Structure and Anticoagulant Activity of a Galactofuranose-Containing Sulfated Polysaccharide from the Green Seaweed, Codium isthmocladum
Abstract
:1. Introduction
2. Results and Discussions
2.1. Extraction and Characterization of the Sulfated Polysaccharides
2.2. Infrared Spectra of F2-1 and Its Desulfated and Methylated Derivatives
2.3. Methylation Analysis of F2-1 and Its Desulfated Derivative
2.4. NMR Spectroscopy of F2-1
2.5. Anticoagulant Activities
3. Materials and Methods
3.1. Collection of Algal Samples
3.2. Extraction and Purification of the Polysaccharide
3.3. Chemical Analyses
3.4. Desulfation and Methylation Analysis
3.5. NMR
3.6. Anticoagulant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, X.; Hao, W.; Rui, L. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years. Mar. Drugs 2014, 12, 4984–5020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 2004, 16, 245–262. [Google Scholar] [CrossRef]
- Manlusoc, J.K.T.; Hsieh, C.L.; Hsieh, C.Y.; Salac, E.S.N.; Tsai, P.W. Pharmacologic Application Potentials of Sulfated Polysaccharide from Marine Algae. Polymers 2019, 11, 1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, D.H.; Kim, S.K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 2013, 62, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Tanna, B.; Mishra, A. Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.L.; You, S.G. Sulfated Polysaccharides from Green Seaweeds; Springer: Berlin/Heidelberg, Germany, 2015; pp. 941–945. [Google Scholar]
- Cunha, L.; Grenha, A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar. Drugs 2016, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.J.; Zang, X.X.; Li, Y.; Zhang, H.J. Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J. Appl. Phycol. 2006, 18, 9–14. [Google Scholar] [CrossRef]
- Pires, C.L.; Rodrigues, S.D.; Bristot, D.; Hessel Gaeta, H.; de Oliveira Toyama, D.; Ronald Lobo Farias, W.; Hikari Toyama, M. Sulfated polysaccharide extracted of the green algae Caulerpa racemosa increase the enzymatic activity and paw edema induced by sPLA2 from Crotalus durissus terrificus venom. Rev. Bras. Farmacogn. 2013, 23, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.X.; Zhang, N.; Li, J.; Wang, Z. New α-Glucosidase Inhibitory Polysaccharides Isolated from Marine Green Algae Enteromorpha Linza. Adv. Mater. Res. 2013, 634–638, 1010–1015. [Google Scholar] [CrossRef]
- Lahaye, M.; Robic, A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C. Purification and composition analysis of polysaccharide from edible seaweed Enteromorpha prolifera and polysaccharides depolymerized enzymes from microorganisms. Res. J. Biotechnol. 2014, 9, 30–36. [Google Scholar]
- Berri, M.; Slugocki, C.; Olivier, M.; Helloin, E.; Jacques, I.; Salmon, H.; Demais, H.; Goff, M.L.; Collen, P.N. Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J. Appl. Phycol. 2016, 9, 31–36. [Google Scholar] [CrossRef]
- Bedford, L.B.J. Ecology and nutrition of invasive Caulerpa brachypus f. parvifolia blooms on coral reefs off southeast Florida, USA. Harmful Algae 2010, 9, 1–12. [Google Scholar]
- Charlier, R.H.; Morand, P.; Finkl, C.W.; Thys, A. Green tides on the Brittany coasts, Us/eu Baltic International Symposium. In Proceedings of the 2006 IEEE US/EU Baltic International Symposium, Klaipeda, Lithuania, 23–26 May 2006. [Google Scholar]
- Allen, E.; Browne, J.; Hynes, S.; Murphy, J.D. The potential of algae blooms to produce renewable gaseous fuel. Waste Manag. 2013, 33, 2425–2433. [Google Scholar] [CrossRef]
