Unconventional Extraction of Total Non-Polar Carotenoids from Pumpkin Pulp and Their Nanoencapsulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of C. moschata Pulp Extracts
2.2. RP-HPLC-DAD Analysis
2.3. Quantitation of Carotene in the Investigated Extracts
2.4. β-Carotene-Loaded Solid Lipid Nanoparticles Characterization
3. Materials and Methods
3.1. Plant Materials
3.2. Reagents
3.3. Extraction Methods of Carotenoids from Pumpkin Pulp
3.3.1. Ultrasound-Assisted Extraction (UAE)
3.3.2. Microwave-Assisted Extraction (MAE)
3.3.3. Maceration (MAC)
3.4. Determination of Total Carotenoids Content (TCC)
3.5. In Vitro Antioxidant Activities
3.5.1. Free Radical-Scavenging Activity Using DPPH (DPPH Assay)
3.5.2. Free Radical-Scavenging Activity Using ABTS (ABTS Assay)
3.5.3. FRAP
3.5.4. Oxygen Radical Absorbance Capacity (ORAC) Assay (ORAC Assay)
3.6. HPLC-DAD Analysis of Carotenoids and Method Validation
3.7. LC-HRMS Analysis for Carotenoids Structural Confirmation
3.8. Solid Lipid Nanoparticles Preparation
3.9. Solid Lipid Nanoparticles Characterization
3.9.1. Particle Size Determination
3.9.2. β-Carotene Quantification
3.9.3. Morphological Analysis
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 978-92-5-109551-5.
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollini, L.; Rocchi, R.; Cossignani, L.; Mañes, J.; Compagnone, D.; Blasi, F. Phenol Profiling and Nutraceutical Potential of Lycium spp. Leaf Extracts Obtained with Ultrasound and Microwave Assisted Techniques. Antioxidants 2019, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Kostecka-Gugała, A.; Kruczek, M.; Ledwożyw-Smoleń, I.; Kaszycki, P. Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications. Molecules 2020, 25, 1792. [Google Scholar] [CrossRef] [Green Version]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Luana Carvalho de Queiroz, J.; Medeiros, I.; Costa Trajano, A.; Piuvezam, G.; Clara de França Nunes, A.; Souza Passos, T.; Heloneida de Araújo Morais, A. Encapsulation Techniques Perfect the Antioxidant Action of Carotenoids: A Systematic Review of How This Effect Is Promoted. Food Chem. 2022, 385, 132593. [Google Scholar] [CrossRef]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors Influencing the Chemical Stability of Carotenoids in Foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef]
- Xavier, A.A.O.; Mercadante, A.Z. The Bioaccessibility of Carotenoids Impacts the Design of Functional Foods. Curr. Opin. Food Sci. 2019, 26, 1–8. [Google Scholar] [CrossRef]
- Boonlao, N.; Ruktanonchai, U.R.; Anal, A.K. Enhancing Bioaccessibility and Bioavailability of Carotenoids Using Emulsion-Based Delivery Systems. Colloids Surf. B Biointerfaces 2022, 209, 112211. [Google Scholar] [CrossRef]
- Bohn, T.; Desmarchelier, C.; El, S.N.; Keijer, J.; van Schothorst, E.; Rühl, R.; Borel, P. β-Carotene in the Human Body: Metabolic Bioactivation Pathways—from Digestion to Tissue Distribution and Excretion. Proc. Nutr. Soc. 2019, 78, 68–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, V.; Badan Ribeiro, A.P.; Andrade Santana, M.H. Solid Lipid Nanoparticles as Carriers for Lipophilic Compounds for Applications in Foods. Food Res. Int. 2019, 122, 610–626. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; ISBN 978-1-57881-072-7. [Google Scholar]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of Conventional/Non-Conventional Extraction Methods on the Untargeted Phenolic Profile of Moringa Oleifera Leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef]
