HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Enantioseparation under Polar Organic Mode
2.2. Thermodynamic Aspects of Enantioseparation
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Instruments
3.3. HPLC Operating Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Malgorzata Ceboa, M.; Fua, X.; Gawaz, M.; Chatterjee, M.; Lämmerhofer, M. Enantioselective ultra-high performance liquid chromatography-tandem mass spectrometry method based on sub-2µm particle polysaccharide column for chiral separation of oxylipins and its application for the analysis of autoxidized fatty acids and platelet releasates. J. Chromat. A 2020, 1624, 461206. [Google Scholar]
- Peluso, P.; Chankvetadze, B. Recognition in the domain of molecular chirality: From noncovalent interactions to separation of enantiomers. Chem. Rev. 2022, 122, 13235–13400. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Ghanem, A. On the Enantioselective HPLC separation ability of sub-2 μm columns: Chiralpak® IG-U and ID-U. Molecules 2019, 24, 1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Anal Chem. 2020, 122, 115709. [Google Scholar] [CrossRef]
- Kalíková, K.; Slechtová, T.; Vozka, J.; Tesarová, E. Supercritical fluid chromatography as a tool for enantioselective separation; A review. Anal. Chim. Acta 2014, 821, 1–33. [Google Scholar] [CrossRef]
- Alcaro, S.; Bolasco, A.; Cirilli, R.; Ferretti, R.; Fioravanti, R.; Ortuso, F. Computeraided molecular design of asymmetric pyrazole derivatives with exceptional enantioselective recognition toward the Chiralcel OJ-H stationary phase. J. Chem. Inf. Model. 2012, 52, 649–654. [Google Scholar] [CrossRef]
- Peluso, P.; Mamane, V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022, 27, 4625. [Google Scholar] [CrossRef]
- Peluso, P.; Chankvetadze, B. The molecular bases of chiral recognition in 2-(benzylsulfinyl)benzamide enantioseparation. Anal. Chim. Acta 2021, 1141, 194e205. [Google Scholar] [CrossRef]
- Uccello-Barretta, G.; Vanni, L.; Balzano, F. Nuclear magnetic resonance approaches to the rationalization of chromatographic enantiorecognition processes. J. Chromat. A 2010, 1217, 928–940. [Google Scholar] [CrossRef]
- Yamamoto, C.; Yashima, E.; Okamoto, Y. Structural Analysis of Amylose Tris(3,5-dimethylphenylcarbamate) by NMR Relevant to Its Chiral Recognition Mechanism in HPLC. J. Am. Chem. Soc. 2002, 124, 12583–12589. [Google Scholar] [CrossRef]
- Kasat, R.B.; Zvinevich, Y.; Hillhouse, H.W.; Thomson, K.T.; Wang, N.-H.L.; Franses, E.I. Direct probing of sorbent-solvent interactions for amylose tris(3,5-dimethylphenylcarbamate) using infrared spectroscopy, X-ray diffraction, solid-state NMR, and DFT modeling. J. Phys. Chem. B 2006, 110, 14114–14122. [Google Scholar] [CrossRef] [PubMed]
- Cantatore, C.; Korb, M.; Lang, H.; Cirilli, R. ON/OFF receptor-like enantioseparation of planar chiral 1,2-ferrocenes on an amylose-based chiral stationary phase: The role played by 2-propanol. Anal. Chim. Acta 2022, 1211, 339880. [Google Scholar] [CrossRef]
- Carradori, S.; Secci, D.; Guglielmi, P.; Pierini, M.; Cirilli, R. High-performance liquid chromatography enantioseparation of chiral 2-(benzylsulfinyl)benzamide derivatives on cellulose tris(3,5-dichlorophenylcarbamate) chiral stationary phase. J. Chromat. A 2020, 1610, 460572. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Yamamoto, C.; Okamoto, Y. Extremely high enantiomer recog- nition in hplc separation of racemic 2-(benzylsulfinyl)benzamide using cellu- lose tris(3,5-dichlorophenylcarbamate) as a chiral stationary phase. Chem. Lett. 2000, 29, 1176–1177. [Google Scholar] [CrossRef]
