Role of Alginate Composition on Copper Ion Uptake in the Presence of Histidine or Beta-Amyloid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorbent Characterization
2.2. Adsorption Kinetics
2.3. Adsorption Isotherms
3. Materials and Methods
3.1. Materials
3.2. Adsorbent Preparation
3.3. Adsorbent Characterization
3.3.1. Morphology
3.3.2. Crystallinity
3.3.3. Metal-Binding Functional Groups
3.3.4. Adsorbent Chemical Composition
3.4. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- 2022 Alzheimer’s Disease Facts and Figures. Available online: https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf (accessed on 1 October 2022).
- Braak, H.; Braak, E. Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev. 2006, 106, 1995–2044. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Atwood, C.S.; Obrenovich, M.E.; Liu, T.; Chan, H.; Perry, G.; Smith, M.A.; Martins, R.N. Amyloid-Beta: A Chameleon Walking in Two Worlds: A Review of the Trophic and Toxic Properties of Amyloid-Beta. Brain Res. Rev. 2003, 43, 1–16. [Google Scholar] [CrossRef]
- Vetrivel, K.S.; Thinakaran, G. Amyloidogenic Processing of Beta-Amyloid Precursor Protein in Intracellular Compartments. Neurology 2006, 66, S69–S73. [Google Scholar] [CrossRef]
- Opazo, C.; Huang, X.; Cherny, R.A.; Moir, R.D.; Roher, A.E.; White, A.R.; Cappai, R.; Masters, C.L.; Tanzi, R.E.; Inestrosa, N.C.; et al. Metalloenzyme-like Activity of Alzheimer’s Disease Beta-Amyloid. Cu-Dependent Catalytic Conversion of Dopamine, Cholesterol, and Biological Reducing Agents to Neurotoxic H(2)O(2). J. Biol. Chem. 2002, 277, 40302–40308. [Google Scholar] [CrossRef] [Green Version]
- Raffa, D.F.; Rickard, G.A.; Rauk, A. Ab Initio Modelling of the Structure and Redox Behaviour of Copper(I) Bound to a His-His Model Peptide: Relevance to the Beta-Amyloid Peptide of Alzheimer’s Disease. J. Biol. Inorg. Chem. 2007, 12, 147–164. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, S.; Huang, Y.; Gu, B.; Li, J.; Wu, C.; Yin, P.; Zhang, Y.; Li, H. Simultaneous Visualization and Quantification of Copper (II) Ions in Alzheimer’s Disease by a near-Infrared Fluorescence Probe. Biosens. Bioelectron. 2022, 198, 113858. [Google Scholar] [CrossRef]
- Linder, M.C.; Hazegh-Azam, M. Copper Biochemistry and Molecular Biology. Am. J. Clin. Nutr. 1996, 63, 797S–811S. [Google Scholar]
- Huang, X.; Cuajungco, M.P.; Atwood, C.S.; Hartshorn, M.A.; Tyndall, J.D.; Hanson, G.R.; Stokes, K.C.; Leopold, M.; Multhaup, G.; Goldstein, L.E.; et al. Cu (II) Potentiation of Alzheimer Abeta Neurotoxicity. Correlation with Cell-Free Hydrogen Peroxide Production and Metal Reduction. J. Biol. Chem. 1999, 274, 37111–37116. [Google Scholar] [CrossRef] [PubMed]
