Facile Synthesis of Highly Emissive All-Inorganic Manganese Bromide Compounds with Perovskite-Related Structures for White LEDs
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Structure Morphology and Compositional Analysis of CsxMnBrx+2
2.2. Optical Properties of Cs3MnBr5 and CsMnBr3
2.3. Controllable Photoluminescence and Crystal Structures of CsxMnBrx+2
2.4. Application in UV Pumped White LEDs
2.5. Magnetic and Thermostability
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Cs3MnBr5 and CsMnBr3
3.3. LEDs Lamp Fabrication
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, J.; Mukherjee, S.; Li, W.; Zeng, H.; Fischer, R.A. Bespoke crystalline hybrids towards the next generation of white LEDs. Nat. Rev. Mater. 2022, 7, 677–678. [Google Scholar] [CrossRef]
- Schubert, E.F.; Kim, J.K. Solid-State Light Sources Getting Smart. Science 2005, 308, 1274–1278. [Google Scholar] [CrossRef]
- Rad, R.R.; Gualdrón-Reyes, A.F.; Masi, S.; Ganji, B.A.; Taghavinia, N.; Gené-Marimon, S.; Palomares, E.; Mora-Seró, I. Tunable Carbon–CsPbI3 Quantum Dots for White LEDs. Adv. Opt. Mater. 2021, 9, 2001508. [Google Scholar] [CrossRef]
- Mahmood, A.; Abdullah Muhammad, I.; Nazar Muhammad, F. Quantum Chemical Designing of Novel Organic Non-Linear Optical Compounds. Bull. Korean Chem. Soc. 2014, 35, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Khan, S.U.-D.; Rana, U.A.; Tahir, M.H. Red shifting of absorption maxima of phenothiazine based dyes by incorporating electron-deficient thiadiazole derivatives as π-spacer. Arab. J. Chem. 2019, 12, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Khan, S.U.-D.; ur Rehman, F. Assessing the quantum mechanical level of theory for prediction of UV/Visible absorption spectra of some aminoazobenzene dyes. J. Saudi Chem. Soc. 2015, 19, 436–441. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhang, Q.; Xia, Z. Narrow-band emitters in LED backlights for liquid-crystal displays. Mater. Today 2020, 40, 246–265. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Li, J.; Ye, Y.; Zhou, Q.; Jiang, L.; Tang, H. Structural evolution of organic–inorganic hybrid crystals for high colour-rendering white LEDs. Chem. Comm. 2022, 58, 4596–4598. [Google Scholar] [CrossRef]
- Liu, W.; Song, E.; Cheng, L.; Song, L.; Xie, J.; Li, G.; Zhang, Y.; Wang, Y.; Wang, Y.; Xia, Z.; et al. Introducing Uranium as the Activator toward Highly Stable Narrow-Band Green Emitters with Near-Unity Quantum Efficiency. Chem. Mater. 2019, 31, 9684–9690. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Lee, Y.; You, I.; Banthia, N.; Zi, G. Utilization of liquid crystal display (LCD) glass waste in concrete: A review. Cem. Concr. Compos. 2022, 130, 104542. [Google Scholar] [CrossRef]
- Brinkley, S.E.; Pfaff, N.; Denault, K.A.; Zhang, Z.; Hintzen, H.T.; Seshadri, R.; Nakamura, S.; DenBaars, S.P. Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting. Appl. Phys. Lett. 2011, 99, 241106. [Google Scholar] [CrossRef] [Green Version]
- Diekemper, D.; Schnick, W.; Schwarzer, S. Microwave Synthesis of a Prominent LED Phosphor for School Students: Chemistry’s Contribution to Sustainable Lighting. J. Chem. Educ. 2019, 96, 3018–3024. [Google Scholar] [CrossRef]
- Zamprogno Rebello, R.; Weitzel Dias Carneiro Lima, M.T.; Yamane, L.H.; Ribeiro Siman, R. Characterization of end-of-life LED lamps for the recovery of precious metals and rare earth elements. Resour. Conserv. Recycl. 2020, 153, 104557. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, D.; Zhou, Y.; Wan, Z.; Ding, M.; Bai, W.; Ji, Z. New Eu3+-activated perovskite La0.5Na0.5TiO3 phosphors in glass for warm white light emitting diodes. Dalton Trans. 2016, 45, 4762–4770. [Google Scholar] [CrossRef] [Green Version]