- Carradori, S.; Secci, D.; Faggi, C.; Cirilli, R. A chromatographic study on the exceptional chiral recognition of 2-(benzylsulfinyl)benzamide by an immobilized-type chiral stationary phase based on cellulose tris(3,5-dichlorophenylcarbamate). J. Chromatogr. A 2018, 1531, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, R.; Alcaro, S.; Fioravanti, R.; Secci, D.; Fiore, S.; La Torre, F.; Ortuso, F. Unusually high enantioselectivity in high-performance liquid chromatography using cellulose tris(4-methylbenzoate) as a chiral stationary phase. J. Chromatogr. A 2009, 1216, 4673–4678. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, R.; Alcaro, S.; Fioravanti, R.; Ferretti, R.; Bolasco, A.; Gallinella, B.; Faggi, C. A chromatographic study on the exceptional enantioselectivity of cellulose tris(4-methylbenzoate) towards C5-chiral 4,5-dihydro-(1H)-pyrazole deriva- tives. J. Chromatogr. A 2011, 1218, 5653–5657. [Google Scholar] [CrossRef]
- Ortuso, F.; Alcaro, S.; Menta, S.; Fioravanti, R.; Cirilli, R. A chro- matographic and computational study on the driving force op- erating in the exceptionally large enantioseparation of N-thiocar- bamoyl-3-(4’-biphenyl)-5-phenyl-4,5-dihydro-(1H) pyrazole on a 4-methylben- zoate cellulose-based chiral stationary phase. J. Chromatogr. A 2014, 1324, 71–77. [Google Scholar]
- Pierini, M.; Carradori, S.; Menta, S.; Secci, D.; Cirilli, R. 3-(Phenyl-4-oxy)-5-phenyl-4,5-dihydro-(1H)-pyrazole: A fascinating molec- ular framework to study the enantioseparation ability of the amylose (3,5-dimethylphenylcarbamate) chiral stationary phase. part II. solvophobic effects in enantiorecognition process. J. Chromatogr. A 2017, 1499, 140–148. [Google Scholar] [CrossRef]
- Pisani, L.; Rullo, M.; Catto, M.; de Candia, M.; Carrieri, A.; Cellamare, S.; Altomare, C.D. Structure–property relationship study of the HPLC enantioselective retention of neuroprotective 7-[(1-alkylpiperidin-3-yl)methoxy]coumarin derivatives on an amylose-based chiral stationary phase. J. Sep. Sci. 2018, 41, 1376–1384. [Google Scholar] [CrossRef]
- Preda, G.; Nitti, A.; Pasini, D. Chiral triptycenes in supramolecular and materials chemistry. ChemistryOpen 2020, 9, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Gladiali, S.; Alberico, E.; Jungec, K.; Beller, M. BINEPINES: Chiral binaphthalene-core monophosphepine ligands for multipurpose asymmetric catalysis. Chem. Soc. Rev. 2011, 40, 3744–3763. [Google Scholar] [CrossRef] [PubMed]
- Abbate, S.; Longhi, G.; Lebon, F.; Castiglioni, E.; Superchi, S.; Pisani, L.; Fontana, F.; Torricelli, F.; Caronna, T.; Villani, C.; et al. Helical sense-responsive and substituent-sensitive features in vibrational and electronic circular dichroism, in circularly polarized luminescence and in Raman spectra of some simple optically active hexahelicenes. J. Phys. Chem. C 2014, 118, 1682–1695. [Google Scholar] [CrossRef]
- Mendola, D.; Saleh, N.; Hellou, N.; Vanthuyne, N.; Roussel, C.; Toupet, L.; Castiglione, F.; Melone, F.; Caronna, T.; Marti-Rujas, J.; et al. Synthesis and structural properties of Aza[n]helicene platinum complexes: Control of cis and trans stereochemistry. Inorg. Chem. 2016, 55, 2009–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanchi, C.; Lucotti, A.; Cancogni, D.; Fontana, F.; Trusso, S.; Ossi, P.M.; Tommasini, M. Functionalization of nanostructured gold substrates with chiral chromophores for SERS applications: The case of 5-Aza[5]helicene. Chirality 2018, 30, 875–882. [Google Scholar] [CrossRef]
- Fontana, F.; Carminati, G.; Bertolotti, B.; Mussini, P.R.; Arnaboldi, S.; Grecchi, S.; Cirilli, R.; Micheli, L.; Rizzo, S. Helicity: A non-conventional stereogenic element for designing inherently chiral ionic liquids for electrochemical enantiodifferentiation. Molecules 2021, 26, 311. [Google Scholar] [CrossRef]
- Pye, P.J.; Rossen, K.; Reomer, R.A.; Volante, R.P.; Reider, P.J. [2.2] Phanephos-Ruthenium(II) complexes: Highly active asymmetric catalysts for the hydrogenation of β-ketoesters. Tetrahedron Lett. 1998, 39, 4441–4444. [Google Scholar] [CrossRef]
- Pye, P.J.; Rossen, K.; Reomer, R.A.; Tsou, N.N.; Volante, R.P.; Reider, P.J. A new planar chiral bisphosphine ligand for asymmetric catalysis: Highly enantioselective hydrogenations under mild conditions. J. Am. Chem. Soc. 1997, 119, 6207–6208. [Google Scholar] [CrossRef]