- Yugay, D.; Goronzy, D.P.; Kawakami, L.M.; Claridge, S.A.; Song, T.-B.; Yan, Z.; Xie, Y.-H.; Gilles, J.; Yang, Y.; Weiss, P.S. Copper Ion Binding Site in β-Amyloid Peptide. Nano Lett. 2016, 16, 6282–6289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streltsov, V.A.; Titmuss, S.J.; Epa, V.C.; Barnham, K.J.; Masters, C.L.; Varghese, J.N. The Structure of the Amyloid-Beta Peptide High-Affinity Copper II Binding Site in Alzheimer Disease. Biophys. J. 2008, 95, 3447–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherny, R.A.; Atwood, C.S.; Xilinas, M.E.; Gray, D.N.; Jones, W.D.; McLean, C.A.; Barnham, K.J.; Volitakis, I.; Fraser, F.W.; Kim, Y.; et al. Treatment with a Copper-Zinc Chelator Markedly and Rapidly Inhibits Beta-Amyloid Accumulation in Alzheimer’s Disease Transgenic Mice. Neuron 2001, 30, 665–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasae, K.D.; Abolaji, A.O.; Faloye, T.R.; Odunsi, A.Y.; Oyetayo, B.O.; Enya, J.I.; Rotimi, J.A.; Akinyemi, R.O.; Whitworth, A.J.; Aschner, M. Metallobiology and Therapeutic Chelation of Biometals (Copper, Zinc and Iron) in Alzheimer’s Disease: Limitations, and Current and Future Perspectives. J. Trace Elem. Med. Biol. 2021, 67, 126779. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Fridkin, M.; Youdim, M.B.H. Site-Activated Chelators Derived from Anti-Parkinson Drug Rasagiline as a Potential Safer and More Effective Approach to the Treatment of Alzheimer’s Disease. Neurochem. Res. 2010, 35, 2117–2123. [Google Scholar] [CrossRef]
- Onsøyen, E. Alginates. In Thickening and Gelling Agents for Food; Imeson, A.P., Ed.; Springer: Boston, MA, USA, 1997; pp. 22–44. ISBN 978-1-4615-2197-6. [Google Scholar]
- Draget, K.I.; Skjåk-Braek, G.; Smidsrød, O. Alginate Based New Materials. Int. J. Biol. Macromol 1997, 21, 47–55. [Google Scholar] [CrossRef]
- Haug, A.; Larsen, B.; Smidsrød, O. Uronic Acid Sequence in Alginate from Different Sources. Carbohydr. Res. 1974, 32, 217–225. [Google Scholar] [CrossRef]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Puscaselu, R.G.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Gao, C.; Tang, F.; Gong, G.; Zhang, J.; Hoi, M.P.M.; Lee, S.M.Y.; Wang, R. PH-Responsive Prodrug Nanoparticles Based on a Sodium Alginate Derivative for Selective Co-Release of Doxorubicin and Curcumin into Tumor Cells. Nanoscale 2017, 9, 12533–12542. [Google Scholar] [CrossRef] [PubMed]
- Hariyadi, D.M.; Islam, N. Current Status of Alginate in Drug Delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Barbu, A.; Neamtu, B.; Zăhan, M.; Iancu, G.M.; Bacila, C.; Mireșan, V. Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J. Pers. Med. 2021, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Deng, Y.; Song, L.; Ma, W.; Qian, Y.; Lin, C.; Yuan, Z.; Lu, L.; Chen, M.; Yang, X.; et al. BMP2-Loaded Titania Nanotubes Coating with PH-Responsive Multilayers for Bacterial Infections Inhibition and Osteogenic Activity Improvement. Colloids. Surf. B Biointerfaces 2019, 177, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Takemura, A.; Ono, H. Preparation of Low-Molecular Weight Alginic Acid by Acid Hydrolysis. Carbohydr. Polym. 2000, 42, 421–425. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Braccini, I.; Pérez, S. Molecular Basis of C (2+)-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef]
- Papageorgiou, S.K.; Katsaros, F.K.; Kouvelos, E.P.; Nolan, J.W.; Le Deit, H.; Kanellopoulos, N.K. Heavy Metal Sorption by Calcium Alginate Beads from Laminaria Digitata. J. Hazard Mater. 2006, 137, 1765–1772. [Google Scholar] [CrossRef]
