Larvicidal Effect of Hyptis suaveolens (L.) Poit. Essential Oil Nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae)
Abstract
:1. Introduction
2. Results
2.1. Hyptis Suaveolens Essential Oil
2.2. Hyptis Suaveolens Nanoemulsion
Characterization of the Nanoemulsions
2.3. Larvicidal Activity of the Nanoemulsion
2.4. Morphological Study of Culex Quinquefasciatus Larvae
3. Discussion
3.1. Hyptis Suaveolens Essential Oil
3.2. Hyptis Suaveolens Nanoemulsion
4. Materials and Methods
4.1. Chemicals
4.2. Plant material
4.3. Extraction of the Essential Oil
4.4. Analysis of Gas-Chromatography
4.5. Nano-Emulsions
4.5.1. Assessment of the Required Hydrophile–Lipophilic Balance (rHLB) of Hyptis suavelens Oil
4.5.2. Nano-Emulsion Method
4.5.3. Characterization of Hyptis Suaveolens Nano-Emulsion
4.6. Larvicidal Bioassay
4.7. Morphological Study of Culex Quinquefasciatus Larvae
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Amorim, L.B.; Helvecio, E.; de Oliveira, C.M.F.; Ayres, C.F.J. Susceptibility status of Culex quinquefasciatus (Diptera: Culicidae) populations to the chemical insecticide temephos in Pernambuco, Brazil. Pest Manag. Sci. 2013, 69, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Harbach, R.E. Classification within the cosmopolitan genus Culex (Diptera: Culicidae): The foundation for molecular systematics and phylogenetic research. Acta Trop. 2011, 120, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde. Boletim Epidemiológico—Situação Epidemiológica da Filariose Linfática no Brasil; Secretaria de Vigilância em Saúde—Ministério da Saúde: Brasília, Brazil, 2016; Volume 47, p. 5.
- Cromwell, E.A.; Schmidt, C.A.; Kwong, K.T.; Pigott, D.M.; Mupfasoni, D.; Biswas, G.; Shirude, S.; Hill, E.; Donkers, K.M.; Abdoli, A.; et al. The global distribution of lymphatic filariasis, 2000–18: A geospatial analysis. Lancet Glob. Health 2020, 8, e1186–e1194. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Programme to Eliminate Lymphatic Filariasis: Progress Report, 2020; World Health Organization: Geneva, Switzerland, 2021; Volume 41, pp. 497–508. [Google Scholar]
- WHO. Lymphatic Filariasis; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Brandao, E.; Bonfim, C.; Alves, A.; Oliveira, C.; Montenegro, C.E.; Costa, T.; Maciel, A.; Medeiros, Z. Lymphatic filariasis among children and adolescents: Spatial identification via socio-environmental indicators to define priority areas for elimination. Int. Health 2015, 7, 324–331. [Google Scholar] [CrossRef]
- Korte, R.L.; Fontes, G.; Camargo, J.d.S.A.A.; da Rocha, E.M.M.; de Araujo, E.A.C.; de Oliveira, M.Z.; dos Santos, R.V.; Aranha Camargo, L.M. Survey of Bancroftian filariasis infection in humans and Culex mosquitoes in the western Brazilian Amazon region: Implications for transmission and control. Rev. Soc. Bras. Med. Trop. 2013, 46, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Fontes, G.; Leite, A.B.; de Lima, A.R.V.; Freitas, H.; Ehrenberg, J.P.; da Rocha, E.M.M. Lymphatic filariasis in Brazil: Epidemiological situation and outlook for elimination. Parasites Vectors 2012, 5, 272. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, L.T.M. Emergent arboviruses in Brazil. Rev. Soc. Bras. Med. Trop. 2007, 40, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, B.F.; Serra, O.P.; da Silva Heinen, L.B.; Zuchi, N.; de Souza, V.C.; Naveca, F.G.; dos Santos, M.A.M.; Slhessarenko, R.D. Detection of Oropouche virus segment S in patients and in Culex quinquefasciatus in the state of Mato Grosso, Brazil. Mem. Do Inst. Oswaldo Cruz 2015, 110, 745–754. [Google Scholar] [CrossRef]
- Rocha, E.M.M.; Fontes, G. Bancroftian filariasis in Brazil. Rev. Saude Publica 1998, 32, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, P.E.; Mwakitalu, M.E. Urban lymphatic filariasis. Parasitol. Res. 2013, 112, 35–44. [Google Scholar] [CrossRef]
- OPAS/OMS. O Brasil Avança Para a Eliminação da Transmissão da Filariose Linfática. Available online: http://www.paho.org/bra/index.php?option=com_content&view=article&id=4608%3Ao-brasil-avanca-eliminacao-transmissao-filariose-linfatica&Itemid=816 (accessed on 22 January 2022).
