Evaluation of Anti-Hyperglycemia and Complications of Red and Black Thai Jasmine Rice Cultivars in Streptozotocin-Induced Diabetic Rats
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening of RR and BR
2.2. Effects of RR and BR on Rat BW
2.3. Effects of RR and BR on FBG
2.4. Effects of RR and BR on Blood TG and CHO Levels
2.5. Effects of RR and BR on MDA, FRAP, and GSH Levels
2.6. Effects of RR and BR on AST and ALT Levels
2.7. Effects of RR and BR on BUN and Creatinine Levels
3. Discussion
4. Materials and Methods
4.1. Plant Material and Preparation of Rice Extracts from Red Rice (RR) and Black Rice (BR)
4.2. Animals
4.3. Induction of Diabetes
4.4. Biochemical Analyses
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes 2018, 42, S10–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, S. International Diabetes Federation; International Diabetes Federation: Brussels, Belgium, 2021; Volume 102, ISBN 9782930229980. [Google Scholar]
- Ahmed, K.A.; Muniandy, S.; Ismail, I.S. Type 2 Diabetes and Vascular Complications: A Pathophysiologic View. Biomed. Res. 2010, 21, 147–155. [Google Scholar]
- Penckofer, S.; Schwertz, D.; Florczak, K. Oxidative Stress and Cardiovascular Disease in Type 2 Diabetes: The Role of Antioxidants and Pro-Oxidants. J. Cardiovasc. Nurs. 2002, 16, 68–85. [Google Scholar] [CrossRef]
- Rahimi, R.; Nikfar, S.; Larijani, B.; Abdollahi, M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother. 2005, 59, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Son, S.M. Reactive Oxygen and Nitrogen Species in Pathogenesis of Vascular Complications of Diabetes. Diabetes Metab. J. 2012, 36, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Kataya, H.H.; Hamza, A.A.; Ramadan, G.A.; Khasawneh, M.A. Effect of licorice extract on the complications of diabetes nephropathy in rats. Drug Chem. Toxicol. 2011, 34, 101–108. [Google Scholar] [CrossRef]
- Parul, R.; Alam, J.; Rana, S.; Mahitha, G.; Madhuri, R.J. Neuroprotective Effect of Cinamomum zeylanicum in streptozotocin induced diabetes in Mice. Indian J. Pharm. Biol. Res. 2016, 4, 63–73. [Google Scholar] [CrossRef]
- Muntana, N.; Prasong, S. Study on Total Phenolic Contents and their Antioxidant Activities of Thai White, Red and Black Rice Bran Extracts. Pak. J. Biol. Sci. 2010, 13, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Yawadio, R.; Tanimori, S.; Morita, N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 2007, 101, 1616–1625. [Google Scholar] [CrossRef]
- Pengkumsri, N.; Chaiyasut, C.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sirisattha, S.; Sivamaruthi, B.S. Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand. Food Sci. Technol. 2015, 35, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Butsat, S.; Siriamornpun, S. Phenolic Acids and Antioxidant Activities in Husk of Different Thai Rice Varieties. Food Sci. Technol. Int. 2010, 16, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Jia, Q.; Wang, Y.; Zhang, Y.; Xia, M. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway. Free Radic. Biol. Med. 2012, 52, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Callcott, E.T.; Blanchard, C.L.; Snell, P.; Santhakumar, A.B. The anti-inflammatory and antioxidant effects of acute consumption of pigmented rice in humans. Food Funct. 2019, 10, 8230–8239. [Google Scholar] [CrossRef]