- Aneem, T.H.; Wong, S.Y.; Afrin, H.; Nurunnabi, M.; Li, X.; Arafat, M.T. Investigation of Coagulation Process of Wet-Spun Sodium Alginate Polymannuronate Fibers with Varied Functionality Using Organic Coagulants and Cross-Linkers. Mater. Today Chem. 2021, 22, 100580. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, H.; Lu, Y.; Zhang, L. Blend Films from Sodium Alginate and Gelatin Solutions. J. Macromol. Sci. Part A 2001, 38, 317–328. [Google Scholar] [CrossRef]
- Chapman, V.J.; Chapman, D.J. Seaweeds and Their Uses; Springer: Dordrecht, The Netherlands, 1980; ISBN 978-94-009-5808-1. [Google Scholar]
- Gu, C.; Sun, B.; Wu, W.; Wang, F.; Zhu, M. Synthesis, Characterization of Copper-Loaded Carboxymethyl-Chitosan Nanoparticles with Effective Antibacterial Activity. Macromol. Symp. 2007, 254, 160–166. [Google Scholar] [CrossRef]
- Davis, T.A.; Llanes, F.; Volesky, B.; Mucci, A. Metal Selectivity of Sargassum Spp. and Their Alginates in Relation to Their α-l-Guluronic Acid Content and Conformation. Environ. Sci. Technol. 2003, 37, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, G. V Studies on Structural, Optical, Mechanical Properties of Undoped and Doped l-Histidine Monohydrate Monohydrochloride (LHMHCL). Optik 2016, 127, 4551–4553. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metal-Carboxylate Interactions in Metal–Alginate Complexes Studied with FTIR Spectroscopy. Carbohydr. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef]
- Sakugawa, K.; Ikeda, A.; Takemura, A.; Ono, H. Simplified Method for Estimation of Composition of Alginates by FTIR. J. Appl. Polym. Sci. 2004, 93, 1372–1377. [Google Scholar] [CrossRef]
- Trandafilović, L.V.; Whiffen, R.K.; Dimitrijević-Branković, S.; Stoiljković, M.; Luyt, A.S.; Djoković, V. ZnO/Ag Hybrid Nanocubes in Alginate Biopolymer: Synthesis and Properties. Chem. Eng. J. 2014, 253, 341–349. [Google Scholar] [CrossRef]
- di Cocco, M.E.; Bianchetti, C.; Chiellini, F. 1H NMR Studies of Alginate Interactions with Amino Acids. J. Bioact. Compat. Polym. 2003, 18, 283–296. [Google Scholar] [CrossRef]
- Sartori, C.; Finch, D.S.; Ralph, B.; Gilding, K. Determination of the Cation Content of Alginate Thin Films by FTi.r. Spectroscopy. Polymer 1997, 38, 43–51. [Google Scholar] [CrossRef]
- van Hoogmoed, C.G.; Busscher, H.J.; de Vos, P. Fourier Transform Infrared Spectroscopy Studies of Alginate-PLL Capsules with Varying Compositions. J. Biomed. Mater. Res. A 2003, 67, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Bertagnolli, C. Bioadsorção de Cromo Na Alga Sargassum Filipendula e Em Seus Derivados. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2013. [Google Scholar]
- Mehrotra, R.C.; Bohra, R. Metal Carboxylates; Academic Press: Cambridge, MA, USA, 1983; Volume 262, ISBN 0124881602. [Google Scholar]
- Alcock, N.W.; Tracy, V.M.; Waddington, T.C. Acetates and Acetato-Complexes. Part 2. Spectroscopic Studies. J. Chem. Soc. Dalton. Trans. 1976, 21, 2243–2246. [Google Scholar] [CrossRef]
- Tackett, J.E. FT-IR Characterization of Metal Acetates in Aqueous Solution. Appl. Spectrosc. 1989, 43, 483–489. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470405840. [Google Scholar]