- Wilke, A.B.B.; Vidal, P.O.; Suesdek, L.; Marrelli, M.T. Population genetics of neotropical Culex quinquefasciatus (Diptera: Culicidae). Parasites Vectors 2014, 7, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministério da Saúde. Guia de Vigilância do Culex quinquefasciatus; Secretaria de Vigilância em Saúde—Ministério da Saúde: Brasília, Brazil, 2011; Volume 3, p. 76.
- Van den Berg, H.; Zaim, M.; Yadav, R.S.; Soares, A.; Ameneshewa, B.; Mnzava, A.; Hii, J.; Dash, A.P.; Ejov, M. Global Trends in the Use of Insecticides to Control Vector-Borne Diseases. Environ. Health Perspect. 2012, 120, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selmi, S.; El-Fazaa, S.; Gharbi, N. Oxidative stress and alteration of biochemical markers in liver and kidney by malathion in rat pups. Toxicol. Ind. Health 2015, 31, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Simões, C.O.; Spitzer, V. Óleos Voláteis. In Farmacognosia: Da Planta ao Medicamento; Simões, C.O., Schenkel, E.P., Gosmann, G., Mello, J.P., Mentz, L.A., Petrovick, P.R., Eds.; UFSC: Florianópolis, Brazil, 2010. [Google Scholar]
- Amer, A.; Mehlhorn, H. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol. Res. 2006, 99, 466–472. [Google Scholar] [CrossRef]
- Rehman, J.U.; Ali, A.; Khan, I.A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoterapia 2014, 95, 65–74. [Google Scholar] [CrossRef]
- Bacci, L.; Lima, J.K.A.; Araujo, A.P.A.; Blank, A.F.; Silva, I.M.A.; Santos, A.A.; Santos, A.C.C.; Alves, P.B.; Picanco, M.C. Toxicity, behavior impairment, and repellence of essential oils from pepper-rosmarin and patchouli to termites. Entomol. Exp. Appl. 2015, 156, 66–76. [Google Scholar] [CrossRef]
- Sukumar, K.; Perich, M.J.; Boobar, L.R. Botanical derivatives in mosquito control–A review. J. Am. Mosq. Control Assoc. 1991, 7, 210–237. [Google Scholar]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop. Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Dias, C.N.; Alves, L.P.L.; da Franca Rodrigues, K.A.; Aranha, B.M.C.; Rosa, C.S.; do Amaral, F.M.M.; Monteiro, O.S.; de Aguiar Andrade, E.H.; Soares Maia, J.G.; Coutinho Moraes, D.F. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae). Evid.-Based Complement. Altern. Med. 2015, 2015, 490765. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Flamini, G.; Canale, A.; Cioni, P.L.; Conti, B. Toxicity of some essential oil formulations against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera Tephritidae). Crop. Prot. 2012, 42, 223–229. [Google Scholar] [CrossRef]
- Canale, A.; Benelli, G.; Conti, B.; Lenzi, G.; Flamini, G.; Francini, A.; Cioni, P.L. Ingestion toxicity of three Lamiaceae essential oils incorporated in protein baits against the olive fruit fly, Bactrocera oleae (Rossi) (Diptera Tephritidae). Nat. Prod. Res. 2013, 27, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, N.R.; Campos, I.F.P.; Ferreira, H.D.; Portes, T.A.; Seraphin, J.C.; de Paula, J.R.; Santos, S.C.; Ferri, P.H. Essential oil chemotypes in Hyptis suaveolens from Brazilian Cerrado. Biochem. Syst. Ecol. 2002, 30, 205–216. [Google Scholar] [CrossRef]