- Sharma, M.; Bhat, R. Extraction of Carotenoids from Pumpkin Peel and Pulp: Comparison between Innovative Green Extraction Technologies (Ultrasonic and Microwave-Assisted Extractions Using Corn Oil). Foods 2021, 10, 787. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving Carotenoid Extraction from Tomato Waste by Pulsed Electric Fields. Front. Nutr. 2014, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Madia, V.N.; De Vita, D.; Ialongo, D.; Tudino, V.; De Leo, A.; Scipione, L.; Di Santo, R.; Costi, R.; Messore, A. Recent Advances in Recovery of Lycopene from Tomato Waste: A Potent Antioxidant with Endless Benefits. Molecules 2021, 26, 4495. [Google Scholar] [CrossRef]
- Chuyen, H.V.; Nguyen, M.H.; Roach, P.D.; Golding, J.B.; Parks, S.E. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction for Recovering Carotenoids from Gac Peel and Their Effects on Antioxidant Capacity of the Extracts. Food Sci. Nutr. 2018, 6, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, B.D.; Barreto, D.; Coelho, M.A. Technological Aspects of β-Carotene Production. Food Bioprocess Technol. 2011, 4, 693–701. [Google Scholar] [CrossRef]
- Mueller, L.; Boehm, V. Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays. Molecules 2011, 16, 1055–1069. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols as Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndhlala, A.R.; Moyo, M.; Van Staden, J. Natural Antioxidants: Fascinating or Mythical Biomolecules? Molecules 2010, 15, 6905–6930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohmah, M.; Rahmadi, A.; Raharjo, S. Bioaccessibility and Antioxidant Activity of β-Carotene Loaded Nanostructured Lipid Carrier (NLC) from Binary Mixtures of Palm Stearin and Palm Olein. Heliyon 2022, 8, e08913. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergantin, C.; Maietti, A.; Tedeschi, P.; Font, G.; Manyes, L.; Marchetti, N. HPLC-UV/Vis-APCI-MS/MS Determination of Major Carotenoids and Their Bioaccessibility from “Delica” (Cucurbita maxima) and “Violina” (Cucurbita moschata) Pumpkins as Food Traceability Markers. Molecules 2018, 23, 2791. [Google Scholar] [CrossRef] [Green Version]
- Blasi, F.; Rocchetti, G.; Montesano, D.; Lucini, L.; Chiodelli, G.; Ghisoni, S.; Baccolo, G.; Simonetti, M.S.; Cossignani, L. Changes in Extra-Virgin Olive Oil Added with Lycium barbarum L. Carotenoids during Frying: Chemical Analyses and Metabolomic Approach. Food Res. Int. 2018, 105, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Sreelakshmi, Y.; Sharma, R. A Rapid and Sensitive Method for Determination of Carotenoids in Plant Tissues by High Performance Liquid Chromatography. Plant Methods 2015, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Burri, B.J.; Dopler-Nelson, M.; Neidllinger, T.R. Measurements of the Major Isoforms of Vitamins A and E and Carotenoids in the Blood of People with Spinal-Cord Injuries. J. Chromatogr. A 2003, 987, 359–366. [Google Scholar] [CrossRef]
- Gebregziabher, B.S.; Zhang, S.; Qi, J.; Azam, M.; Ghosh, S.; Feng, Y.; Huai, Y.; Li, J.; Li, B.; Sun, J. Simultaneous Determination of Carotenoids and Chlorophylls by the HPLC-UV-VIS Method in Soybean Seeds. Agronomy 2021, 11, 758. [Google Scholar] [CrossRef]
- Song, J.; Wang, X.; Li, D.; Meng, L.; Liu, C. Degradation of Carotenoids in Pumpkin (Cucurbita maxima L.) Slices as Influenced by Microwave Vacuum Drying. Int. J. Food Prop. 2017, 20, 1479–1487. [Google Scholar] [CrossRef]
- Okada, M.; Rajaram, K.; Swift, R.P.; Mixon, A.; Maschek, J.A.; Prigge, S.T.; Sigala, P.A. Critical Role for Isoprenoids in Apicoplast Biogenesis by Malaria Parasites. eLife 2022, 11, e73208. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.A.A.; Almeida, E.S.; Neto, B.A.D.; Abdelnur, P.V.; Monteiro, S. Identification of Carotenoid Isomers in Crude and Bleached Palm Oils by Mass Spectrometry. LWT 2018, 89, 631–637. [Google Scholar] [CrossRef]
