Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Photophysical Properties
2.3. Electrochemical Properties
2.4. Theoretical Calculation
2.5. Cation-Binding Properties
2.6. Water Sample Analysis
3. Materials and Methods
3.1. Instruments
3.2. Synthesis
3.3. Cation-Binding Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Saleem, M.; Lee, K.H. Optical sensor: A promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv. 2015, 5, 72150. [Google Scholar] [CrossRef]
- Álvarez, M.S.; Gutiérrez, E.; Rodríguez, A.; Sanromán, M.Á.; Deive, F.J. Environmentally Benign Sequential Extraction of Heavy Metals from Marine Sediments. Ind. Eng. Chem. Res. 2014, 53, 8615–8620. [Google Scholar] [CrossRef]
- Jung, H.S.; Kwon, P.S.; Lee, J.W.; Kim, J.I.; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T.; et al. Coumarin-Derived Cu2+-Selective Fluorescence Sensor: Synthesis, Mechanisms, and Applications in Living Cells. J. Am. Chem. Soc. 2009, 131, 2008–2012. [Google Scholar] [CrossRef]
- Seth, R.; Yang, S.; Cho, S.; Sabean, M.; Roberts, E.A. In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G. Toxicol. Vitr. 2004, 18, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ajayakumar, G.; Sreenath, K.; Gopidas, K.R. Phenothiazine attached [Ru(bpy)3]2+ derivative as highly selective “turn-on” luminescence chemodosimeter for Cu2+. Dyes Pigments 2009, 7, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Queirós, C.; Almodôvar, V.A.; Martins, F.; Leite, A.; Tomé, A.C.; Silva, A.M. Synthesis of Novel Diketopyrrolopyrrole-Rhodamine Conjugates and Their Ability for Sensing Cu2+ and Li+. Molecules 2020, 27, 7219. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Sharma, S.; Pandey, S.S. Synthesis and Characterization of Newly Designed and Highly Solvatochromic Double Squaraine Dye for Sensitive and Selective Recognition towards Cu2+. Molecules 2022, 27, 6578. [Google Scholar] [CrossRef]
- You, Y.; Han, Y.; Lee, Y.M.; Park, S.Y.; Nam, W.; Lippard, S.J. Phosphorescent sensor for robust quantification of copper(II) ion. J. Am. Chem. Soc. 2011, 133, 11488–11491. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, C.; Liu, J.; Zhang, M.; Liu, W.Q.; Li, W.S.; Wu, C.C.; Cheng, G.; Yang, Q.D.; Wei, G.D.; et al. Phosphorescent [3 + 2 + 1] coordinated Ir(III) cyano complexes for achieving efficient phosphors and their application in OLED devices. Chem. Sci. 2021, 12, 10165–10178. [Google Scholar] [CrossRef]
- Tao, P.; Li, W.L.; Zhang, J.; Guo, S.; Zhao, Q.; Wang, H.; Wei, B.; Liu, S.J.; Zhou, X.H.; Yu, Q.; et al. Facile synthesis of highly efficient lepidine-based phosphorescent iridium(III) complexes for yellow and white Organic Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 881–894. [Google Scholar] [CrossRef]
- Yagishita, F.; Nagamori, T.; Shimokawa, S.; Hoshi, K.; Yoshida, Y.; Imada, Y.; Kawamura, Y. Visible-light-induced oxidative coupling reaction of benzylic amines using iridium(III) complex of pincer type imidazo[1,5-a]pyridine ligand. Tetrahedron Lett. 2020, 61, 151782. [Google Scholar] [CrossRef]