- Deacon, G.B.; Phillips, R.J. Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Bertagnolli, C.; Uhart, A.; Dupin, J.-C.; da Silva, M.G.C.; Guibal, E.; Desbrieres, J. Biosorption of Chromium by Alginate Extraction Products from Sargassum Filipendula: Investigation of Adsorption Mechanisms Using X-ray Photoelectron Spectroscopy Analysis. Bioresour. Technol. 2014, 164, 264–269. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Hammer, P.; Guibal, E.; Taulemesse, J.-M.; Garcia, O. Characterization of Metal–Biomass Interactions in the Lanthanum (III) Biosorption on Sargassum Sp. Using SEM/EDX, FTIR, and XPS: Preliminary Studies. Chem. Eng. J. 2014, 239, 381–391. [Google Scholar] [CrossRef]
- Jodra, Y.; Mijangos, F. Ion Exchange Selectivities of Calcium Alginate Gels for Heavy Metals. Water Sci. Technol. 2001, 43, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Khotimchenko, M.; Kovalev, V.; Khotimchenko, Y. Comparative Equilibrium Studies of Sorption of Pb (II) Ions by Sodium and Calcium Alginate. J. Environ. Sci. 2008, 20, 827–831. [Google Scholar] [CrossRef]
- Kleinübing, S.J.; Vieira, R.S.; Beppu, M.M.; Guibal, E.; Silva, M.G.C. da Characterization and Evaluation of Copper and Nickel Biosorption on Acidic Algae Sargassum Filipendula. Mater. Res. 2010, 13, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Moulder, J.F.; Chastain, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: Waltham, MA, USA, 1992; ISBN 9780962702624. [Google Scholar]
- Chen, J.P.; Hong, L.; Wu, S.; Wang, L. Elucidation of Interactions between Metal Ions and Ca Alginate-Based Ion-Exchange Resin by Spectroscopic Analysis and Modeling Simulation. Langmuir 2002, 18, 9413–9421. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Roy, A.; Mukhopadhyay, A.K.; Das, S.C.; Bhattacharjee, G.; Majumdar, A.; Hippler, R. Surface Stoichiometry and Optical Properties of Cux–TiyCz Thin Films Deposited by Magnetron Sputtering. Coatings 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lü, Y.; Zhan, W.; Xie, Z.; Kuang, Q.; Zheng, L. Synthesis of Porous Cu 2 O/CuO Cages Using Cu-Based Metal–Organic Frameworks as Templates and Their Gas-Sensing Properties. J. Mater. Chem. A Mater. 2015, 3, 12796–12803. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. J. Chem. Educ. 1993, 70, A25. [Google Scholar]
- Watts, J.F.; Wolstenholme, J. The Electron Spectrum. In An Introduction to Surface Analysis by XPS and AES; Wiley: Hoboken, NJ, USA, 2019; pp. 69–96. [Google Scholar]
- Chen, J.; Tendeyong, F.; Yiacoumi, S. Equilibrium and Kinetic Studies of Copper Ion Uptake by Calcium Alginate. Environ. Sci. Technol. 1997, 31, 1433–1439. [Google Scholar] [CrossRef]
- Kleinübing, S.J.; Gaia, F.; Bertagnolli, C.; Da Silva, M.G.C. Extraction of Alginate Biopolymer Present in Marine Alga Sargassum Filipendula and Bioadsorption of Metallic Ions. Mater. Res. 2013, 16, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Guibal, E. Interactions of Metal Ions with Chitosan-Based Sorbents: A Review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Z. Für Chem. Ind. Kolloide 1907, 2, 15. [Google Scholar]