- Provesi, J.G.; Dias, C.O.; Amante, E.R. Changes in Carotenoids during Processing and Storage of Pumpkin Puree. Food Chem. 2011, 128, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Azevedo-Meleiro, C.H.; Rodriguez-Amaya, D.B. Qualitative and Quantitative Differences in Carotenoid Composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. J. Agric. Food Chem. 2007, 55, 4027–4033. [Google Scholar] [CrossRef] [PubMed]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, D.; Yang, T.; Wang, C. Facile Preparation of Biocompatible Nanostructured Lipid Carrier with Ultra-Small Size as a Tumor-Penetration Delivery System. Colloids Surf. B Biointerfaces 2018, 170, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Cassani, L.; Marcovich, N.E.; Gomez-Zavaglia, A. Valorization of Fruit and Vegetables Agro-Wastes for the Sustainable Production of Carotenoid-Based Colorants with Enhanced Bioavailability. Food Res. Int. 2022, 152, 110924. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid Lipid Nanoparticles: Production, Characterization and Applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef]
- Mehrad, B.; Ravanfar, R.; Licker, J.; Regenstein, J.M.; Abbaspourrad, A. Enhancing the Physicochemical Stability of β-Carotene Solid Lipid Nanoparticle (SLNP) Using Whey Protein Isolate. Food Res. Int. 2018, 105, 962–969. [Google Scholar] [CrossRef]
- Helena de Abreu-Martins, H.; Artiga-Artigas, M.; Hilsdorf Piccoli, R.; Martín-Belloso, O.; Salvia-Trujillo, L. The Lipid Type Affects the in Vitro Digestibility and β-Carotene Bioaccessibility of Liquid or Solid Lipid Nanoparticles. Food Chem. 2020, 311, 126024. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Nanoemulsion Delivery Systems: Influence of Carrier Oil on β-Carotene Bioaccessibility. Food Chem. 2012, 135, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor-Gerding, D.; Oomah, B.D.; Acevedo, F.; Morales, E.; Bustamante, M.; Shene, C.; Rubilar, M. High Carotenoid Bioaccessibility through Linseed Oil Nanoemulsions with Enhanced Physical and Oxidative Stability. Food Chem. 2016, 199, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Milsmann, J.; Oehlke, K.; Schrader, K.; Greiner, R.; Steffen-Heins, A. Fate of Edible Solid Lipid Nanoparticles (SLN) in Surfactant Stabilized o/w Emulsions. Part 1: Interplay of SLN and Oil Droplets. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 615–622. [Google Scholar] [CrossRef]
- Durmaz, G. Freeze-Dried ABTS+ Method: A Ready-to-Use Radical Powder to Assess Antioxidant Capacity of Vegetable Oils. Food Chem. 2012, 133, 1658–1663. [Google Scholar] [CrossRef]
- Campos, D.A.; Madureira, A.R.; Sarmento, B.; Gomes, A.M.; Pintado, M.M. Stability of Bioactive Solid Lipid Nanoparticles Loaded with Herbal Extracts When Exposed to Simulated Gastrointestinal Tract Conditions. Food Res. Int. 2015, 78, 131–140. [Google Scholar] [CrossRef]
- Urbani, E.; Blasi, F.; Simonetti, M.S.; Chiesi, C.; Cossignani, L. Investigation on Secondary Metabolite Content and Antioxidant Activity of Commercial Saffron Powder. Eur. Food Res. Technol. 2016, 242, 987–993. [Google Scholar] [CrossRef]
- Pagano, C.; Perioli, L.; Blasi, F.; Bastianini, M.; Chiesi, C.; Cossignani, L. Optimisation of phenol extraction from wine using layered double hydroxides and technological evaluation of the bioactive-rich powder. Int. J. Food Sci. Technol. 2017, 52, 2582–2588. [Google Scholar] [CrossRef]
Extraction Technique | Extraction Solvent | Yield (%) | TCC (μg/g) | ABTS (μg TE/g) | ORAC (μg TE/g) |
---|---|---|---|---|---|
UAE | Hex:Iso 60:40 | 2.30 ± 0.00 | 145.33 ± 2.04 | 958.88 ± 24.90 | 2832.76 ± 24.56 |