- Lai, P.N.; Brysacz, C.H.; Alam, M.K.; Ayoub, N.A.; Gray, T.G.; Bao, J.; Teets, T.S. Highly Efficient Red-Emitting Bis-Cyclometalated Iridium Complexes. J. Am. Chem. Soc. 2018, 140, 10198–10207. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Lu, X.Q.; Zhou, G.J.; Wong, W.Y. Asymmetric tris-heteroleptic cyclometalated phosphorescent iridium(III) complexes: An emerging class of metallophosphors. Acc. Mater. Res. 2022, 3, 830–842. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, Y.; Zhu, H.; Ge, C.; Wang, D. The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C N bond formation. Chin. Chem. Lett. 2020, 31, 701–705. [Google Scholar] [CrossRef]
- Zheng, X.K.; Zhao, F.Q.; Yin, M.N.; Qian, C.; Bi, S.H.; Tao, P.; Miao, Y.Q.; Liu, S.J.; Zhao, Q. New trifluoromethyl modified iridium(III) complex for high-efficiency sky-blue phosphorescent organic light-emitting diode. Tetrahedron Lett. 2021, 75, 153781. [Google Scholar] [CrossRef]
- Tao, P.; Lv, Z.; Zheng, X.K.; Jiang, H.J.; Liu, S.J.; Wang, H.; Wong, W.Y.; Zhao, Q. Isomer engineering of lepidine-based iridophosphors for far-red hypoxia imaging and photodynamic therapy. Inorg. Chem. 2022, 61, 17703–17712. [Google Scholar] [CrossRef]
- Lee, L.C.C.; Lo, K.K.W. Luminescent and photofunctional transition metal complexes: From molecular design to diagnostic and therapeutic applications. J. Am. Chem. Soc. 2022, 144, 14420–14440. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, C.; Pu, S. A cyclometalated iridium(III) complex-based luminescent probe for HCO3− and CO32− detection and its application by test strips. Microchem. J. 2020, 158, 105166. [Google Scholar] [CrossRef]
- Raichure, P.C.; Kachwal, V.; Laskar, I.R. ‘Aggregation-Induced Emission’ Active Mono-Cyclometalated Iridium(III) Complex Mediated Efficient Vapor-Phase Detection of Dichloromethane. Molecules 2021, 27, 202. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, C.; Wang, C.; Zhao, Y.; Song, Q. Novel Long-Lifetime Iridium Complex as Lab-on-a-Molecule for Hg2+ and pH-Activatable Probes. ACS Sustain. Chem. Eng. 2017, 5, 4443–4448. [Google Scholar] [CrossRef]
- Deng, P.P.; Pei, Y.Y.; Liu, M.L.; Song, W.Z.; Wang, M.; Wang, F.; Wu, C.X.; Xu, L. A rapid “on-off-on” mitochondria-targeted phosphorescent probe for selective and consecutive detection of Cu2+ and cysteine in live cells and zebrafish. RSC Adv. 2021, 11, 7610–7620. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Wang, L. Effects of fluorine substituent on properties of cyclometalated iridium(III) complexes with a 2,2′-bipyridine ancillary ligand. Tetrahedron 2019, 75, 130686. [Google Scholar] [CrossRef]
- Wang, Y.; Herron, N.; Grushin, V.V.; LeCloux, D.; Petrov, V. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds. Appl. Phys. Lett. 2001, 79, 449–451. [Google Scholar] [CrossRef]