- Ho, Y.S.; McKay, G. The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Chiou, M.S.; Li, H.Y. Adsorption Behavior of Reactive Dye in Aqueous Solution on Chemical Cross-Linked Chitosan Beads. Chemosphere 2003, 50, 1095–1105. [Google Scholar] [CrossRef]
- Nai-yu, Z.; Yan-xia, Z.; Xiao, F.; Li-jun, H. Effects of Composition and Structure of Alginates on Adsorption of Divalent Metals. Chin. J. Oceanol. Limnol. 1994, 12, 78–83. [Google Scholar] [CrossRef]
- Cozzi, D.; Desideri, P.G.; Lepri, L. The Mechanism of Ion Exchange with Alginic Acid. J. Chromatogr. A 1969, 40, 130–137. [Google Scholar] [CrossRef]
- Taketa, T.B.; Mahl, C.R.A.; Calais, G.B.; Beppu, M.M. Amino Acid-Functionalized Chitosan Beads for in Vitro Copper Ions Uptake in the Presence of Histidine. Int. J. Biol. Macromol. 2021, 188, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Jaiana Kleinübing, S. Bioadsorção Competitiva Dos Ions Niquel e Cobre Em Alginato e Alga Marinha Sargassum Filipendula; Universidade Estadual de Campinas: Campinas, Brazil, 2009. [Google Scholar]
- Awala, H.A.; El Jamal, M.M. Equilibrium and Kinetics Study of Adsorption of Some Dyes onto Feldspar. J. Univ. Chem. Technol. Metall. 2011, 46, 45–52. [Google Scholar]
- Kumar, P.S.; Kirthika, K. Equilibrium and Kinetic Study of Adsorption of Nickel from Aqueous Solution onto Bael Tree Leaf Powder. J. Eng. Sci. Technol. 2009, 4, 351–363. [Google Scholar]
- Ngah, W.S.W.; Fatinathan, S. Adsorption of Cu (II) Ions in Aqueous Solution Using Chitosan Beads, Chitosan–GLA Beads and Chitosan–Alginate Beads. Chem. Eng. J. 2008, 143, 62–72. [Google Scholar] [CrossRef]
- Smidsrød, O. Molecular Basis for Some Physical Properties of Alginates in the Gel State. Faraday Discuss. Chem. Soc. 1974, 57, 263–274. [Google Scholar] [CrossRef]
- Vieira, R.S.; Beppu, M.M. Mercury Ion Recovery Using Natural and Crosslinked Chitosan Membranes. Adsorption 2005, 11, 731–736. [Google Scholar] [CrossRef]
- Eftekharzadeh, B.; Khodagholi, F.; Abdi, A.; Maghsoudi, N. Alginate Protects NT2 Neurons against H2O2-Induced Neurotoxicity. Carbohydr. Polym. 2010, 79, 1063–1072. [Google Scholar] [CrossRef]
- Zhou, R.; Shi, X.-Y.; Bi, D.-C.; Fang, W.-S.; Wei, G.-B.; Xu, X. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid. Mar. Drugs 2015, 13, 5828–5846. [Google Scholar] [CrossRef] [Green Version]
- Vaz, J.M. Preparação e Caracterização de Biofilmes Ativos à Base de Alginato de Diferentes Estruturas Poliméricas Reticuladas Com Cálcio. Masters Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2012. [Google Scholar]
- Stine, W.B.; Dahlgren, K.N.; Krafft, G.A.; LaDu, M.J. In Vitro Characterization of Conditions for Amyloid-β Peptide Oligomerization and Fibrillogenesis. J. Biol. Chem. 2003, 278, 11612–11622. [Google Scholar] [CrossRef] [PubMed]
Bead Composition | Total Atomic Concentration | ||||
---|---|---|---|---|---|
C 1s | O 1s | N 1s | Ca 2p | Cu 2p | |
AlgGel pH 7 | 60.34 | 32.95 | 3.03 | 3.68 | - |
AlgGel pH 5 | 60.42 | 36.98 | - | 2.06 | - |
AlgGel-Cu(II) | 57.47 | 39.02 | 1.07 | 0.92 | 1.52 |
(Cu(II) + His) + AlgGel | 58.38 | 40.22 | 0.32 | 0.15 | 0.92 |
Adsorption Systems | Pseudo-First-Order | Pseudo-Second-Order | ||||||
---|---|---|---|---|---|---|---|---|
