Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Details
2.2. Processing into Pellets and Membranes
2.3. Moisture Stability
2.4. Temperature Stability
2.5. Adsorption Studies
2.5.1. Water Adsorption
2.5.2. Gas Adsorption Capacity
2.6. Antibacterial Activity
3. Materials and Methods
3.1. Preparation of Complexes
Synthesis of [Cu3L2(DMF)2]n
- General procedure for synthesising single crystals: 0.010 g (0.065 mmol) of 3,4-dihydroxybenzoic acid (L) organic linker was dissolved in 0.5 mL of DMF. In a separate vial, 0.010 g (0.0434 mmol) of Cu(NO3)2·2.5H2O was dissolved in 0.5 mL of distilled water. After the ligand and metal dissolution, 0.5 mL of H2O was added to the ligand solution and 0.5 mL of DMF to the metal solution. The metal solution was added dropwise to the ligand solution with magnetic stirring. The resulting greenish-turquoise solution was poured into a screw-capped vial (6 mL) and introduced to the oven at 95 °C for 6 h, giving rise to dark-brown ribbon-shaped single crystals. Single-crystal X-ray structure determination, FT-IR (Figure S10), elemental analysis (EA; Table S3) confirmed the general formula [CuL2(DMF)2]n.
- General procedure for the scale-up synthesis: 0.2 g (1.2 mmol) of 3,4-dihydroxybenzoic acid ligand and 0.2 g (0.868 mmol) of Cu(NO3)2·2.5H2O were weighed and dissolved in 3 mL DMF/3 mL H2O solvent mixture. This greenish-turquoise solution was placed in a microwave and heated at 95 °C for an hour to obtain around 85 mg of Cu MOF (yielding ~75%). PXRD confirmed the purity of the product. Data related to the EA, FTIR and TG can be found in the Supplementary Material. SEM images of compound 1 are shown in Figure S11.
3.2. X-ray Diffraction Data Collection and Structure Determination
3.3. Inhibitory Activity against Staphylococcus Aureus (S. aureus)
3.4. Material Shaping: Processing into Pellets and Membranes
3.5. Pellet and Membrane Moisture Stability Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, S.; Ye, J.; Liu, Z.; Lu, H.; Shi, S.; Qi, Y.; Ning, G. Superior antibacterial activity of Fe3O4@copper(II) metal-organic framework core-shell magnetic microspheres. Dalton Trans. 2020, 49, 13044–13051. [Google Scholar] [CrossRef] [PubMed]
- Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorozyński, P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov. Today 2016, 21, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, J.; Feng, Y.; Zhang, K.; Chen, N.; Fang, H.; Li, Z. Series of d10 complexes based on sulfamethoxazole: Auxiliary ligand induces structure diversity, luminescence and antibacterial properties. J. Solid State Chem. 2021, 302, 122351. [Google Scholar] [CrossRef]
- Feng, X.; Xu, C.; Wang, Z.Q.; Tang, S.F.; Fu, W.J.; Ji, B.M.; Wang, L.Y. Aerobic oxidation of alcohols and the synthesis of benzoxazoles catalyzed by a cuprocupric coordination polymer (Cu+-CP) assisted by TEMPO. Inorg. Chem. 2015, 54, 2088–2090. [Google Scholar] [CrossRef] [PubMed]
- López-Viseras, M.E.; Fernández, B.; Hilfiker, S.; González, C.S.; González, J.L.; Calahorro, A.J.; Colacio, E.; Rodríguez-Diéguez, A. In vivo potential antidiabetic activity of a novel zinc coordination compound based on 3-carboxy-pyrazole. J. Inorg. Biochem. 2014, 131, 64–67. [Google Scholar] [CrossRef]
- Fernández, B.; Fernández, I.; Cepeda, J.; Medina-O’Donnell, M.; Rufino-Palomares, E.E.; Raya-Barón, Á.; Gómez-Ruiz, S.; Pérez-Jiménez, A.; Lupiáñez, J.A.; Reyes-Zurita, F.J.; et al. Modulating Anticancer Potential by Modifying the Structural Properties of a Family of Zinc Metal-Organic Chains Based on 4-Nitro-1H-pyrazole. Cryst. Growth Des. 2018, 18, 969–978. [Google Scholar] [CrossRef]
- García-García, A.; Rojas, S.; Rivas-García, L.; Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Fernández-Bolaños, J.G.; Choquesillo-Lazarte, D.; Salinas-Castillo, A.; López, Ó.; Quiles, J.L.; et al. A gliclazide complex based on palladium towards Alzheimer’s disease: Promising protective activity against Aβ-induced toxicity in C. elegans. Chem. Commun. 2022, 58, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Navas, A.; Jannus, F.; Fernández, B.; Cepeda, J.; O’Donnell, M.M.; Díaz-Ruiz, L.; Sánchez-González, C.; Llopis, J.; Seco, J.M.; Rufino-Palomares, E.; et al. Designing single-molecule magnets as drugs with dual anti-inflammatory and anti-diabetic effects. Int. J. Mol. Sci. 2020, 21, 3146. [Google Scholar] [CrossRef] [PubMed]