- Azevedo, N.R.; Campos, I.F.P.; Ferreira, H.D.; Portes, T.A.; Santos, S.C.; Seraphin, J.C.; Paula, J.R.; Ferri, P.H. Chemical variability in the essential oil of Hyptis suaveolens. Phytochemistry 2001, 57, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Conti, B.; Benelli, G.; Flamini, G.; Cioni, P.L.; Profeti, R.; Ceccarini, L.; Macchia, M.; Canale, A. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol. Res. 2012, 110, 2013–2021. [Google Scholar] [CrossRef]
- Abagli, A.Z.; Alavo, T.B.C.; Avlessi, F.; Moudachirou, M. Potential of the Bush Mint, Hyptis suaveolens Essential Oil for Personal Protection Against Mosquito Biting. J. Am. Mosq. Control Assoc. 2012, 28, 15–19. [Google Scholar] [CrossRef]
- Satalkar, P.; Elger, B.S.; Shaw, D.M. Defining Nano, Nanotechnology and Nanomedicine: Why Should It Matter? Sci. Eng. Ethics 2016, 22, 1255–1276. [Google Scholar] [CrossRef]
- Ostertag, F.; Weiss, J.; McClements, D.J. Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. J. Colloid Interface Sci. 2012, 388, 95–102. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Nenaah, G.E.; Ibrahim, S.I.A.; Al-Assiuty, B.A. Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J. Stored Prod. Res. 2015, 61, 9–16. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Kandpal, V.; Joshi, P.K.; Joshi, N. Chemical composition of leaf essential oil of Hyptis suaveolens (L.) Poit. J. Indian Chem. Soc. 2017, 94, 201–203. [Google Scholar]
- Peerzada, N. Chemical Composition of the Essential Oil of Hyptis suaveolens. Molecules 1997, 2, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Peniche, T.; Duarte, J.L.; Amaral, F.A.S.; Sarquis, I.R.; Sarquis, R.; Cruz, R.A.S.; Oliveira, A.; Ferreira, R.M.A.; Rocha, L.; Tietbohl, L.A.C.; et al. Hyptis suaveolens (L.) Poit. Essential Oil: A Raw Material for a Larvicidal Nano-emulsion. Lat. Am. J. Pharm. 2019, 38, 938–944. [Google Scholar]
- Ashitani, T.; Garboui, S.S.; Schubert, F.; Vongsombath, C.; Liblikas, I.; Palsson, K.; Borg-Karlson, A.K. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2015, 67, 595–606. [Google Scholar] [CrossRef]
- Zorzi, G.K.; Carvalho, E.L.S.; von Poser, G.L.; Teixeira, H.F. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev. Braz. Farmacogn. 2015, 25, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; McClements, D.J. Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chem. 2012, 134, 749–757. [Google Scholar] [CrossRef]
- Oliveira, A.E.M.F.M.; Bezerra, D.C.; Duarte, J.L.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Nogueira, J.; da Conceição, E.C.; Leitão, S.; Bizzo, H.R.; et al. Essential oil from Pterodon emarginatus as a promising natural raw material for larvicidal nanoemulsions against a tropical disease vector. Sustain. Chem. Pharm. 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Ortiz-Zamora, L.; Bezerra, D.C.; de Oliveira, H.N.S.; Duarte, J.L.; Guisado-Bourzac, F.; Chil-Núñez, I.; da Conceição, E.C.; Barroso, A.; Mourão, R.H.V.; de Faria Mota Oliveira, A.E.M.; et al. Preparation of non-toxic nano-emulsions based on a classical and promising Brazilian plant species through a low-energy concept. Ind. Crops Prod. 2020, 158, 112989. [Google Scholar] [CrossRef]