- Islam, S.; Loots, D.T. Experimental rodent models of type 2 diabetes: A review. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Sukprasansap, M.; Chanvorachote, P.; Tencomnao, T. Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells. BMC Complement Med. Ther. 2020, 20, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantipaiboonwong, P.; Pintha, K.; Chaiwangyen, W.; Chewonarin, T.; Pangjit, K.; Chumphukam, O.; Kangwan, N.; Suttajit, M. Anti-hyperglycaemic and anti-hyperlipidaemic effects of black and red rice in streptozotocin-induced diabetic rats. ScienceAsia 2017, 43, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Pramai, P.; Jiamyangyuen, S. Chemometric Classification of Pigmented Rice Varieties Based on Antioxidative Properties in Relation to Color. Songklanakarin J. Sci. Technol. 2016, 38, 463–472. [Google Scholar]
- Sinthorn, W.; Chatuphonprasert, W.; Chulasiri, M.; Jarukamjorn, K. Thai red rice extract provides liver protection in paracetamol-treated mice by restoring the glutathione system. Pharm. Biol. 2015, 54, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin Composition in Black, Blue, Pink, Purple, and Red Cereal Grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Chen, X.Q.; Nagao, N.; Itani, T.; Irifune, K. Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chem. 2012, 135, 2783–2788. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-J.; Wu, J. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab. Syndr. Obes. Targets Ther. 2015, 8, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Zhong, S.; Xie, K.; Yu, D.; Yang, R.; Gong, D.-W. Hepatic ALT isoenzymes are elevated in gluconeogenic conditions including diabetes and suppressed by insulin at the protein level. Diabetes/Metab. Res. Rev. 2015, 31, 562–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almundarij, T.I.; Zaki, A.K.A.; Albarrak, S.M.; Alharbi, Y.M.; Almuzaini, S.A.; Abo-Aziza, F.A.M. Evaluation of the Anti-Diabetic Activities of Colored Rice Varieties in Streptozotocin-Induced Diabetic Rats. Syst. Rev. Pharm. 2020, 11, 1424–1433. [Google Scholar] [CrossRef]
- Qi, S.S.; He, J.; Dong, L.C.; Yuan, L.P.; Le Wu, J.; Zu, Y.X.; Zheng, H.X. Cyanidin-3-glucoside from black rice prevents renal dysfunction and renal fibrosis in streptozotocin-diabetic rats. J. Funct. Foods 2020, 72, 104062. [Google Scholar] [CrossRef]
- Um, M.Y.; Ahn, J.; Ha, T.Y. Hypolipidaemic effects of cyanidin 3-glucoside rich extract from black rice through regulating hepatic lipogenic enzyme activities. J. Sci. Food Agric. 2013, 93, 3126–3128. [Google Scholar] [CrossRef]
- Sasaki, R.; Nishimura, N.; Hoshino, H.; Isa, Y.; Kadowaki, M.; Ichi, T.; Tanaka, A.; Nishiumi, S.; Fukuda, I.; Ashida, H.; et al. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol. 2007, 74, 1619–1627. [Google Scholar] [CrossRef]
- Inaguma, T.; Han, J.; Isoda, H. Improvement of insulin resistance by Cyanidin 3-glucoside, anthocyanin from black beans through the up-regulation of GLUT4 gene expression. BMC Proc. 2011, 5, P21. [Google Scholar] [CrossRef] [Green Version]
- Akkarachiyasit, S.; Charoenlertkul, P.; Yibchok-Anun, S.; Adisakwattana, S. Inhibitory Activities of Cyanidin and Its Glycosides and Synergistic Effect with Acarbose against Intestinal α-Glucosidase and Pancreatic α-Amylase. Int. J. Mol. Sci. 2010, 11, 3387–3396. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; Rani, R.; Awana, M.; Pitale, D.; Kulshreshta, A.; Sharma, S.; Bollinedi, H.; Singh, A.; Singh, B.; Praveen, S. Role of nutraceutical starch and proanthocyanidins of pigmented rice in regulating hyperglycemia: Enzyme inhibition, enhanced glucose uptake and hepatic glucose homeostasis using in vitro model. Food Chem. 2020, 335, 127505. [Google Scholar] [CrossRef]