- Fontana, F.; Melone, F.; Iannazzo, D.; Leonardi, S.G.; Neri, G. Synthesis, characterization and electrochemical properties of 5-aza[5]helicene-CH2O-CO-MWCNTs nanocomposite. Nanotechnology 2017, 28, 135501. [Google Scholar] [CrossRef]
- Wang, T.; Wenslow, R.M. Effects of alcohol mobile-phase modifiers on the structure and chiral selectivity of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. J. Chromatogr. A 2003, 1015, 99–110. [Google Scholar] [CrossRef]
- Wenslow, R.M.; Wang, T. Solid-State NMR characterization of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary-phase structure as a function of mobile-phase composition. Anal. Chem. 2001, 73, 4190–4195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.P.; Wang, Z.; Zhang, Z.W.; Zhai, T.L.; Chen, J.J.; Ma, H.; Tan, B.; Zhang, C. Triptycene-based chiral porous polyimides for enantioselective membrane separation. Angew. Chem. Int. Ed. 2021, 60, 12781–12785. [Google Scholar] [CrossRef] [PubMed]
- Vaghi, L.; Cirilli, R.; Pierini, M.; Rizzo, S.; Terraneo, G.; Benincori, T. PHANE-TetraPHOS, the first D2 symmetric chiral tetraphosphane. Synthesis, metal complexation, and application in homogeneous stereoselective hydrogenation. Eur. J. Org. Chem. 2021, 2021, 2367–2374. [Google Scholar] [CrossRef]
- Fontana, F.; Bertolotti, B.; Grecchi, S.; Mussini, P.R.; Micheli, L.; Cirilli, R.; Tommasini, M.; Rizzo, S. 2,12-Diaza[6]helicene: An efficient non-conventional stereogenic scaffold for enantioselective electrochemical interphases. Chemosensors 2021, 9, 216. [Google Scholar] [CrossRef]
- Vaghi, L.; Benincori, T.; Cirilli, R.; Alberico, E.; Mussini, P.R.; Pierini, M.; Pilati, T.; Rizzo, S.; Sannicolò, F. Ph-tetraMe-bithienine, the first member of the class of chiral heterophosphepines: Synthesis, electronic and steric properties, metal complexes and catalytic activity. Eur. J. Org. Chem. 2013, 2013, 8174–8184. [Google Scholar] [CrossRef]
Entry | Compound | Mobile Phase | AC First Eluted/CD Sign at 241 nm | α (25 °C) | ∆∆H° (kcal/mol) | ∆∆S° (e.u.) | TISO (°C) |
---|---|---|---|---|---|---|---|
1 | 1 | MeOH | (R,R)/(−) | 1.23 | −0.62 | −1.65 | 100 |
2 | EtOH | (R,R)/(−) | 2.00 | −1.40 | −3.32 | 148 | |
3 | 1-PrOH | (R,R)/(−) | 1.81 | −1.06 | −2.38 | 172 | |
4 | 2-PrOH | (R,R)/(−) | 1.47 | 0.33 | 1.89 | −97 | |
5 | 2 | MeOH | (Sa)/(+) | 1.84 | −2.72 | −7.90 | 71 |
6 | EtOH | (Sa)/(+) | 3.54 | −2.45 | −5.72 | 156 | |
7 | 1-PrOH | (Ra)/(−) | 1.58 | 1.38 | 5.53 | −24 | |
8 | 2-PrOH | (Ra)/(−) | 4.94 | 3.98 | 16.52 | −32 | |
9 | 3 | MeOH | (P)/(−) | 1.53 | −0.52 | −0.90 | 304 |
10 | EtOH | (P)/(−) | 1.69 | −0.55 | −0.80 | 412 | |
11 | 1-PrOH | (P)/(−) | 1.46 | −0.22 | 0.02 | NA | |
12 | 2-PrOH | (P)/(−) | 1.50 | −2.62 | −7.97 | 56 | |
13 | 4 | MeOH | (RP)/(+) | 1.55 | −0.13 | 0.43 | NA |
14 | EtOH | (RP)/(+) | 1.75 | 0.84 | 3.92 | −60 | |
15 | 1-PrOH | (RP)/(+) | 2.16 | 0.12 | 1.95 | −209 | |
16 | 2-PrOH | (RP)/(+) | 2.22 | 6.51 | 23.42 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, S.; Benincori, T.; Fontana, F.; Pasini, D.; Cirilli, R. HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase. Molecules 2022, 27, 8527. https://doi.org/10.3390/molecules27238527
Rizzo S, Benincori T, Fontana F, Pasini D, Cirilli R. HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase. Molecules. 2022; 27(23):8527. https://doi.org/10.3390/molecules27238527
Chicago/Turabian StyleRizzo, Simona, Tiziana Benincori, Francesca Fontana, Dario Pasini, and Roberto Cirilli. 2022. "HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase" Molecules 27, no. 23: 8527. https://doi.org/10.3390/molecules27238527
APA StyleRizzo, S., Benincori, T., Fontana, F., Pasini, D., & Cirilli, R. (2022). HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase. Molecules, 27(23), 8527. https://doi.org/10.3390/molecules27238527