- Bellan, D.L.; Biscaia, S.M.P.; Rossi, G.R. Green does not always mean go: A sulfated galactan from Codium isthmocladum green seaweed reduces melanoma metastasis through direct regulation of malignancy features. Carbohydr. Polym. 2020, 250, 116869. [Google Scholar] [CrossRef]
- Farias, E.H.C.; Pomin, V.H.; Valente, A.P.; Nader, H.B.; Rocha, H.A.O.; Mourão Nader, P.A.S. A preponderantly 4-sulphated, 3-linked galactan from the green alga Codium isthmocladum. Glycobiology 2008, 18, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Coelho, M.S.; Menezes, B.D.S.; Meza, S.L.R.; Gianasi, B.L.; Salas-Mellado, M.D.L.M.; Copertino, M.; de Souza, M.d.R.A.Z. Potential Utilization of Green Tide-Forming Macroalgae from Patos Lagoon, Rio Grande-RS, Brazil. J. Aquat. Food Prod. Technol. 2016, 25, 1096–1106. [Google Scholar] [CrossRef]
- Zhou, D.J.; Li, P.P.; Dong, Z.; Wang, T.; Sun, K.L.; Zhao, Y.Q.; Wang, B.; Chen, Y. Structure and immunoregulatory activity of β-D-galactofuranose-containing polysaccharides from the medicinal fungus Shiraia bambusicola. Int. J. Biol. Macromol. 2019, 129, 530–539. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.J.; Wang, B.F.; Zhou, L.N.; Gu, Q.Q.; Chen, Y.L.; Zhao, C.Q.; Li, N.; Wang, C.Y.; Shan, J.M. Preparation and characterization of an extracellular polysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresour. Technol. 2013, 132, 178–181. [Google Scholar] [CrossRef]
- Raffo, M.P.; Ciancia, M.; Quintana, I.; Arata, P.X. Novel sulfated xylogalactoarabinans from green seaweed Cladophora falklandica: Chemical structure and action on the fibrin network. Carbohydr. Polym. 2016, 154, 139–150. [Google Scholar]
- Chen, Y.; Mao, W.J.; Yan, M.X.; Liu, X.; Wang, S.Y.; Xia, Z.; Xiao, B.; Cao, S.J.; Yang, B.Q.; Li, J. Purification, Chemical Characterization, and Bioactivity of an Extracellular Polysaccharide Produced by the Marine Sponge Endogenous Fungus Alternaria sp. SP-32. Mar. Biotechnol. 2016, 18, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.V.; Quintana, I.; Cerezo, A.S.; Caramelo, J.J.; Pol-Fachin, L.; Verli, H.; Estevez, J.M.; Ciancia, M. Anticoagulant Activity of a Unique Sulfated Pyranosic (1→3)-β-L-Arabinan through Direct Interaction with Thrombin. J. Biol. Chem. 2013, 288, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.V.; Raffo, M.P.; Alberghina, J.; Ciancia, M. Polysaccharides from the green seaweed Codium decorticatum. Structure and cell wall distribution. Carbohydr. Polym. 2015, 117, 836–844. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Adhikari, U.; Lerouge, P.; Ray, B. Polysaccharides from Caulerpa racemosa: Purification and structural features. Carbohydr. Polym. 2007, 68, 407–415. [Google Scholar] [CrossRef]
- Han, X.W.; Zhang, Y.Q.; Liu, L.L.; Zhu, H.; Lang, Y.Z.; Yu, G.L. Isolation, purification and physicochemical characteristics comparison study of polysaccharides between wild and low salinity cultured green seaweeds Chaetomorphalinum. Chin. J. Mar. Drugs 2014, 33, 31–36. [Google Scholar]
- Qi, X.H.; Mao, W.J.; Gao, Y.; Chen, Y.; Chen, Y.L.; Zhao, C.Q.; Li, N.; Wang, C.Y.; Yan, M.X.; Lin, C.; et al. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrate. Carbohydr. Polym. 2012, 90, 1804–1810. [Google Scholar] [CrossRef]
- He, M.J.; Hao, J.J.; Feng, C.N.; Yang, Y.J.; Shao, Z.L.; Wang, L.; Mao, W.J. Anti-diabetic activity of a sulfated galactoarabinan with unique structural characteristics from Cladophora oligoclada (Chlorophyta). Carbohydr. Polym. 2022, 278, 118933. [Google Scholar] [CrossRef]
