.; Marth, J.D. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J. Exp. Med. 2020, 217, e20190723. [Google Scholar] [CrossRef]
- Josefsson, E.C.; Gebhard, H.H.; Stossel, T.P.; Hartwig, J.H.; Hoffmeister, K.M. The macrophage αMβ2 integrin αM lectin domain mediates the phagocytosis of chilled platelets. J. Biol. Chem. 2005, 280, 18025–18032. [Google Scholar] [CrossRef] [Green Version]
- Hoffmeister, K.M.; Josefsson, E.C.; Isaac, N.A.; Clausen, H.; Hartwig, J.H.; Stossel, T.P. Glycosylation restores survival of chilled blood platelets. Science 2003, 301, 1531–1534. [Google Scholar] [CrossRef]
- Li, J.; Van Der Wal, D.E.; Zhu, G.; Xu, M.; Yougbare, I.; Ma, L.; Vadasz, B.; Carrim, N.; Grozovsky, R.; Ruan, M. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat. Commun. 2015, 6, 7737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monzon Manzano, E.; Alvarez Roman, M.T.; Justo Sanz, R.; Fernandez Bello, I.; Hernandez, D.; Martin Salces, M.; Valor, L.; Rivas Pollmar, I.; Butta, N.V.; Jimenez Yuste, V. Platelet and immune characteristics of immune thrombocytopaenia patients non-responsive to therapy reveal severe immune dysregulation. Br. J. Haematol. 2020, 189, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Bergmeier, W.; Bouvard, D.; Eble, J.A.; Mokhtarinejad, R.; Schulte, V.; Zirngibl, H.; Brakebusch, C.; Fässler, R.; Nieswandt, B. Rhodocytin (aggretin) activates platelets lacking a2b1 integrin, GPVI, and the ligand binding domain of GPIba. J. Biol. Chem. 2001, 276, 25121–25126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravanat, C.; Strassel, C.; Hechler, B.; Schuhler, S.; Chicanne, G.; Payrastre, B.; Gachet, C.; Lanza, F. A central role of GPIb-IX in the procoagulant function of platelets that is independent of the 45-kDa GPIbα N-terminal extracellular domain. Blood J. Am. Soc. Hematol. 2010, 116, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.; Josefsson, E.C.; Rumjantseva, V.; Liu, Q.P.; Falet, H.; Bergmeier, W.; Cifuni, S.M.; Sackstein, R.; von Andrian, U.H.; Wagner, D.D. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood 2012, 119, 1263–1273. [Google Scholar] [CrossRef] [Green Version]
- Quach, M.E.; Chen, W.; Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018, 131, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Callum, J.L.; Lin, Y.; Zhou, Y.; Zhu, G.; Ni, H. Severe platelet desialylation in a patient with glycoprotein Ib/IX antibody-mediated immune thrombocytopenia and fatal pulmonary hemorrhage. Haematologica 2014, 99, e61–e63. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fu, J.; Ling, Y.; Yago, T.; McDaniel, J.M.; Song, J.; Bai, X.; Kondo, Y.; Qin, Y.; Hoover, C. Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc. Natl. Acad. Sci. USA 2017, 114, 8360–8365. [Google Scholar] [CrossRef] [Green Version]
- Li, M.F.; Li, X.L.; Fan, K.L.; Yu, Y.Y.; Gong, J.; Geng, S.Y.; Liang, Y.F.; Huang, L.; Qiu, J.H.; Tian, X.H.; et al. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: An open-label, multicenter, randomized controlled trial. J. Hematol. Oncol. 2017, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Zeng, Q.; Li, J.; Xu, M.; Wang, J.; Pan, Y.; Wang, H.; Tao, Q.; Chen, Y.; Peng, J. Platelet desialylation correlates with efficacy of first-line therapies for immune thrombocytopenia. J. Hematol. Oncol. 2017, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Wu, Y.; Zhou, H.; Qin, P.; Ni, H.; Peng, J.; Hou, M. Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets 2015, 26, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Revilla, N.; Corral, J.; Miñano, A.; Mingot-Castellano, M.E.; Campos, R.M.; Velasco, F.; Gonzalez, N.; Galvez, E.; Berrueco, R.; Fuentes, I. Multirefractory primary immune thrombocytopenia; targeting the decreased sialic acid content. Platelets 2018, 30, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-C.; Lin, C.-C.; Hsiao, Y.-C.; Wang, P.-J.; Yu, J.-S. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. J. Proteom. 2018, 187, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Linglong, X.; Dijiong, W. Prolonged hemocoagulase Agkistrodon halys pallas administration induces hypofibrinogenemia in patients with hematological disorders: A clinical analysis of 11 patients. Indian J. Hematol. Blood Transfus. 2018, 34, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Lavonas, E.J.; Schaeffer, T.H.; Kokko, J.; Mlynarchek, S.L.; Bogdan, G.M. Crotaline Fab antivenom appears to be effective in cases of severe North American pit viper envenomation: An integrative review. BMC Emerg. Med. 2009, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Seifert, S.; Mascarenas, D.; Fullerton, L.; Warrick, B.; Smolinske, S. Unpredicted late-, new-onset thrombocytopenia and hypofibrinogenemia in Fab antivenom-treated rattlesnake envenomation. Toxicon 2020, 184, 55–56. [Google Scholar] [CrossRef]