- Lustig, W.P.; Shen, Z.; Teat, S.J.; Javed, N.; Velasco, E.; O’Carroll, D.M.; Li, J. Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs. Chem. Sci. 2020, 11, 1814–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, N.; Wang, J.; Huang, J.; Luo, S.; Shao, X. Enhanced color rendering index of organic/inorganic hybrid white light-emitting diodes with trans-1-(9-anthryl)-2-phenylethene derivatives as organic blue-green emitting materials. Opt. Mater. 2021, 113, 110832. [Google Scholar] [CrossRef]
- Han, T.-H.; Jang, K.Y.; Dong, Y.; Friend, R.H.; Sargent, E.H.; Lee, T.-W. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 2022, 7, 757–777. [Google Scholar] [CrossRef]
- Liu, B.; Wang, G.; Lu, Y.; Wang, W.; Liu, Z.; Li, J. Zinc Borosilicate Glass-Stabilized CsPbX3 (X = Cl, Br, I) Perovskite Quantum Dots for Photoluminescence Lighting and Display Applications. ACS Appl. Nano Mater. 2022, 5, 9503–9513. [Google Scholar] [CrossRef]
- Luo, C.; Xia, W.; Ren, Z.; Shen, D.; Li, Q.; Zheng, Z.; Li, J.; Ma, W.; Chen, Y. Highly Luminescent and Ultra-Stable Perovskite Films with Excellent Self-Healing Ability for Flexible Lighting and Wide Color Gamut Displays. Adv. Funct. Mater. 2022, 32, 2113010. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Fang, Z.; Yi, J.; Song, P.; Yu, X.; Zhou, D.; Qiu, J.; Xu, X. One-step precipitated all-inorganic perovskite QDs from amorphous media for backlighting display and reproducible laser-driven white lighting. Chem. Eng. J. 2022, 427, 131379. [Google Scholar] [CrossRef]
- Liu, Z.; Sinatra, L.; Lutfullin, M.; Ivanov, Y.P.; Divitini, G.; De Trizio, L.; Manna, L. One Hundred-Nanometer-Sized CsPbBr3/m-SiO2 Composites Prepared via Molten-Salts Synthesis are Optimal Green Phosphors for LCD Display Devices. Adv. Energy Mater. 2022, 12, 2201948. [Google Scholar] [CrossRef]
- Zhang, T.; Fujisawa, K.; Zhang, F.; Liu, M.; Lucking, M.C.; Gontijo, R.N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T.; et al. Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano 2020, 14, 4326–4335. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Han, J.; Zhang, H.; Zhao, L.; Si, C.; Zhang, X.; Hou, C.; Luo, Q.; Xu, J.; Liu, J. Quantum-Dot-Induced Self-Assembly of Cricoid Protein for Light Harvesting. ACS Nano 2014, 8, 3715–3743. [Google Scholar] [CrossRef] [PubMed]
- Dietl, T.; Sato, K.; Fukushima, T.; Bonanni, A.; Jamet, M.; Barski, A.; Kuroda, S.; Tanaka, M.; Hai, P.N.; Katayama-Yoshida, H. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev. Mod. Phys. 2015, 87, 1311–1377. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Li, F.; Xu, K.; Guo, Y.; Liu, Y.; Xia, Z.; Zhang, J.Z. B-Site doped lead halide perovskites: Synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 2019, 7, 2781–2808. [Google Scholar] [CrossRef]
- Wang, A.; Muhammad, F.; Liu, Y.; Deng, Z. Lead-free Mn-doped antimony halide perovskite quantum dots with bright deep-red emission. Chem. Commun. 2021, 57, 2677–2680. [Google Scholar] [CrossRef]
- Guria, A.K.; Dutta, S.K.; Adhikari, S.D.; Pradhan, N. Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges. ACS Energy Lett. 2017, 2, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Zhou, G.; Huang, J.; Song, E.; Nag, A.; Xia, Z. Mn2+-Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application. Laser Photonics Rev. 2021, 15, 2000334. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, W.-Q.; Fu, D.-W.; Ye, H.-Y.; Chen, Z.-N.; Xiong, R.-G. Highly Efficient Red-Light Emission in An Organic–Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl3. J. Am. Chem. Soc. 2015, 137, 4928–4931. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Wang, C.-F.; Li, H.-H.; Jiang, F.; Shi, C.; Ye, H.-Y.; Zhang, Y. Highly Efficient and Uncommon Photoluminescence Behavior Combined with Multiple Dielectric Response in Manganese(II) Based Hybrid Phase Transition Compounds. Eur. J. Inorg. Chem. 2020, 2020, 394–399. [Google Scholar] [CrossRef]