- Yang, X.H.; Li, M.; Peng, H.; Zhang, Q.; Wu, S.X.; Xiao, W.Q.; Chen, X.L.; Niu, Z.G.; Chen, G.Y.; Li, G.N. Highly Luminescent Mono- and Dinuclear Cationic Iridium(III) Complexes Containing Phenanthroline-Based Ancillary Ligand. Eur. J. Inorg. Chem. 2019, 2019, 847–855. [Google Scholar] [CrossRef]
- Pal, A.J.; Österbacka, R.; Källman, K.M.; Stubb, H. Transient electroluminescence: Mobility and response time in quinquethiophene Langmuir–Blodgett films. Appl. Phys. Lett. 1997, 71, 228–230. [Google Scholar] [CrossRef]
- Pal, A.K.; Cordes, D.B.; Slawin, A.M.Z.; Momblona, C.; Ortí, E.; Samuel, I.D.W.; Bolink, H.J. Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands. Inorg. Chem. 2016, 55, 10361–10376. [Google Scholar] [CrossRef]
- Li, Z.B.; Ge, Z.R.; Tong, X.; Guo, L.Y.; Huo, J.L.; Li, D.C.; Li, H.Y.; Li, Y.Y. Phosphorescent iridium(III) complexes bearing l-alanine ligands: Synthesis, crystal structures, photophysical properties, DFT calculations, and use as chemosensors for Cu2+ ion. Dyes Pigm. 2021, 186, 109016. [Google Scholar] [CrossRef]
- Datta, B.K.; Thiyagarajan, D.; Ramesh, A.; Das, G. A sole multi-analyte receptor responds with three distinct fluorescence signals: Traffic signal like sensing of Al3+, Zn2+ and F−. Dalton Trans. 2015, 44, 13093–13099. [Google Scholar] [CrossRef]
- Yang, Y.T.; Li, Y.B.; Zhi, X.M.; Xu, Y.J.; Li, M.N. A red-emitting luminescent probe for sequentially detecting Cu2+ and cysteine/histidine in aqueous solution and its imaging application in living zebrafish. Dyes Pigm. 2020, 183, 108690. [Google Scholar] [CrossRef]
- Wang, M.; Leung, K.H.; Lin, S.; Chan, D.S.; Kwong, D.W.; Leung, C.H.; Ma, D.L. A colorimetric chemosensor for Cu2+ ion detection based on an iridium(III) complex. Sci. Rep. 2014, 4, 6794. [Google Scholar] [CrossRef]
- King, K.A.; Spellane, P.J.; Watts, R.J. Excited-state properties of a triply ortho-metalated iridium(III) complex. J. Am. Chem. Soc. 1985, 107, 1431–1432. [Google Scholar] [CrossRef]
- Shipar, M.A.H. Computational studies on glyceraldehyde and glycine Maillard reaction-III. J. Mol. Struc.-Theochem 2004, 712, 39–47. [Google Scholar] [CrossRef]
- Seo, H.J.; Song, M.; Jin, S.H.; Choi, J.H.; Yun, S.J.; Kim, Y.I. Blue phosphorescent iridium(III) complexes containing carbazole-functionalized phenylpyridine for organic light-emitting diodes: Energy transfer from carbazolyl moieties to iridium(III) cores. RSC Adv. 2011, 1, 755–757. [Google Scholar] [CrossRef]
- Huang, Y.C.; Li, Z.B.; Guo, H.Q.; Mu, D.; Li, H.Y.; Lu, A.D. Synthesis, structures, photophysical properties, and theoretical study of four cationic iridium(III) complexes with electron-withdrawing groups on the neutral ligands. Inorg. Chem. Acta 2019, 496, 119060. [Google Scholar] [CrossRef]
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.E.; Adachi, C.; Burrows, P.E.; Forrest, S.R.; Thompson, M.E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2001, 123, 4304–4312. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