- Seifert, S.A.; Kirschner, R.I.; Martin, N. Recurrent, persistent, or late, new-onset hematologic abnormalities in crotaline snakebite. Clin. Toxicol. 2011, 49, 324–329. [Google Scholar] [CrossRef]
- van Der Wal, D.E.; Zhu, G.; Li, J.; Vadasz, B.; Issaka, Y.; Lang, S.; Freedman, J.; Ni, H. Desialylation: A novel platelet clearance mechanism and a potential new therapeutic target in anti-GPIb antibody mediated thrombocytopenia. Blood 2012, 120, 265. [Google Scholar] [CrossRef]
- Shen, C.; Liu, M.; Mackeigan, D.T.; Chen, Z.Y.; Chen, P.; Karakas, D.; Li, J.; Norris, P.A.; Li, J.; Deng, Y. Viper venoms drive the macrophages and hepatocytes to sequester and clear platelets: Novel mechanism and therapeutic strategy for venom-induced thrombocytopenia. Arch. Toxicol. 2021, 95, 3589–3599. [Google Scholar] [CrossRef]
- McNicholl, I.R.; McNicholl, J.J. Neuraminidase inhibitors: Zanamivir and oseltamivir. Ann. Pharmacother. 2001, 35, 57–70. [Google Scholar] [CrossRef]
- Taniguchi, N. Toward Cancer Biomarker Discovery Using the Glycomics Approach; WILEY-VCH Verlag Weinheim: Weinheim, Germany, 2008; Volume 8, pp. 3205–3208. [Google Scholar]
- Tian, H.; Liu, M.; Li, J.; Xu, R.; Long, C.; Li, H.; Mwangi, J.; Lu, Q.; Lai, R.; Shen, C. Snake c-type lectins potentially contribute to the prey immobilization in Protobothrops mucrosquamatus and Trimeresurus stejnegeri venoms. Toxins 2020, 12, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.; Liu, M.; Tian, H.; Li, Y.; Wu, F.; Mwangi, J.; Lu, Q.; Mohamed Abd El-Aziz, T.; Lai, R.; Shen, C. Potential Role of Platelet-Activating C-Type Lectin-Like Proteins in Viper Envenomation Induced Thrombotic Microangiopathy Symptom. Toxins 2020, 12, 749. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, G.; Xu, R.; Shen, C.; Ni, H.; Lai, R. Soy Isoflavones Inhibit Both GPIb-IX Signaling and αIIbβ3 Outside-In Signaling via 14-3-3ζ in Platelet. Molecules 2021, 26, 4911. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Liu, M.; Tian, H.; Li, J.; Xu, R.; Mwangi, J.; Lu, Q.; Hao, X.; Lai, R. Conformation-Specific Blockade of alphaIIbbeta3 by a Non-RGD Peptide to Inhibit Platelet Activation without Causing Significant Bleeding and Thrombocytopenia. Thromb. Haemost. 2020, 120, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, J.; Neves, M.A.D.; Zhu, G.; Carrim, N.; Yu, R.; Gupta, S.; Marshall, J.; Rotstein, O.; Peng, J. GPIbα is required for platelet-mediated hepatic thrombopoietin generation. Blood 2018, 132, 622–634. [Google Scholar] [CrossRef] [Green Version]
- Reheman, A.; Yang, H.; Zhu, G.; Jin, W.; He, F.; Spring, C.M.; Bai, X.; Gross, P.L.; Freedman, J.; Ni, H. Plasma fibronectin depletion enhances platelet aggregation and thrombus formation in mice lacking fibrinogen and von Willebrand factor. Blood J. Am. Soc. Hematol. 2009, 113, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Reheman, A.; Spring, C.M.; Kalantari, J.; Marshall, A.H.; Wolberg, A.S.; Gross, P.L.; Weitz, J.I.; Rand, M.L.; Mosher, D.F. Plasma fibronectin supports hemostasis and regulates thrombosis. J. Clin. Investig. 2014, 124, 4281–4293. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Liu, M.; Xu, R.; Wang, G.; Li, J.; Chen, P.; Ma, W.; Mwangi, J.; Lu, Q.; Duan, Z.; et al. The 14-3-3zeta-c-Src-integrin-beta3 complex is vital for platelet activation. Blood 2020, 136, 974–988. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, Z.; Liang, E.; Gao, Y.; Li, H.; Xu, F.; Chen, W.; Liu, M.; Huang, X. Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia. Molecules 2022, 27, 7779. https://doi.org/10.3390/molecules27227779
Zhang C, Zhang Z, Liang E, Gao Y, Li H, Xu F, Chen W, Liu M, Huang X. Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia. Molecules. 2022; 27(22):7779. https://doi.org/10.3390/molecules27227779
Chicago/Turabian StyleZhang, Cheng, Zhanfeng Zhang, Enyu Liang, Yunlong Gao, Hui Li, Fangfang Xu, Weiye Chen, Ming Liu, and Xianzhang Huang. 2022. "Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia" Molecules 27, no. 22: 7779. https://doi.org/10.3390/molecules27227779
APA StyleZhang, C., Zhang, Z., Liang, E., Gao, Y., Li, H., Xu, F., Chen, W., Liu, M., & Huang, X. (2022). Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia. Molecules, 27(22), 7779. https://doi.org/10.3390/molecules27227779