(mmol/g) | (h−1) | R2 | χ2 | (mmol/g) | (h−1/2) | R2 | χ2 | |
AlgCol-Cu(II) | 1.15 ± 0.02 | 0.70 ± 0.04 | 0.94 | 0.12 | 1.21 ± 0.03 | 0.92 ± 0.16 | 0.94 | 0.11 |
(Cu(II)-His)-AlgCol | 1.19 ± 0.02 | 0.63 ± 0.05 | 0.96 | 0.08 | 1.26 ± 0.02 | 0.73 ± 0.08 | 0.98 | 0.05 |
(AlgCol-His)-Cu(II) | 1.18 ± 0.01 | 0.80 ± 0.06 | 0.98 | 0.20 | 1.25 ± 0.01 | 1.06 ± 0.09 | 0.98 | 0.05 |
AlgGel-Cu(II) | 0.73 ± 0.02 | 0.85 ± 0.12 | 0.88 | 0.17 | 0.78 ± 0.01 | 1.71 ± 0.21 | 0.97 | 0.04 |
(Cu(II)-His)-AlgGel | 0.72 ± 0.03 | 0.43 ± 0.05 | 0.95 | 0.18 | 0.76 ± 0.03 | 0.91 ± 0.12 | 0.98 | 0.16 |
(AlgGel-His)-Cu(II) | 0.72 ± 0.02 | 0.48 ± 0.07 | 0.90 | 0.07 | 0.77 ± 0.02 | 1.24 ± 0.36 | 0.90 | 0.02 |
Adsorption Systems | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|
(mmol/g) | (L/mmol) | R2 | χ2 | (mmol/g) | (L/mmol) | R2 | χ2 | |
AlgCol-Cu(II) | 2.41 ± 0.07 | 8.40 ± 0.95 | 0.99 | 0.09 | 1.91 ± 0.11 | 3.53 ± 0.53 | 0.89 | 0.65 |
(Cu(II)-His)-AlgCol | 2.34 ± 0.16 | 11.6 ± 4.01 | 0.82 | 0.79 | 1.89 ± 0.14 | 3.39 ± 0.67 | 0.85 | 8.88 |
(AlgCol-His)-Cu(II) | 2.38 ± 0.21 | 4.44 ± 1.49 | 0.94 | 0.35 | 1.83 ± 0.09 | 2.36 ± 0.28 | 0.95 | 1.71 |
(Cu(II)-AlgCol)-His | 1.37 ± 0.03 | 13.1 ± 1.26 | 0.99 | 0.06 | 1.19 ± 0.08 | 3.66 ± 0.72 | 0.83 | 1.89 |
AlgGel-Cu(II) | 2.51 ± 0.08 | 9.74 ± 1.34 | 0.98 | 0.36 | 2.02 ± 0.11 | 4.24 ± 0.72 | 0.87 | 0.57 |
(Cu(II)-His)-AlgGel | 2.02 ± 0.16 | 10.8 ± 3.49 | 0.87 | 0.70 | 1.64 ± 0.16 | 3.80 ± 1.04 | 0.71 | 5.65 |
(AlgGel-His)-Cu(II) | 2.04 ± 0.16 | 4.67 ± 1.52 | 0.93 | 0.77 | 1.50 ± 0.07 | 2.97 ± 0.39 | 0.93 | 1.05 |
(Cu(II)-AlgGel)-His | 2.05 ± 0.14 | 4.61 ± 1.35 | 0.93 | 0.36 | 1.44 ± 0.09 | 2.93 ± 0.46 | 0.90 | 3.37 |
AlgGel-Cu(II) | 2.56 ± 0.08 | 6.48 ± 1.15 | 0.95 | - | 2.09 ± 0.08 | 5.62 ± 1.31 | 0.81 | - |
(Cu(II)-BA)-AlgGel | 1.96 ± 0.02 | 19.3 ± 2.97 | 0.92 | - | 1.81 ± 0.03 | 16.3 ± 4.65 | 0.72 | - |
Sample | Source | M/G | FM | FG | FMM | FGG |
---|---|---|---|---|---|---|
AlgCol | Macrocystis pyrifera | 1.94 | 0.66 | 0.34 | 0.49 | 0.17 |
AlgGel | Lamninaria hyperborea | 0.61 | 0.38 | 0.62 | 0.18 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahl, C.R.A.; Bataglioli, R.A.; Calais, G.B.; Taketa, T.B.; Beppu, M.M. Role of Alginate Composition on Copper Ion Uptake in the Presence of Histidine or Beta-Amyloid. Molecules 2022, 27, 8334. https://doi.org/10.3390/molecules27238334
Mahl CRA, Bataglioli RA, Calais GB, Taketa TB, Beppu MM. Role of Alginate Composition on Copper Ion Uptake in the Presence of Histidine or Beta-Amyloid. Molecules. 2022; 27(23):8334. https://doi.org/10.3390/molecules27238334
Chicago/Turabian StyleMahl, Cynthia Regina Albrecht, Rogério Aparecido Bataglioli, Guilherme Bedeschi Calais, Thiago Bezerra Taketa, and Marisa Masumi Beppu. 2022. "Role of Alginate Composition on Copper Ion Uptake in the Presence of Histidine or Beta-Amyloid" Molecules 27, no. 23: 8334. https://doi.org/10.3390/molecules27238334
APA StyleMahl, C. R. A., Bataglioli, R. A., Calais, G. B., Taketa, T. B., & Beppu, M. M. (2022). Role of Alginate Composition on Copper Ion Uptake in the Presence of Histidine or Beta-Amyloid. Molecules, 27(23), 8334. https://doi.org/10.3390/molecules27238334