- Tennyson, S.; Ravindran, K.J.; Arivoli, S. Bioefficacy of botanical insecticides against the dengue and chikungunya vector Aedes aegypti (L.) (Diptera: Culicidae). Asian Pac. J. Trop. Biomed. 2012, 2, S1842–S1844. [Google Scholar] [CrossRef]
- Kovendan, K.; Murugan, K.; Panneerselvam, C.; Kumar, P.M.; Amerasan, D.; Subramaniam, J.; Vincent, S.; Barnard, D.R. Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 2012, 110, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.J.; Dória, G.A.A.; Maia, R.T.; Nunes, R.S.; Carvalho, G.A.; Blank, A.F.; Alves, P.B.; Marçal, R.M.; Cavalcanti, S.C.H. Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresour. Technol. 2008, 99, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef] [PubMed]
- Faustino, C.G.; de Medeiros, F.A.; Galardo, A.K.R.; Rodrigues, A.B.L.; Martins, R.L.; de Medeiros Souza Lima, Y.; Fechine Tavares, J.; de Medeiros, M.A.A.; Dos Santos Cruz, J.; Almeida, S. Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin. Molecules 2020, 25, 5333. [Google Scholar] [CrossRef] [PubMed]
- Faustino, C.G.; de Medeiros, F.A.; Galardo, A.K.R.; Rodrigues, A.B.L.; da Costa, A.L.P.; Martins, R.L.; Brandão, L.B.; Santos, L.L.; de Medeiros, M.A.A.; de Castro Cantuária, P.; et al. Biocidal Activity of a Nanoemulsion Containing Essential Oil from Protium heptaphyllum Resin against Aedes aegypti (Diptera: Culicidae). Molecules 2021, 26, 6439. [Google Scholar] [CrossRef] [PubMed]
- Islan, G.A.; Durán, M.; Cacicedo, M.L.; Nakazato, G.; Kobayashi, R.K.T.; Martinez, D.S.T.; Castro, G.R.; Durán, N. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop. 2017, 170, 16–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, J.L.; Amado, J.R.R.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Ferreira, A.M.; Souto, R.N.P.; Falcão, D.Q.; Carvalho, J.C.T.; Fernandes, C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Braz. J. Pharmacogn. 2015, 25, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.E.M.F.M.; Duarte, J.L.; Amado, J.R.R.; Cruz, R.A.S.; Rocha, C.F.; Souto, R.N.P.; Ferreira, R.M.A.; Santos, K.; da Conceição, E.C.; de Oliveira, L.A.R.; et al. Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil. PLoS ONE 2016, 11, e0145835. [Google Scholar] [CrossRef]
- Oliveira, A.E.M.F.M.; Duarte, J.L.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Peniche, T.; da Conceição, E.C.; de Oliveira, L.A.R.; Faustino, S.M.M.; Florentino, A.C.; et al. Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. J. Nanobiotechnol. 2017, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Shamseldean, M.S.M.; Attia, M.M.; Korany, R.M.S.; Othamn, N.A.; Allam, S.F.M. Insecticidal efficacy of nanomaterials used to control mosquito, Culex quinquefasciatus Say, 1823 with special reference to their hepatotoxicity in rats. Biosci. Rep. 2022, 42, 19. [Google Scholar] [CrossRef]