- Caballero, A.B.; Rodríguez-Diéguez, A.; Quirós, M.; Salas, J.M.; Huertas, Ó.; Ramírez-Macías, I.; Olmo, F.; Marín, C.; Chaves-Lemaur, G.; Gutierrez-Sánchez, R.; et al. Triazolopyrimidine compounds containing first-row transition metals and their activity against the neglected infectious Chagas disease and leishmaniasis. Eur. J. Med. Chem. 2014, 85, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, F.; Wang, D. MOFs and MOF-Derived Materials for Antibacterial Application. J. Funct. Biomater. 2022, 13, 215. [Google Scholar] [CrossRef]
- Jo, J.H.; Kim, H.-C.; Huh, S.; Kim, Y.; Lee, D.N. Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Trans. 2019, 48, 8084–8093. [Google Scholar] [CrossRef] [PubMed]
- Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012, 7, 2767–2781. [Google Scholar] [CrossRef] [Green Version]
- Seco, J.M.; Fairen-Jimenez, D.; Calahorro, A.J.; Méndez-Liñán, L.; Pérez-Mendoza, M.; Casati, N.; Colacio, E.; Rodríguez-Diéguez, A. Modular structure of a robust microporous MOF based on Cu2 paddle-wheels with high CO2 selectivity. Chem. Commun. 2013, 49, 11329–11331. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.L.; Adams, D.; Karpanen, T.J.; Lambert, P.A.; Cookson, B.D.; Nightingale, P.; Miruszenko, L.; Shillam, R.; Christian, P.; Elliott, T.S.J. Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 2010, 74, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Santo, C.E.; Quaranta, D.; Grass, G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 2012, 1, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, D.; Ardiles, P.R.; Prashar, S.; Rodríguez-Diéguez, A.; Páez, P.L.; Gómez-Ruiz, S. Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics 2019, 11, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef] [Green Version]
- Chiericatti, C.; Basilico, J.C.; Zapata Basilico, M.L.; Zamaro, J.M. Novel application of HKUST-1 metal–organic framework as antifungal: Biological tests and physicochemical characterizations. Microporous Mesoporous Mater. 2012, 162, 60–63. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Akhbari, K.; Morsali, A. Dense coating of surface mounted CuBTC Metal–Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason. Sonochem. 2012, 19, 846–852. [Google Scholar] [CrossRef]
- Rodríguez, H.S.; Hinestroza, J.P.; Ochoa-Puentes, C.; Sierra, C.A.; Soto, C.Y. Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers. J. Appl. Polym. Sci. 2014, 131, 40815. [Google Scholar] [CrossRef]
- Wang, C.; Qian, X.; An, X. In situ green preparation and antibacterial activity of copper-based metal–organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 2015, 22, 3789–3797. [Google Scholar] [CrossRef]
- Ren, J.; Langmi, H.W.; North, B.C.; Mathe, M. Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 2015, 39, 607–620. [Google Scholar] [CrossRef]
- Yuan, J.; Li, J.; Che, S.; Li, G.; Liu, X.; Sun, X.; Zou, L.; Zhang, L.; Liu, Y. Two unique copper cluster-based metal–organic frameworks with high performance for CO2 adsorption and separation. Inorg. Chem. Front. 2019, 6, 556–561. [Google Scholar] [CrossRef]
- Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M.R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valizadeh, B.; Nguyen, T.N.; Stylianou, K.C. Shape engineering of metal–organic frameworks. Polyhedron 2018, 145, 1–15. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, T.; Wang, B. Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter 2022, 5, 1070–1091. [Google Scholar] [CrossRef]
- Ntouros, V.; Kousis, I.; Pisello, A.L.; Assimakopoulos, M.N. Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application. Energies 2022, 15, 1489. [Google Scholar] [CrossRef]
- Figueira, F.; Mendes, R.F.; Domingues, E.M.; Barbosa, P.; Figueiredo, F.; Paz, F.A.A.; Rocha, J. Easy processing of metal-organic frameworks into pellets and membranes. Appl. Sci. 2020, 10, 798. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, T.; Abnisa, F.; Wan Daud, W.M.A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 2020, 707, 135090. [Google Scholar] [CrossRef]