- Prieto, A.; Rupèrez, P.; Hernández-Barranco, A.; Leal, J.A. Partial characterisation of galactofuranose-containing heteropolysaccharides from the cell walls of Talaromyces helices. Carbohydr. Res. 1988, 177, 265–272. [Google Scholar] [CrossRef]
- Cordeiro, L.M.C.; Oliveira, S.M.D.; Buchi, D.F.; Iacomini, M. Galactofuranose-rich heteropolysaccharide from Trebouxia sp., photobiont of the lichen Ramalina gracilis and its effect on macrophage activation. Int. J. Biol. Macromol. 2008, 42, 436–440. [Google Scholar] [CrossRef]
- Fernández, P.V.; Arata, P.X.; Ciancia, M. Polysaccharides from Codium species: Chemical structure and biological activity. Their role as components of the cell wall. Adv. Bot. Res. 2014, 71, 253–278. [Google Scholar]
- Rosenberg, R.D.; Jordan, I.R.; Armand, G.; Lam, L.H.; Beeler, D.L. Antithrombin III and Its Interactions with Heparin. Thromb. Haemost. 1977, 38, 119. [Google Scholar]
- Shanmugam, M.; Modyet, K.H.; Ramavat, B.K.; Sai Krishna Murthy, A.; Siddhanta, A.K. Screening of Codiacean algae (Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian J. Geo-Mar. Sci. 2002, 31, 33–38. [Google Scholar]
- Li, P.P.; Wen, S.S.; Sun, K.L.; Zhao, Y.Q.; Chen, Y. Structure and Bioactivity Screening of a Low Molecular Weight Ulvan from the Green Alga Ulothrix flacca. Mar. Drugs 2018, 16, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Anthon, G.E.; Barrett, D.M. Modified method for the determination of pyruvic acid with dinitrophenylhydrazine in the assessment of onion pungency. J. Sci. Food. Agric. 2003, 83, 1210–1213. [Google Scholar] [CrossRef]
- Li, C.; Niu, Q.F.; Li, S.J.; Zhang, X.; Liu, C.J.; Cai, C.; Li, G.Y.; Yu, G.L. Fucoidan from Sea Cucumber Holothuria polii: Structural Elucidation and Stimulation of Hematopoietic Activity. Int. J. Biol. Macromol. 2020, 154, 1123–1131. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Chem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Miller, I.J.; Blunt, J.W. Desulfation of algal galactans. Carbohyd. Res. 1998, 309, 39–43. [Google Scholar] [CrossRef]
- Hakomori, S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 1964, 55, 205–208. [Google Scholar] [PubMed]
- Li, N.; Mao, W.J.; Yan, M.X.; Liu, X.; Xia, Z.; Wang, S.Y.; Xiao, B.; Chen, C.Z.; Zhang, L.F.; Cao, S.J. Structural characterization and anticoagulant activity of a sulfated polysaccharide from the green alga Codium divaricatum. Carbohydr. Polym. 2015, 121, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hao, J.J.; He, X.X.; Wang, S.Y.; Cao, S.J.; Qin, L.; Mao, W.J. A rhamnan-type sulfated polysaccharide with novel structure from Monostroma angicava Kjellm (Chlorophyta) and its bioactivity. Carbohydr. Polym. 2017, 173, 732–748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Y.; Wu, M.Y.; Xiao, C.; Yang, L.; Zhou, L.T.; Gao, N.; Li, Z.; Chen, J.; Chen, J.C.; Liu, J.K. Discovery of an intrinsic tenase complex inhibitor: Pure nonasaccharide from fucosylated glycosaminoglycan. Proc. Natl. Acad. Sci. USA 2015, 27, 8284–8289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.Z.; Xu, P.; Liu, B.Z.; Yu, B. Chemical Synthesis of Fucosylated Chondroitin Sulfate Oligosaccharides. J. Org. Chem. 2020, 85, 15908–15919. [Google Scholar] [CrossRef] [PubMed]
Methylation Product | m/z | Molar Ratio (%) | Linkage Pattern | |
---|---|---|---|---|
F2-1 | dsF2-1 | |||
1,5-Di-O-acetyl-2,3,4-Tri-O-methyl-D-xyl | 101, 117, 129, 161 | 4.8 | 7.9 | xylp(1→ |
1,5-Di-O-acetyl-2,3,4-Tri-O-methyl-L-Rha | 101, 117, 131, 145, 161, 175 | 3.8 | 6.6 | Rhap(1→ |