- Hu, G.; Xu, B.; Wang, A.; Guo, Y.; Wu, J.; Muhammad, F.; Meng, W.; Wang, C.; Sui, S.; Liu, Y.; et al. Stable and Bright Pyridine Manganese Halides for Efficient White Light-Emitting Diodes. Adv. Funct. Mater. 2021, 31, 2011191. [Google Scholar] [CrossRef]
- Barreda-Argüeso, J.A.; Nataf, L.; Rodríguez-Lazcano, Y.; Aguado, F.; González, J.; Valiente, R.; Rodríguez, F.; Wilhelm, H.; Jephcoat, A.P. Bulk and Molecular Compressibilities of Organic–Inorganic Hybrids [(CH3)4N]2MnX4 (X = Cl, Br); Role of Intermolecular Interactions. Inorg. Chem. 2014, 53, 10708–10715. [Google Scholar] [CrossRef] [PubMed]
- Shi, E.; Yuan, B.; Shiring, S.B.; Gao, Y.; Akriti; Guo, Y.; Su, C.; Lai, M.; Yang, P.; Kong, J.; et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, A.; Layek, A.; De, S.; Nag, A.; Debnath, S.; Mahadevan, P.; Chowdhury, A.; Sarma, D.D. Ultranarrow and Widely Tunable Mn2+-Induced Photoluminescence from Single Mn-Doped Nanocrystals of ZnS-CdS Alloys. Phys. Rev. Lett. 2013, 110, 267401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nataf, L.; Rodríguez, F.; Valiente, R.; González, J. Spectroscopic and luminescence properties of (CH3)4NMnCl3: A sensitive Mn2+-based pressure gauge. High Press. Res. 2009, 29, 653–659. [Google Scholar] [CrossRef]
- Song, E.; Ye, S.; Liu, T.; Du, P.; Si, R.; Jing, X.; Ding, S.; Peng, M.; Zhang, Q.; Wondraczek, L. Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions. Adv. Sci. 2015, 2, 1500089. [Google Scholar] [CrossRef] [PubMed]
- Mero, R.D.; Ogawa, K.; Yamada, S.; Liu, H.-L. Optical Study of the Electronic Structure and Lattice Dynamics of NdBaMn2O6 Single Crystals. Sci. Rep. 2019, 9, 18164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liao, W.-Q.; Fu, D.-W.; Ye, H.-Y.; Liu, C.-M.; Chen, Z.-N.; Xiong, R.-G. The First Organic–Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3. Adv. Mater. 2015, 27, 3942–3946. [Google Scholar] [CrossRef]
- Bai, X.; Zhong, H.; Chen, B.; Chen, C.; Han, J.; Zeng, R.; Zou, B. Pyridine-Modulated Mn Ion Emission Properties of C10H12N2MnBr4 and C5H6NMnBr3 Single Crystals. J. Phys. Chem. C 2018, 122, 3130–3137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Cheng, S.; Liu, J.; Li, J.; Guo, Y.; Deng, Z.; Qin, T.; Wang, A. Facile Synthesis of Highly Emissive All-Inorganic Manganese Bromide Compounds with Perovskite-Related Structures for White LEDs. Molecules 2022, 27, 8259. https://doi.org/10.3390/molecules27238259
Gao P, Cheng S, Liu J, Li J, Guo Y, Deng Z, Qin T, Wang A. Facile Synthesis of Highly Emissive All-Inorganic Manganese Bromide Compounds with Perovskite-Related Structures for White LEDs. Molecules. 2022; 27(23):8259. https://doi.org/10.3390/molecules27238259
Chicago/Turabian StyleGao, Ping, Suwen Cheng, Jiaxin Liu, Junjie Li, Yanyan Guo, Zhengtao Deng, Tianshi Qin, and Aifei Wang. 2022. "Facile Synthesis of Highly Emissive All-Inorganic Manganese Bromide Compounds with Perovskite-Related Structures for White LEDs" Molecules 27, no. 23: 8259. https://doi.org/10.3390/molecules27238259
APA StyleGao, P., Cheng, S., Liu, J., Li, J., Guo, Y., Deng, Z., Qin, T., & Wang, A. (2022). Facile Synthesis of Highly Emissive All-Inorganic Manganese Bromide Compounds with Perovskite-Related Structures for White LEDs. Molecules, 27(23), 8259. https://doi.org/10.3390/molecules27238259