- Nazir, N.; Zahoor, M.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.E. Curative Effect of Catechin Isolated from Elaeagnus Umbellata Thunb. Berries for Diabetes and Related Complications in Streptozotocin-Induced Diabetic Rats Model. Molecules 2020, 26, 137. [Google Scholar] [CrossRef] [PubMed]
- Fatchiyah, F.; Safitri, A.; Rohmah, R.N.; Triprisila, L.F.; Kurnianingsih, N.; Nugraha, Y.; Fajriani, S.; Meidinna, H.N.; Robert-Cairns, J.K. The Effect of Anthocyanin of Whole-Grain Pigmented Rice Attenuated Visceral Fat, Cholesterol, LDL and PPARγ Gene Cascade in Dyslipidemia Rat. Syst. Rev. Pharm. 2020, 11, 318–327. [Google Scholar] [CrossRef]
- Jang, H.-H.; Park, M.-Y.; Kim, H.-W.; Lee, Y.-M.; Hwang, K.-A.; Park, J.-H.; Park, D.-S.; Kwon, O. Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6 J mice fed a high-fat diet via fatty acid oxidation. Nutr. Metab. 2012, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified Anthocyanin Supplementation Reduces Dyslipidemia, Enhances Antioxidant Capacity, and Prevents Insulin Resistance in Diabetic Patients. J. Nutr. 2015, 145, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Park, E.-M.; Kim, E.-H.; Chung, I.-M. Hypocholesterolemic metabolism of dietary red pericarp glutinous rice rich in phenolic compounds in mice fed a high cholesterol diet. Nutr. Res. Pract. 2014, 8, 632–637. [Google Scholar] [CrossRef] [Green Version]
- Salgado, J.M.; de Oliveira, A.G.C.; Mansi, D.N.; Donado-Pestana, C.M.; Bastos, C.R.; Marcondes, F.K. The Role of Black Rice (Oryza sativa L.) in the Control of Hypercholesterolemia in Rats. J. Med. Food 2010, 13, 1355–1362. [Google Scholar] [CrossRef]
- Fatchiyah, F.; Meidinna, H.N.; Suyanto, E. The Cyanidin-3-O-Glucoside of Black Rice Inhibits the Interaction of HMG-CoA and HMG-CoA Reductase: Three-and Two-Dimension Structure. J. Phys. Conf. Ser. 2020, 1665, 012005. [Google Scholar] [CrossRef]
- Wautier, M.-P.; Chappey, O.; Corda, S.; Stern, D.M.; Schmidt, A.M.; Wautier, J.-L. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E685–E694. [Google Scholar] [CrossRef] [Green Version]
- Krishnasamy, S.; Rajaraman, B.; Ravi, V.; Rajagopal, R.; Ganeshprasad, A.; Kuppuswamy, A.A.; Pathak, A.; Dhevasena, C.S.; Swaminathan, K.; Sundaresan, M.; et al. Association of advanced glycation end products (AGEs) with endothelial dysfunction, oxidative stress in gestational diabetes mellitus (GDM). Int. J. Diabetes Dev. Ctries. 2019, 40, 276–282. [Google Scholar] [CrossRef]
- Niwa, T.; Tsukushi, S. 3-Deoxyglucosone and AGEs in Uremic Complications: Inactivation of Glutathione Peroxidase by 3-Deoxyglucosone. Kidney Int. Suppl. 2001, 78, S37–S41. [Google Scholar]
- Agustin, A.; Safitri, A.; Fatchiyah, F. An in Silico Approach Reveals the Potential Function of Cyanidin-3-o-glucoside of Red Rice in Inhibiting the Advanced Glycation End Products (AGES)-Receptor (RAGE) Signaling Pathway. Acta Inform. Med. 2020, 28, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Nizamutdinova, I.T.; Jin, Y.C.; Chung, J.I.; Shin, S.C.; Lee, S.J.; Seo, H.G.; Lee, J.H.; Chang, K.C.; Kim, H.J. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol. Nutr. Food Res. 2009, 53, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Liberati, T.A.; Sansone, S.R.; Feuston, M.H. Hematology and clinical chemistry values in pregnant Wistar Hannover rats compared with nonmated controls. Veter-Clin. Pathol. 2004, 33, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Lu, M.; Qian, Y.; Wei, L.; Zhang, Y.; Pan, X.; Li, H.; Chen, H.; Tang, N. A 90-day Sub-chronic Oral Toxicity Assessment of Mulberry Extract in Sprague Dawley Rats. Inq. J. Health Care Organ. Provis. Financ. 2021, 58, 469580211056044. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Qin, P.; Ren, G. Effect of Anthocyanin-Rich Extract from Black Rice (Oryza sativa L. Japonica) on Chronically Alcohol-Induced Liver Damage in Rats. J. Agric. Food Chem. 2010, 58, 3191–3196. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ling, W.; Wang, Q.; Liu, C.; Hu, Y.; Xia, M.; Feng, X.; Xia, X. Effect of Anthocyanin-Rich Extract from Black Rice (Oryza sativa L. indica) on Hyperlipidemia and Insulin Resistance in Fructose-Fed Rats. Plant Foods Hum. Nutr. 2006, 62, 1–6. [Google Scholar] [CrossRef]
Phytochemical Content | (mg/100 g Extract) | |
---|---|---|
RR | BB | |
Polyphenols | ||
Catechin | 297.42 | 342.86 |
Rutin | 1097.57 | 684.06 |
Isoquercetin | 672.10 | 430.44 |
Anthocyanins | ||
cyanidin 3-glucoside | ND | 446.30 |
cyanidin 3-O-rutinoside | ND | 24.21 |
Peonidin | ND | 115.35 |
Quercetin (total) | ND | 35.70 |
Group | Body Weight (g) | |||
---|---|---|---|---|
D0 | D15 | D30 | D45 | |
Healthy Control | 266.88 ± 3.65 | 290.63 ± 2.90 | 328.75 ± 3.75 | 380.00 ± 5.09 |
Diabetic control | 124.29 ± 3.30 * | 113.57 ± 4.65 * | 121.43 ± 5.18 * | 125.71 ± 5.99 * |
Diabetic RR treated group | ||||
10 mg/kg BW | 142.50 ± 12.39 * | 153.00 ± 17.30 * | 157.00 ± 21.05 * | 221.67 ± 29.91 *,# |
50 mg/kg BW | 163.57 ± 9.50 * | 155.71 ± 11.43 * | 156.43 ± 12.78 *,# | 167.14 ± 13.80 *,# |
200 mg/kg BW | 131.43 ± 8.52 * | 123.57 ± 7.75 * | 129.17 ± 9.38 * | 148.33 ± 14.90 *,# |
Diabetic BR treated group | ||||
10 mg/kg BW | 124.29 ± 6.57 * | 120.00 ± 6.42 * | 124.17 ± 2.26 *,# | 120.83 ± 6.26 * |
50 mg/kg BW | 146.00 ± 9.79 * | 141.52 ± 10.98 * | 152.96 ± 10.92 * | 165.36 ± 17.81 *,# |
200 mg/kg BW | 130.45 ± 5.15 * | 139.52 ± 3.71 * | 139.76 ± 7.16 * | 154.43 ± 10.35 *,# |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannasom, N.; Thepmalee, C.; Khoothiam, K.; Thephinlap, C. Evaluation of Anti-Hyperglycemia and Complications of Red and Black Thai Jasmine Rice Cultivars in Streptozotocin-Induced Diabetic Rats. Molecules 2022, 27, 8043. https://doi.org/10.3390/molecules27228043
Suwannasom N, Thepmalee C, Khoothiam K, Thephinlap C. Evaluation of Anti-Hyperglycemia and Complications of Red and Black Thai Jasmine Rice Cultivars in Streptozotocin-Induced Diabetic Rats. Molecules. 2022; 27(22):8043. https://doi.org/10.3390/molecules27228043
Chicago/Turabian StyleSuwannasom, Nittiya, Chutamas Thepmalee, Krissana Khoothiam, and Chonthida Thephinlap. 2022. "Evaluation of Anti-Hyperglycemia and Complications of Red and Black Thai Jasmine Rice Cultivars in Streptozotocin-Induced Diabetic Rats" Molecules 27, no. 22: 8043. https://doi.org/10.3390/molecules27228043
APA StyleSuwannasom, N., Thepmalee, C., Khoothiam, K., & Thephinlap, C. (2022). Evaluation of Anti-Hyperglycemia and Complications of Red and Black Thai Jasmine Rice Cultivars in Streptozotocin-Induced Diabetic Rats. Molecules, 27(22), 8043. https://doi.org/10.3390/molecules27228043