- Anjali, C.H.; Sharma, Y.; Mukherjee, A.; Chandrasekaran, N. Neem oil (Azadirachta indica) nanoemulsion—A potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci. 2012, 68, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Sugumar, S.; Clarke, S.K.; Nirmala, M.J.; Tyagi, B.K.; Mukherjee, A.; Chandrasekaran, N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull. Entomol. Res. 2014, 104, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, S.N.; Serrão, J.E.; Melo, A.L. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 2010, 41, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Chaithong, U.; Choochote, W.; Kamsuk, K.; Jitpakdi, A.; Tippawangkosol, P.; Chaiyasit, D.; Champakaew, D.; Tuetun, B.; Pitasawat, B. Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J. Vector Ecol. 2006, 31, 138–144. [Google Scholar] [CrossRef]
- Arruda, W.; Oliveira, G.M.C.; Silva, I.G.d. Toxicidade do extrato etanólico de Magonia pubescens sobre larvas de Aedes aegypti. Rev. Soc. Braz. Med. Trop. 2003, 36, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Preet, S.; Ananya; Singh, N. Preparation of Thymus vulgaris (L.) essential oil nanoemulsion and its chitosan encapsulation for controlling mosquito vectors. Sci. Rep. 2022, 12, 14. [Google Scholar] [CrossRef]
- Botas, G.D.S.; Cruz, R.A.S.; De Almeida, F.B.; Duarte, J.L.; Araújo, R.S.; Souto, R.N.P.; Ferreira, R.; Carvalho, J.C.T.; Santos, M.G.; Rocha, L.; et al. Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules 2017, 22, 1990. [Google Scholar] [CrossRef] [Green Version]
- Kasai, S.; Komagata, O.; Itokawa, K.; Shono, T.; Ng, L.C.; Kobayashi, M.; Tomita, T. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism. PLoS Negl. Trop. Dis. 2014, 8, e2948. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.S.; Morais, S.M.; Magalhaes, D.V.; Batista, W.P.; Vieira, I.G.; Craveiro, A.A.; Manezes, J.E.; Carvalho, A.F.; Lima, G.P. Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop. 2011, 117, 165–170. [Google Scholar] [CrossRef]
- Yadav, R.; Tyagi, V.; Tikar, S.N.; Sharma, A.K.; Mendki, M.J.; Jain, A.K.; Devanathan, S. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus. J. Arthropod-Borne Dis. 2014, 8, 174–185. [Google Scholar]
- Veerakumar, K.; Govindarajan, M. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol. Res. 2014, 113, 4085–4096. [Google Scholar] [CrossRef] [PubMed]
- Tietbohl, L.A.C.; Barbosa, T.; Fernandes, C.P.; Santos, M.G.; Machado, F.P.; Santos, K.T.; Mello, C.B.; Araújo, H.P.; Gonzalez, M.S.; Feder, D.; et al. Laboratory evaluation of the effects of essential oil of Myrciaria floribunda leaves on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Rev. Braz. Farmacogn. 2014, 24, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Oliveira, A.E.M.F.M.; Duarte, J.L.; Cruz, R.A.S.; de Conceição, E.C.; Carvalho, J.C.T.; Fernandes, C.P. Utilization of dynamic light scattering to evaluate Pterodon emarginatus oleoresin-based nanoemulsion formation by non-heating and solvent-free method. Rev. Braz. Farmacogn. 2017, 27, 401–406. [Google Scholar] [CrossRef]
- Fernandes, C.P.; Mascarenhas, M.P.; Zibetti, F.M.; Lima, B.G.; Oliveira, R.P.R.F.; Rocha, L.; Falcão, D.Q. HLB value, an important parameter for the development of essential oil phytopharmaceuticals. Rev. Braz. Farmacogn. 2013, 23, 108–114. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