Complex | λabs (nm) a | λem (nm) b | PLQY | kr (105 s−1) | knr (105 s−1) | τ (μs) | EOX (V) c | EHOMO (eV) d | Ered (V) c | ELUMO (eV) d |
---|---|---|---|---|---|---|---|---|---|---|
Ir1 | 262, 404, 454 | 509 | 0.48 | 2.9 | 3.2 | 1.64 | 0.59 | −5.19 | −1.07 | −3.70 |
Ir2 | 258, 380, 423 | 493 | 0.55 | 3.3 | 2.7 | 1.67 | 0.73 | −5.33 | −1.08 | −3.52 |
Ir3 | 250, 311, 378 | 464, 490 | 0.69 | 4.7 | 2.1 | 1.46 | 0.91 | −5.51 | −1.07 | −3.53 |
Complex | Orbital | Energy (eV) (Calculated) | Eg (eV) (Calculated) | Composition % | |||
---|---|---|---|---|---|---|---|
Ir | Cyclometalated ligands | Ancillary ligands | |||||
phenyl group | pyridyl group | ||||||
Ir1 | HOMO | −5.22 | 3.65 | 52.28 | 35.88 | 6.24 | 2.60 |
LUMO | −1.52 | 4.79 | 26.68 | 66.42 | 2.12 | ||
Ir2 | HOMO | −5.37 | 3.80 | 50.50 | 36.23 | 7.57 | 5.71 |
LUMO | −1.58 | 4.76 | 25.91 | 67.20 | 2.13 | ||
Ir3 | HOMO | −5.64 | 3.96 | 50.82 | 38.30 | 4.62 | 6.26 |
LUMO | −1.69 | 4.49 | 26.85 | 66.01 | 2.65 | ||
LUMO+1 | −1.68 | 5.05 | 27.71 | 65.26 | 1.99 |
Sample | [Cu2+] (μmol/L) | Found [Cu2+] (μmol/L) | Recovery (%) |
---|---|---|---|
Lake water | 2.0 | 2.4 | 83.3 |
Lake water | 4.0 | 3.3 | 121 |
Lake water | 6.0 | 5.6 | 107 |
Tap water | 2.0 | 2.4 | 83.3 |
Tap water | 4.0 | 3.6 | 111 |
Tap water | 6.0 | 5.5 | 109 |
Drinking water | 2.0 | 2.3 | 87.0 |
Drinking water | 4.0 | 3.5 | 114 |
Drinking water | 6.0 | 5.7 | 105 |
Sample | [Cu2+] (μmol/L) | Found [Cu2+] (μmol/L) | Recovery (%) |
---|---|---|---|
Lake water | 2.0 | 2.0 | 100 |
Lake water | 4.0 | 3.9 | 102 |
Lake water | 6.0 | 5.7 | 105 |
Tap water | 2.0 | 2.0 | 100 |
Tap water | 4.0 | 4.0 | 100 |
Tap water | 6.0 | 5.5 | 109 |
Drinking water | 2.0 | 1.8 | 111 |
Drinking water | 4.0 | 4.4 | 90.9 |
Drinking water | 6.0 | 6.1 | 98.3 |
Sample | [Cu2+] (μmol/L) | Found [Cu2+] (μmol/L) | Recovery (%) |
---|---|---|---|
Lake water | 2.0 | 1.9 | 105 |
Lake water | 4.0 | 4.0 | 100 |
Lake water | 6.0 | 6.1 | 98.3 |
Tap water | 2.0 | 2.1 | 95.2 |
Tap water | 4.0 | 4.2 | 95.2 |
Tap water | 6.0 | 5.9 | 101 |
Drinking water | 2.0 | 2.1 | 95.2 |
Drinking water | 4.0 | 4.1 | 97.5 |
Drinking water | 6.0 | 6.1 | 98.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, X.; Huang, Y.; Li, W.; Zhao, S.; Li, H.; Lu, A. Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. Molecules 2022, 27, 8506. https://doi.org/10.3390/molecules27238506
Chu X, Huang Y, Li W, Zhao S, Li H, Lu A. Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. Molecules. 2022; 27(23):8506. https://doi.org/10.3390/molecules27238506
Chicago/Turabian StyleChu, Xi, Yichuan Huang, Wenhao Li, Shisheng Zhao, Hongyan Li, and Aidang Lu. 2022. "Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions" Molecules 27, no. 23: 8506. https://doi.org/10.3390/molecules27238506
APA StyleChu, X., Huang, Y., Li, W., Zhao, S., Li, H., & Lu, A. (2022). Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. Molecules, 27(23), 8506. https://doi.org/10.3390/molecules27238506