- Nofrizal; Putra, D.P.; Arbain, D. Antioxidant and antibacterial constituents from two Sumatran ferns, Trichomanes javanicum and Oleandra pistillaris. Nat. Prod. Commun. 2017, 12, 1263–1264. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J.M.; Alemany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools; SHAPE, v1.1b; University of Barcelona: Barcelona, Spain, 2005; pp. 1–35. [Google Scholar]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, L.L.; Zong, D.X.; Lu, X.Y.; Zhang, T.T.; Chen, T.; Sun, J.L.; Zhao, J.Z.; Liu, M.Y.; Liu, S.R. The Selective CO2 Adsorption and Photothermal Conversion Study of an Azo-Based Cobalt-MOF Material. Molecules 2022, 27, 6873. [Google Scholar] [CrossRef] [PubMed]
- Gü Ç Lü, Y.; Erer, H.; Demiral, H.; Altintas, C.; Keskin, S.; Tumanov, N.; Su, B.-L.; Semerci, F. Oxalamide-Functionalized Metal Organic Frameworks for CO2 Adsorption. Cite This ACS Appl. Mater. Interfaces 2021, 13, 33198. [Google Scholar] [CrossRef]
- Bae, Y.S.; Farha, O.K.; Spokoyny, A.M.; Mirkin, C.A.; Hupp, J.T.; Snurr, R.Q. Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem. Commun. 2008, 9, 4135–4137. [Google Scholar] [CrossRef] [PubMed]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.N.; Kim, Y.R.; Yang, S.; Tran, N.M.; Park, B.J.; Lee, S.J.; Kim, Y.; Yoo, H.; Kim, S.J.; Shin, J.H. Controllable Nitric Oxide Storage and Release in Cu-BTC: Crystallographic Insights and Bioactivity. Int. J. Mol. Sci. 2022, 23, 9098. [Google Scholar] [CrossRef]
- O’Brien, F.E. The Control of Humidity by Saturated Salt Solutions. J. Sci. Instrum. 1948, 25, 73–76. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Fullprof, version 2.5d; Université Paris-Saclay: Paris, France, 2000. [Google Scholar]
- Kottke, T.; Stalke, D. Crystal handling at low temperatures. J. Appl. Cryst. 1993, 26, 615–619. [Google Scholar] [CrossRef] [Green Version]
- SAINT+, Data Integration Engine, V. 8.37a©; Bruker AXS: Madison, WI, USA, 1997–2015.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS User Manual; SADABS; University of Göttingen: Göttingen, Germany, 2008. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenburg, K. DIAMOND; Version 3.2f; Crystal Impact GbR: Bonn, Germany, 1997–2010. [Google Scholar]
- Liu, X.M.; Xie, L.H.; Wu, Y. Recent advances in the shaping of metal–organic frameworks. Inorg. Chem. Front. 2020, 7, 2840–2866. [Google Scholar] [CrossRef]
Compound | Inhibition Area (cm2) | Mass of Cu (mg) | Mass of Ligand (mg) |
---|---|---|---|
H3L | 3.6 ± 0.3 | - | 25 |
Cu(NO3)2 | 4.2 ± 1.7 | 6.8 | - |
Compound 1 | 4.1 ± 0.8 | 6.9 | 10.7 |
Compound | 1 |
---|---|
Formula | C10H10Cu1.50NO5 |
Formula weight | 319.50 |
Temperature/K | 150 (2) |
Crystal system | Monoclinic |
Space group | C2/c |
a/Å | 20.2893 (16) |
b/Å | 8.6194 (7) |
c/Å | 16.7337 (11) |
α/º | 90.0 |
β/º | 126.632 (2) |
γ/º | 90.0 |
Volume/Å3 | 2348.4 (3) |
Z | 8 |
µ(Mo Kα)/mm−1 | 2.75 |
Crystal type | Red plate |
Crystal size/mm | 0.16 × 0.14 × 0.06 |
θ range (°) | 3.42–25.35 |
Index ranges | −24 ≤ h ≤ 22 −10 ≤ k ≤ 10 −20 ≤ l ≤ 20 |
Collected Reflections | 17154 |
Independent Reflections | 2141 (Rint = 0.023) |
Completeness to θ = 25.24 | 99.6% |
Final R indices [I > 2σ(I)] | R1 = 0.0354 wR2 = 0.0964 |
Final R indices (all data) | R1 = 0.0386 wR2 = 0.0984 |
Largest diff. peak and hole /eÅ−3 | 0.66 and −0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echenique-Errandonea, E.; Rojas, S.; Abdelkader-Fernández, V.K.; Pérez-Mendoza, M.; Mendes, R.F.; Barbosa, P.; Figueiredo, F.; Figueira, F.; Almeida Paz, F.A.; Delgado-López, J.M.; et al. Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand. Molecules 2022, 27, 8073. https://doi.org/10.3390/molecules27228073
Echenique-Errandonea E, Rojas S, Abdelkader-Fernández VK, Pérez-Mendoza M, Mendes RF, Barbosa P, Figueiredo F, Figueira F, Almeida Paz FA, Delgado-López JM, et al. Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand. Molecules. 2022; 27(22):8073. https://doi.org/10.3390/molecules27228073
Chicago/Turabian StyleEchenique-Errandonea, Estitxu, Sara Rojas, Víctor Karim Abdelkader-Fernández, Manuel Pérez-Mendoza, Ricardo F. Mendes, Paula Barbosa, Filipe Figueiredo, Flávio Figueira, Filipe A. Almeida Paz, José Manuel Delgado-López, and et al. 2022. "Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand" Molecules 27, no. 22: 8073. https://doi.org/10.3390/molecules27228073
APA StyleEchenique-Errandonea, E., Rojas, S., Abdelkader-Fernández, V. K., Pérez-Mendoza, M., Mendes, R. F., Barbosa, P., Figueiredo, F., Figueira, F., Almeida Paz, F. A., Delgado-López, J. M., Rodríguez-Diéguez, A., & Seco, J. M. (2022). Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand. Molecules, 27(22), 8073. https://doi.org/10.3390/molecules27228073