Hydrophilic Silica Nanoparticles in O/W Emulsion: Insights from Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Simulation Details
2.1. Simulation and Force Field
2.2. Simulation Systems
2.2.1. Emulsified Oil Droplet Model
2.2.2. Model of Emulsified Oil Droplet Containing SNPs
3. Results and Discussion
3.1. Adsorption Configuration of SNPs and Oil Droplet
3.2. Effects of SNPs on the Coalescence Behavior of Oil Droplets
3.2.1. Oil Droplet Coalescence Process
3.2.2. Steered Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chevalier, Y.; Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI.—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef] [Green Version]
- Binks, B.P.; Rodrigues, J.A. Enhanced Stabilization of Emulsions Due to Surfactant-Induced Nanoparticle Flocculation. Langmuir 2007, 23, 7436–7439. [Google Scholar] [CrossRef] [PubMed]
- Hannisdal, A.; Ese, M.-H.; Hemmingsen, P.V.; Sjöblom, J. Particle-stabilized emulsions: Effect of heavy crude oil components pre-adsorbed onto stabilizing solids. Colloids Surf. A Physicochem. Eng. Asp. 2006, 276, 45–58. [Google Scholar] [CrossRef]
- Sullivan, A.P.; Kilpatrick, P.K. The Effects of Inorganic Solid Particles on Water and Crude Oil Emulsion Stability. Ind. Eng. Chem. Res. 2002, 41, 3389–3404. [Google Scholar] [CrossRef]
- Levine, S.; Sanford, E. Stabilisation of emulsion droplets by fine powders. Can. J. Chem. Eng. 1985, 63, 258–268. [Google Scholar] [CrossRef]
- Kupai, M.M.; Yang, F.; Harbottle, D.; Moran, K.; Masliyah, J.; Xu, Z. Characterising rag-forming solids. Can. J. Chem. Eng. 2013, 91, 1395–1401. [Google Scholar] [CrossRef]
- Menon, V.B.; Wasan, D.T. A Review of the Factors Affecting the Stability of Solids-Stabilized Emulsions. Sep. Sci. Technol. 1988, 23, 2131–2142. [Google Scholar] [CrossRef]
- Dudášová, D.; Simon, S.; Hemmingsen, P.V.; Sjöblom, J. Study of asphaltenes adsorption onto different minerals and clays: Part 1. Experimental adsorption with UV depletion detection. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 1–9. [Google Scholar] [CrossRef]
- Kotlyar, L.S.; Sparks, A.B.D.; Woods, J.R.; Chung, K.H. Solids Associated with the Asphaltene Fraction of Oil Sands Bitumen. Energy Fuels 1999, 13, 346–350. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J.; Øye, G.; Simon, S.; Grimes, B.A.; Paso, K. Heavy Crude Oils/Particle Stabilized Emulsions. Adv. Colloid Interface Sci. 2011, 169, 106–127. [Google Scholar] [CrossRef] [PubMed]
- Perino, A.; Noïk, C.; Dalmazzone, C. Effect of Fumed Silica Particles on Water-in-Crude Oil Emulsion: Emulsion Stability, Interfacial Properties, and Contribution of Crude Oil Fractions. Energy Fuels 2013, 27, 2399–2412. [Google Scholar] [CrossRef]
- Zhu, Y.; Fu, T.; Liu, K.; Lin, Q.; Pei, X.; Jiang, J.; Cui, Z.; Binks, B.P. Thermoresponsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with Alkyl Polyoxyethylene Ether Nonionic Surfactant. Langmuir 2017, 33, 5724–5733. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Yang, F.; Zhang, S.; Liu, S.; Xu, J.; Sun, D. Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 126–135. [Google Scholar] [CrossRef]
- Worthen, A.J.; Foster, L.M.; Dong, J.; Bollinger, J.A.; Peterman, A.H.; Pastora, L.E.; Bryant, S.L.; Truskett, T.M.; Bielawski, C.W.; Johnston, K.P. Synergistic Formation and Stabilization of Oil-in-Water Emulsions by a Weakly Interacting Mixture of Zwitterionic Surfactant and Silica Nanoparticles. Langmuir 2014, 30, 984–994. [Google Scholar] [CrossRef]
- Binks, B.P.; Rodrigues, J.A.; Frith, W.J. Synergistic Interaction in Emulsions Stabilized by a Mixture of Silica Nanoparticles and Cationic Surfactant. Langmuir 2007, 23, 3626–3636. [Google Scholar] [CrossRef]
- Liu, S.; Cao, X.; Wang, H.; Yuan, S.; Hou, S. Zwitterionic polymers functionalised nanoporous graphene for water desalination: A molecular dynamics study. Mol. Simul. 2018, 44, 349–357. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, S.; Zhang, H. Molecular Dynamics Simulation for the Demulsification of O/W Emulsion under Pulsed Electric Field. Molecules 2022, 27, 2559. [Google Scholar] [CrossRef]