Peak | RT (min) | Compounds | (%) GC-MS | RI Exp. * | RI Lit. ** |
---|---|---|---|---|---|
1 | 3.459 | (Z)-3-hexen-1-ol | 0.22 | 846 | 857 |
2 | 5.031 | δ-Pinene | 2.26 | 930 | 939 |
3 | 5.402 | Camphene | 0.18 | 949 | 953 |
4 | 6.026 | Sabinene | 6.51 | 974 | 976 |
5 | 6.131 | β-Pinene | 4.96 | 979 | 980 |
6 | 6.463 | β-Myrcene | 0.87 | 992 | 990 |
7 | 6.577 | Octan-3-ol | 0.82 | 997 | 993 |
8 | 7.260 | α-Terpinene | 0.55 | 1018 | 1018 |
9 | 7.515 | o-Cymene | 0.48 | 1025 | 1022 |
10 | 7.664 | Limonene | 5.43 | 1030 | 1029 |
11 | 7.780 | 1,8-cineole | 35.31 | 1033 | 1033 |
12 | 8.649 | γ-Terpinene | 1.15 | 1059 | 1062 |
13 | 9.728 | Fenchone | 9.60 | 1091 | 1086 |
14 | 10.658 | Fenchol | 3.17 | 1118 | 1117 |
15 | 11.867 | Camphor | 0.59 | 1146 | 1143 |
16 | 12.733 | Borneol | 0.72 | 1168 | 1165 |
17 | 13.179 | 4-Terpineol | 2.01 | 1179 | 1177 |
18 | 13.730 | α-Terpineol | 1.22 | 1193 | 1134 |
19 | 21.794 | Endo-Bourbonanol | 1.47 | 1386 | 1515 |
20 | 22.105 | β-Elemene | 0.68 | 1393 | 1339 |
21 | 23.220 | Caryophyllene | 5.11 | 1421 | 1466 |
22 | 25.706 | Germagrene | 3.05 | 1483 | 1503 |
23 | 26.359 | γ-Elemene | 7.21 | 1499 | 1433 |
24 | 29.494 | Spathulenol | 3.72 | 1582 | 1578 |
25 | 29.693 | Caryophyllene oxide | 2.10 | 1586 | 1583 |
26 | 31.780 | Elemol | 0.60 | 1641 | 1549 |
TOTAL | 99.9% |
DAY 0 | DAY 1 | DAY 2 | DAY 7 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Size (nm) | PDI | Zeta Potential (mV) | Size (nm) | PDI | Zeta Potential (mV) | Size (nm) | PDI | Zeta Potential (mV) | Size (nm) | PDI | Zeta Potential (mV) | |
HLB 10 | 793.0 ± 536.9 | 0.961 ± 0.068 | −37.6 ± 0.814 | - | - | - | - | - | - | - | - | - |
HLB 11 | 664.5 ± 122.2 | 0.866 ± 0.167 | −33.9 ± 0.306 | - | - | - | - | - | - | - | - | - |
HLB 12 | 263.9 ± 15.36 | 0.638 ± 0.070 | −31.0 ± 1.01 | - | - | - | - | - | - | - | - | - |
HLB 13 | 255.1 ± 33.26 | 0.472 ± 0.052 | −32.7 ± 0.458 | - | - | - | - | - | - | - | - | - |
HLB 14 | 144.0 ± 1.358 | 0.258 ± 0.003 | −32.2 ± 0.252 | 143.0 ± 0.5859 | 0.251 ± 0.002 | −28.9 ± 1.31 | 140.5 ± 0.2517 | 0.249 ± 0.017 | −30.7 ± 0.404 | 142.9 ± 1.967 | 0.256 ± 0.010 | −36.2 ± 0.04899 |
HLB 15 | 114.2 ± 1.069 | 0.222 ± 0.008 | −23.8 ± 0.757 | 114.0 ± 1.206 | 0.221 ± 0.010 | −19.5 ± 0.346 | 115.7 ± 0.05774 | 0.212 ± 0.008 | −25.9 ± 1.10 | 112.2 ± 0.1528 | 0.220 ± 0.007 | −27.8 ± 0.889 |
HLB 16.7 | 146.3 ± 0.6506 | 0.144 ± 0.012 | −23.9 ± 1.95 | 160.8 ± 1.229 | 0.161 ± 0.013 | −21.2 ± 1.81 | 169.3 ± 0.8660 | 0.164 ± 0.006 | −21.5 ± 0.436 | 146.7 ± 0.05774 | 0.149 ± 0.007 | −21.8 ± 0.850 |
DAY 0 | DAY 1 | DAY 2 | DAY 7 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Size (nm) | PDI | Zeta Potential (mV) | Size (nm) | PDI | Zeta Potential (mV) | Size (nm) | PDI | Zeta Potential (mV) | Size (nm) | PDI | Zeta Potential (mV) | |
HLB 10 | 184.7 ± 8.697 | 0.402 ± 0.005 | −50.5 ± 1.08 | 185.6 ± 4.046 | 0.441 ± 0.043 | −50.5 ± 0.656 | 198.7 ± 6.200 | 0.433 ± 0.074 | −47.5 ± 1.36 | 171.3 ± 4.932 | 0.442 ± 0.021 | −43.3 ± 0.624 |
