The Origin of Stereoselectivity in the Hydrogenation of Oximes Catalyzed by Iridium Complexes: A DFT Mechanistic Study
Abstract
1. Introduction
2. Results and Discussion
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paudyal, M.P.; Adebesin, A.M.; Burt, S.R.; Ess, D.H.; Ma, Z.; Kürti, L.; Falck, J.R. Dirhodium-catalyzed c-h arene amination using hydroxylamines. Science 2016, 353, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Ager, D.J.; de Vries, A.H.; de Vries, J.G. Asymmetric homogeneous hydrogenations at scale. Chem. Soc. Rev. 2012, 41, 3340–3380. [Google Scholar]
- Maj, A.M.; Suisse, I.; Agbossou-Niedercorn, F. Asymmetric hydrogenation of 2,3-dihydro-1H-inden-1-one oxime and derivatives. Tetrahedron Asymmetry 2016, 27, 268–273. [Google Scholar] [CrossRef]
- Li, B.; Liu, D.; Hu, Y.; Chen, J.; Zhang, Z.; Zhang, W. Nickel-catalyzed asymmetric hydrogenation of hydrazones. Eur. J. Org. Chem. 2021, 2021, 3421–3425. [Google Scholar] [CrossRef]
- Liu, D.; Li, B.; Chen, J.; Gridnev, I.D.; Yan, D.; Zhang, W. Ni-catalyzed asymmetric hydrogenation of n-aryl imino esters for the efficient synthesis of chiral alpha-aryl glycines. Nat. Commun. 2020, 11, 5935. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, J.; Zhang, Z.; Gridnev, I.D.; Zhang, W. Nickel-catalyzed asymmetric hydrogenation of N-sulfonyl imines. Angew. Chem. Int. Ed. 2019, 58, 7329–7334. [Google Scholar] [CrossRef]
- Quan, M.; Wang, X.; Wu, L.; Gridnev, I.D.; Yang, G.; Zhang, W. Ni(ii)-catalyzed asymmetric alkenylations of ketimines. Nat. Commun. 2018, 9, 2258. [Google Scholar] [CrossRef]
- Mohr, J.; Oestreich, M. B(C6F5)3-catalyzed hydrogenation of oxime ethers without cleavage of the N-O bond. Angew. Chem. Int. Ed. 2014, 53, 13278–13281. [Google Scholar] [CrossRef]
- Li, B.; Chen, J.; Liu, D.; Gridnev, I.D.; Zhang, W. Nickel-catalysed asymmetric hydrogenation of oximes. Nat. Chem. 2022, 14, 920–927. [Google Scholar] [CrossRef]
- Mas-Rosello, J.; Smejkal, T.; Cramer, N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines. Science 2020, 368, 1098–1102. [Google Scholar] [CrossRef]
- Kozuch, S.; Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 2011, 44, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-w.; Zhang, L.; Pu, M.; Lei, M. Mechanistic understanding of base-catalyzed aldimine/ketoamine condensations: An old story and a new model. Asian J. Org. Chem. 2021, 10, 634–641. [Google Scholar] [CrossRef]
- Liao, G.; Wu, Y.-J.; Shi, B.-F. Noncovalent interaction in transition metal-catalyzed selective c-h activation. Acta Chim. Sinica 2020, 78, 289–298. [Google Scholar] [CrossRef]
- Jeffery, I.S. The Curtin-Hammett principle and the Winstein-Holness equation: New definition and recent extensions to classical concepts. J. Chem. Educ. 1986, 63, 42–48. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. Vmd: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, L.; Pu, M.; Lei, M. A phosphine-free Mn(i)-NNS catalyst for asymmetric transfer hydrogenation of acetophenone: A theoretical prediction. Dalton Trans. 2021, 50, 14738–14744. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yue, X.; Li, L.; Li, Z.; Zhang, L.; Pu, M.; Yang, Z.; Wang, C.; Xiao, J.; Lei, M. Asymmetric induction with a chiral amine catalyzed by a ru-pnp pincer complex: Insight from theoretical investigation. Inorg. Chem. 2020, 59, 8404–8411. [Google Scholar] [CrossRef]
- Feng, R.; Xiao, A.; Zhang, X.; Tang, Y.; Lei, M. Origins of enantioselectivity in asymmetric ketone hydrogenation catalyzed by a Ruh2(binap)(cydn) complex: Insights from a computational study. Dalton Trans. 2013, 42, 2130–2145. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Lei, M. The enantioselectivity in asymmetric ketone hydrogenation catalyzed by Ruh2(diphosphine)(diamine) complexes: Insights from a 3D-QSSR and DFT study. Catal. Sci. Technol. 2016, 6, 4450–4457. [Google Scholar] [CrossRef]