Hex:Ac:EtOH 50:25:25 | 2.45 ± 0.01 | 138.14 ± 6.95 | 2332.32 ± 11.99 | 2512.11 ± 35.12 | |
MAE | Hex:Iso 60:40 | 2.73 ± 0.02 | 126.02 ± 3.97 | 505.01 ± 26.51 | 1955.88 ± 15.20 |
Hex:Ac:EtOH 50:25:25 | 3.13 ± 0.03 | 118.76 ± 9.49 | 1870.03 ± 22.79 | 1732.28 ± 20.71 | |
MAC | Hex:Iso 60:40 | 2.63 ± 0.01 | 135.64 ± 8.76 | 801.25 ± 34.39 | 2586.12 ± 21.50 |
Hex:Ac:EtOH 50:25:25 | 3.08 ± 0.00 | 162.81 ± 3.42 | 3697.62 ± 29.51 | 2495.12 ± 33.27 |
Regression Equation | R2 | Linearity Range (μg/mL) | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|
y = 179307 (±2636.77)x + 144.96 (±58.18) | 0.999 | 0.51–51.00 | 1.07 | 3.24 |
Theoretical Conc. (µg/mL) | Intra-Day Mean Conc. (µg/mL) | Intra-Day Precision (RSD%) | Intra-Day Accuracy (Recovery%) | Inter-Day Mean Conc. (µg/mL) | Inter-Day Precision (RSD%) | Inter-Day Accuracy (Recovery%) |
---|---|---|---|---|---|---|
4.1 | 4.20 | 2.12 | 102.34 | 4.28 | 0.11 | 104.46 |
4.33 | 3.42 | 105.68 | ||||
4.32 | 0.60 | 105.36 |
Extraction Technique | Extraction Solvent | α-Carotene μg/g | β-Carotene μg/g | α- and β-Carotene μg/g |
---|---|---|---|---|
UAE | Hex:Iso | 684.23 ± 55.36 | 893.00 ± 70.18 | 1577.24 ± 131.12 |
Hex:Ac:EtOH | 766.03 ± 22.26 | 987.11 ± 11.34 | 1753.14 ± 128.45 | |
MAE | Hex:Iso | 509.16 ± 35.18 | 662.93 ± 36.73 | 1172.08 ± 93.51 |
Hex:Ac:EtOH | 637.31 ± 9.17 | 831.60 ± 18.09 | 1468.91 ± 112.79 | |
MAC | Hex:Iso | 633.33 ± 10.46 | 816.82 ± 17.68 | 1450.15 ± 106.60 |
Hex:Ac:EtOH | 795.95 ± 75.00 | 1038.34 ± 72.83 | 1834.29 ± 152.41 |
TCC | ABTS | ORAC | HPLC-DAD | ||
---|---|---|---|---|---|
TCC | Hex:Iso | - | |||
Hex:Ac:EtOH | - | ||||
ABTS | Hex:Iso | 0.9692 | - | ||
Hex:Ac:EtOH | 0.9571 | - | |||
ORAC | Hex:Iso | 0.8844 | 0.9712 | - | |
Hex:Ac:EtOH | 0.6700 | 0.4649 | - | ||
HPLC-DAD | Hex:Iso | 0.9550 | 0.9986 | 0.9824 | - |
Hex:Ac:EtOH | 0.8625 | 0.6919 | 0.9471 | - |
β-Carotene (%, w/w) | Mean Diameter x ± SD (NICOMP, nm) |
---|---|
0.5 | 93.4 ± 17.2 (11.0%) |
316.7 ± 70.4 (89.0%) | |
1 | 98.7 ± 14.4 (13.6%) |
363.7 ± 65.8 (86.4%) | |
5 | 99.1 ± 15.0 (10.3%) |
447.2 ± 90.0 (89.7%) | |
10 | 147.9 ± 28.2 (14.2%) |
711.1 ± 144.4 (85.8%) |
β-Carotene Theoretical Content (%, w/w) | β-Carotene Experimentally Determined Content y ± SD (%, w/w) | EE y (%) |
---|---|---|
0.54 ± 0.01 | 0.49 ± 0.02 | 89.57 |
1.01 ± 0.01 | 0.75 ± 0.09 | 74.56 |
Sample | ABTS Assay z (mg Trolox eq./mg SLN) | |
---|---|---|
Average ± SD | RSD% | |
SLN 0.5% | 0.050 ± 0.005 | 9.88 |
SLN 1% | 0.061 ± 0.006 | 10.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinna, N.; Ianni, F.; Blasi, F.; Stefani, A.; Codini, M.; Sabatini, S.; Schoubben, A.; Cossignani, L. Unconventional Extraction of Total Non-Polar Carotenoids from Pumpkin Pulp and Their Nanoencapsulation. Molecules 2022, 27, 8240. https://doi.org/10.3390/molecules27238240
Pinna N, Ianni F, Blasi F, Stefani A, Codini M, Sabatini S, Schoubben A, Cossignani L. Unconventional Extraction of Total Non-Polar Carotenoids from Pumpkin Pulp and Their Nanoencapsulation. Molecules. 2022; 27(23):8240. https://doi.org/10.3390/molecules27238240
Chicago/Turabian StylePinna, Nicola, Federica Ianni, Francesca Blasi, Arianna Stefani, Michela Codini, Stefano Sabatini, Aurélie Schoubben, and Lina Cossignani. 2022. "Unconventional Extraction of Total Non-Polar Carotenoids from Pumpkin Pulp and Their Nanoencapsulation" Molecules 27, no. 23: 8240. https://doi.org/10.3390/molecules27238240
APA StylePinna, N., Ianni, F., Blasi, F., Stefani, A., Codini, M., Sabatini, S., Schoubben, A., & Cossignani, L. (2022). Unconventional Extraction of Total Non-Polar Carotenoids from Pumpkin Pulp and Their Nanoencapsulation. Molecules, 27(23), 8240. https://doi.org/10.3390/molecules27238240