- Fan, H.; Resasco, D.E.; Striolo, A. Amphiphilic Silica Nanoparticles at the Decane−Water Interface: Insights from Atomistic Simulations. Langmuir 2011, 27, 5264–5274. [Google Scholar] [CrossRef]
- De Lara, L.S.; Rigo, V.A.; Miranda, C.R. Functionalized Silica Nanoparticles within Multicomponent Oil/Brine Interfaces: A Study in Molecular Dynamics. J. Phys. Chem. C 2016, 120, 6787–6795. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100–102, 503–546. [Google Scholar] [CrossRef]
- Cui, Z.-G.; Yang, L.-L.; Cui, Y.-Z.; Binks, B.P. Effects of Surfactant Structure on the Phase Inversion of Emulsions Stabilized by Mixtures of Silica Nanoparticles and Cationic Surfactant. Langmuir 2010, 26, 4717–4724. [Google Scholar] [CrossRef] [PubMed]
- Frelichowska, J.; Bolzinger, M.-A.; Chevalier, Y. Pickering emulsions with bare silica. Colloids Surf. A Physicochem. Eng. Asp. 2009, 343, 70–74. [Google Scholar] [CrossRef]
- Binks, B.P.; Lumsdon, S.O. Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions. Langmuir 2000, 16, 8622–8631. [Google Scholar] [CrossRef]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef]
- Song, S.; Zhang, H.; Sun, L.; Shi, J.; Cao, X.; Yuan, S. Molecular Dynamics Study on Aggregating Behavior of Asphaltene and Resin in Emulsified Heavy Oil Droplets with Sodium Dodecyl Sulfate. Energy Fuels 2018, 32, 12383–12393. [Google Scholar] [CrossRef]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Koziara, K.B.; Stroet, M.; Malde, A.K.; Mark, A.E. Testing and validation of the Automated Topology Builder (ATB) version 2.0: Prediction of hydration free enthalpies. J. Comput. Mol. Des. 2014, 28, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Wander, M.C.F.; Shuford, K.L. Molecular Dynamics Study of Interfacial Confinement Effects of Aqueous NaCl Brines in Nanoporous Carbon. J. Phys. Chem. C 2010, 114, 20539–20546. [Google Scholar] [CrossRef]
- De Lara, L.S.; Michelon, M.F.; Miranda, C.R. Molecular Dynamics Studies of Fluid/Oil Interfaces for Improved Oil Recovery Processes. J. Phys. Chem. B 2012, 116, 14667–14676. [Google Scholar] [CrossRef]
- Kunieda, M.; Nakaoka, K.; Liang, Y.; Miranda, C.R.; Ueda, A.; Takahashi, S.; Okabe, H.; Matsuoka, T. Self-accumulation of aromatics at the oil-water interface through weak hydrogen bonding. J. Am. Chem. Soc. 2010, 132, 18281. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Asgar, H.; Kuzmenko, I.; Gadikota, G. Self-Assembly of Silica Nanoparticles at Water–Hydrocarbon Interfaces: Insights from In Operando Small-Angle X-ray Scattering Measurements and Molecular Dynamics Simulations. Energy Fuels 2020, 34, 12545–12555. [Google Scholar] [CrossRef]
System | Number of Molecules | |||
---|---|---|---|---|
Crude Oil Droplet | SNPs | Na+ | Water | |
E-I | 1 | 0 | 8 | 30,806 |
E-II | 1 | 5 | 8 | 29,985 |
E-III | 1 | 10 | 8 | 29,260 |
E-IV | 1 | 20 | 8 | 28,310 |
System | Oil Droplet Type | Number of Molecules | |
---|---|---|---|
Oil Droplet | Water | ||
C-I | with zero SNPs | 2 | 61,608 |
C-II | with five SNPs | 2 | 60,829 |
C-III | with ten SNPs | 2 | 58,868 |
C-IV | with twenty SNPs | 2 | 28,310 |
58,095 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhang, H.; Yuan, S. Hydrophilic Silica Nanoparticles in O/W Emulsion: Insights from Molecular Dynamics Simulation. Molecules 2022, 27, 8407. https://doi.org/10.3390/molecules27238407
Liu S, Zhang H, Yuan S. Hydrophilic Silica Nanoparticles in O/W Emulsion: Insights from Molecular Dynamics Simulation. Molecules. 2022; 27(23):8407. https://doi.org/10.3390/molecules27238407
Chicago/Turabian StyleLiu, Shasha, Hengming Zhang, and Shiling Yuan. 2022. "Hydrophilic Silica Nanoparticles in O/W Emulsion: Insights from Molecular Dynamics Simulation" Molecules 27, no. 23: 8407. https://doi.org/10.3390/molecules27238407
APA StyleLiu, S., Zhang, H., & Yuan, S. (2022). Hydrophilic Silica Nanoparticles in O/W Emulsion: Insights from Molecular Dynamics Simulation. Molecules, 27(23), 8407. https://doi.org/10.3390/molecules27238407