- Xiao, M.; Yue, X.; Xu, R.; Tang, W.; Xue, D.; Li, C.; Lei, M.; Xiao, J.; Wang, C. Transition-metal-free hydrogen autotransfer: Diastereoselective n-alkylation of amines with racemic alcohols. Angew. Chem. Int. Ed. 2019, 58, 10528–10536. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M. Mechanisms of ketone/imine hydrogenation catalyzed by transition-metal complexes. Energy Environ. Mater. 2019, 2, 292–312. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Li, L.; Lei, M. Theoretical design of a catalyst with both high activity and selectivity in C-H borylation. J. Org. Chem. 2021, 86, 16858–16866. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, Y.; Shi, X.; Tang, Y.; Yang, Z.; Pu, M.; Lei, M. A theoretical study on the hydrogenation of CO2 to methanol catalyzed by ruthenium pincer complexes. Dalton Trans. 2022, 51, 10020–10028. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Tang, Y.; Pu, M.; Lei, M. A theoretical study of asymmetric ketone hydrogenation catalyzed by Mn complexes: From the catalytic mechanism to the catalyst design. Phys. Chem. Chem. Phys. 2022, 24, 13365–13375. [Google Scholar] [CrossRef] [PubMed]
- Gaussian, version 09, revision D.01; Gaussian Inc.: Pittsburgh, PA, USA, 2010.
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent molecular orbital methods. XII. Further extensions of gaussian—Type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Neese, F. Software update: The orca program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The orca quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- Mardirossian, N.; Head-Gordon, M. ωB97m-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2016, 144, 214110. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Hratchian, H.P.; Schlegel, H.B. Accurate reaction paths using a Hessian based predictor-corrector integrator. J. Chem. Phys. 2004, 120, 9918–9924. [Google Scholar] [CrossRef]
- Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Shermo: A general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. 2021, 1200, 113249. [Google Scholar] [CrossRef]
- Bryantsev, V.S.; Diallo, M.S.; Goddard, W.A. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J. Phys. Chem. B 2008, 112, 9709–9719. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 2022, 43, 539–555. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, Q.; Chen, Y.; Zhang, R.; Li, Z.; Tang, Y.; Pu, M.; Lei, M. The Origin of Stereoselectivity in the Hydrogenation of Oximes Catalyzed by Iridium Complexes: A DFT Mechanistic Study. Molecules 2022, 27, 8349. https://doi.org/10.3390/molecules27238349
Ali Q, Chen Y, Zhang R, Li Z, Tang Y, Pu M, Lei M. The Origin of Stereoselectivity in the Hydrogenation of Oximes Catalyzed by Iridium Complexes: A DFT Mechanistic Study. Molecules. 2022; 27(23):8349. https://doi.org/10.3390/molecules27238349
Chicago/Turabian StyleAli, Qaim, Yongyong Chen, Ruixue Zhang, Zhewei Li, Yanhui Tang, Min Pu, and Ming Lei. 2022. "The Origin of Stereoselectivity in the Hydrogenation of Oximes Catalyzed by Iridium Complexes: A DFT Mechanistic Study" Molecules 27, no. 23: 8349. https://doi.org/10.3390/molecules27238349
APA StyleAli, Q., Chen, Y., Zhang, R., Li, Z., Tang, Y., Pu, M., & Lei, M. (2022). The Origin of Stereoselectivity in the Hydrogenation of Oximes Catalyzed by Iridium Complexes: A DFT Mechanistic Study. Molecules, 27(23), 8349. https://doi.org/10.3390/molecules27238349