1,2,5-Tri-O-acetyl-3,4-di-O-methyl-L-Rha | 115, 131, 189 | 4.8 | 19.6 | →2)Rhap(→ |
1,4,5-Tri-O-acetyl-2,3-di-O-methyl-L-Ara | 117, 129, 189 | 12.2 | 28.7 | →4)Arap(1→ |
1,2,3,4,5-Penta-O-acetyl- L-Ara | 117, 127, 145, 159, 175, 187, 217 | 8.4 | 2.2 | →2,3,4)Arap(1→ |
1,5-Di-O-acetyl-2,3,4,6-Tetra-O-methyl-D-Man | 101, 117, 129, 145, 161, 205 | 5.6 | 3.8 | Manp(1→ |
1,5-Di-O-acetyl-2,3,4,6-Tetra-O-methyl-D-Glc | 101, 117, 129, 145, 161, 205 | 5.4 | 3.9 | Glcp(1→ |
1,5-Di-O-acetyl-2,3,4,6-Tetra-O-methyl-D-Gal | 101, 117, 129, 145, 161, 205 | 7.3 | 8.9 | Galp(1→ |
1,2,4,5-Tetra-O-acetyl-3-O-methyl-L-Rha | 129, 143, 189, 203 | 16.8 | 5.8 | →2,4)Rhap(1→ |
1,4,5-Tri-O-acetyl-2,3-Di-O--methyl-D-Man | 113, 117, 131,173, 233 | 6.8 | 7.3 | →4)Glcp(1→ |
1,4,5-Tri-O-acetyl-2,3,6-Tri-O--methyl-D-Gal | 113, 117, 131, 173, 233 | 10 | 3.1 | →5)Galf(1→ |
1,2,4,6-Tetra-O-acetyl-3,5-Di-O--methyl-D-Gal | 117, 127, 129, 159, 189 | 17.1 | 6.2 | →2,6)Galf(1→ |
Residue | H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6/C6 |
---|---|---|---|---|---|---|
A (1→4)-β-L-Arap2S3S | 5.31 | 4.7 | 4.5 | — | — | — |
99 | 76 | 76.6 | — | — | — | |
B (1→4)-α-D-Glcp | 5.2 | 3.55 | 3.74 | 3.86 | — | — |
97.4 | 73.2 | 72 | 76.8 | — | — | |
C (1→5)-β-D-Galf | 5.16 | 4.18 | 3.9 | 4.08 | 3.78 | 3.68/3.75 |
108.8 | 81.2 | 76 | 80.6 | 76.1 | 60.9 | |
D (1→4)-β-L-Arap | 5.04 | 3.81 | 4.0 | 3.95 | 3.72 | — |
98.3 | 68.2 | 68.4 | 75 | — | — | |
E (1→2,6)-β-D-Galf | 5.0 | 4.12 | 4.16 | 3.91 | 3.8 | 3.57/3.68 |
107 | 84.7 | 77 | 83.1 | 70.8 | 69 | |
F terminal α-D-Galp | 4.92 | 3.83 | 3.95 | 3.76 | — | — |
99 | 76.9 | 74.6 | 82.8 | — | — | |
G (1→2)-β-L-Rhap4S | 4.57 | 4.2 | — | 4.04 | 4.16 | 1.21 |
103.3 | 78.2 | — | 66.7 | 72.6 | 17.6 | |
H terminal β-D-Xylp | 4.4 102.1 | 3.26 73 | 3.46 72.6 | 3.57 — | — — |
Sample | Concentration (μg/mL) | APTT (S) | TT (S) | PT (S) |
---|---|---|---|---|
F2-1 | 0 | 35.8 ± 3.3 | 18.8 ± 2.1 | 13.6 ± 2.5 |
2.5 | 55.7 ± 4.2 | 25.2 ± 2.9 | 16.5 ± 2.2 | |
5 | 87.5 ± 2.8 | 54.4 ± 3.0 | 16.9 ± 1.4 | |
10 | 133.0 ± 3.7 | 115.4 ± 2.2 | 17.6 ± 2.3 | |
20 | >200 | >120 | 17.6 ± 2.8 | |
50 | >200 | >120 | 19.9 ± 2.7 | |
Heparin | 0 | 35.8 ± 3.3 | 18.8 ± 2.1 | 13.6 ± 2.5 |
2.5 | 88.9 ± 3.2 | 70.2 ± 3.2 | 46.6 ± 2.0 | |
5 | 118.3 ± 2.7 | >120 | 59.7 ± 3.2 | |
10 | >200 | >120 | 68.8 ± 2.6 | |
20 | >200 | >120 | 89.1 ± 2.2 | |
50 | >200 | >120 | >120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Bai, J.; Zhang, X.; Yan, Z.; He, P.; Chen, Y. Structure and Anticoagulant Activity of a Galactofuranose-Containing Sulfated Polysaccharide from the Green Seaweed, Codium isthmocladum. Molecules 2022, 27, 8012. https://doi.org/10.3390/molecules27228012
Li P, Bai J, Zhang X, Yan Z, He P, Chen Y. Structure and Anticoagulant Activity of a Galactofuranose-Containing Sulfated Polysaccharide from the Green Seaweed, Codium isthmocladum. Molecules. 2022; 27(22):8012. https://doi.org/10.3390/molecules27228012
Chicago/Turabian StyleLi, Peipei, Junlu Bai, XiaoJun Zhang, Zhongyong Yan, Pengfei He, and Yin Chen. 2022. "Structure and Anticoagulant Activity of a Galactofuranose-Containing Sulfated Polysaccharide from the Green Seaweed, Codium isthmocladum" Molecules 27, no. 22: 8012. https://doi.org/10.3390/molecules27228012
APA StyleLi, P., Bai, J., Zhang, X., Yan, Z., He, P., & Chen, Y. (2022). Structure and Anticoagulant Activity of a Galactofuranose-Containing Sulfated Polysaccharide from the Green Seaweed, Codium isthmocladum. Molecules, 27(22), 8012. https://doi.org/10.3390/molecules27228012