HLB 11 | 75.97 ± 0.2203 | 0.130 ± 0.005 | −37.3 ± 2.91 | 76.30 ± 0.5577 | 0.142 ± 0.011 | −48.1 ± 3.50 | 76.59 ± 0.4508 | 0.145 ± 0.015 | −45.8 ± 2.44 | 77.43 ± 0.09539 | 0.144 ± 0.011 | −41.0 ± 2.41 |
HLB 12 | 77.70 ± 0.2570 | 0.194 ± 0.013 | −34.8 ± 1.46 | 78.04 ± 0.6915 | 0.198 ± 0.002 | −43.6 ± 4.16 | 79.14 ± 0.7842 | 0.207 ± 0.011 | −40.7 ± 1.55 | 78.26 ± 0.2750 | 0.188 ± 0.003 | −45.4 ± 0.985 |
HLB 13 | 81.95 ± 0.2793 | 0.166 ± 0.009 | −19.4 ± 0.764 | 82.73 ± 0.2581 | 0.169 ± 0.007 | −23.8 ± 1.42 | 81.78 ± 0.5977 | 0.175 ± 0.004 | −26.5 ± 0.702 | 83.02 ± 0.8981 | 0.172 ± 0.005 | −29.9 ± 1.36 |
HLB 14 | 78.14 ± 0.2346 | 0.244 ± 0.006 | −25.0 ± 1.06 | 76.87 ± 0.4140 | 0.232 ± 0.006 | −30.1 ± 3.38 | 76.29 ± 0.1970 | 0.230 ± 0.005 | −29.2 ± 4.08 | 74.96 ± 0.3057 | 0.236 ± 0.008 | −34.4 ± 3.52 |
HLB 15 | 69.47 ± 0.6717 | 0.179 ± 0.009 | −19.4 ± 1.14 | 70.42 ± 0.2055 | 0.173 ± 0.004 | −22.7 ± 3.78 | 69.31 ± 0.1212 | 0.177 ± 0.009 | −25.6 ± 3.77 | 67.79 ± 1.040 | 0.206 ± 0.017 | −28.4 ± 1.06 |
HLB 16.7 | 134.4 ± 1.300 | 0.163 ± 0.017 | −25.2 ± 1.23 | 173.4 ± 1.436 | 0.191 ± 0.015 | −28.7 ± 1.27 | 173.5 ± 1.234 | 0.175 ± 0.019 | −23.7 ± 0.153 | 162.6 ± 0.8505 | 0.182 ± 0.013 | −24.4 ± 0.306 |
Exposure Time (h) | Control (Distilled Water) | CONCENTRATIONS | ||||
---|---|---|---|---|---|---|
15.625 ppm | 31.25 ppm | 62.5 ppm | 125 ppm | 250 ppm | ||
24 | 0 a | 2 ± 0.45 a | 6 ± 0.55 b | 32 ± 0.84 c | 62 ± 0.84 d | 100 ± 0 e |
48 | 2 ± 0.45 a | 12 ± 0.45 b | 20 ± 0.71 b | 62 ± 0.84 c | 78 ± 0.84 cd | 100 ± 0 de |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peniche, T.; Duarte, J.L.; Ferreira, R.M.A.; Sidônio, I.A.P.; Sarquis, R.S.F.R.; Sarquis, Í.R.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Ferreira, I.M.; Florentino, A.C.; et al. Larvicidal Effect of Hyptis suaveolens (L.) Poit. Essential Oil Nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae). Molecules 2022, 27, 8433. https://doi.org/10.3390/molecules27238433
Peniche T, Duarte JL, Ferreira RMA, Sidônio IAP, Sarquis RSFR, Sarquis ÍR, Oliveira AEMFM, Cruz RAS, Ferreira IM, Florentino AC, et al. Larvicidal Effect of Hyptis suaveolens (L.) Poit. Essential Oil Nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae). Molecules. 2022; 27(23):8433. https://doi.org/10.3390/molecules27238433
Chicago/Turabian StylePeniche, Taires, Jonatas L. Duarte, Ricardo M. A. Ferreira, Igor A. P. Sidônio, Rosângela S. F. R. Sarquis, Ícaro R. Sarquis, Anna E. M. F. M. Oliveira, Rodrigo A. S. Cruz, Irlon M. Ferreira, Alexandro C. Florentino, and et al. 2022. "Larvicidal Effect of Hyptis suaveolens (L.) Poit. Essential Oil Nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae)" Molecules 27, no. 23: 8433. https://doi.org/10.3390/molecules27238433
APA StylePeniche, T., Duarte, J. L., Ferreira, R. M. A., Sidônio, I. A. P., Sarquis, R. S. F. R., Sarquis, Í. R., Oliveira, A. E. M. F. M., Cruz, R. A. S., Ferreira, I. M., Florentino, A. C., Carvalho, J. C. T., Souto, R. N. P., & Fernandes, C. P. (2022). Larvicidal Effect of Hyptis suaveolens (L.) Poit. Essential Oil Nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae). Molecules, 27(23), 8433. https://doi.org/10.3390/molecules27238433