In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H2 Evolution Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology
2.2. Analysis of Components, BET Surface Area and Energy Band Structure
2.3. Photocatalytic Activity and Stability
3. Materials and Methods
3.1. Materials
3.2. Preparation of Photocatalysts
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, Y.; Mao, J.; Huang, Y.; Qian, Q.; Luo, Y.; Xue, H.; Yang, S. Pt-chitosan-TiO2 for efficient photocatalytic hydrogen evolution via ligand-to-metal charge transfer mechanism under visible light. Molecules 2022, 27, 4673. [Google Scholar] [CrossRef]
- Sultanov, F.; Daulbayev, C.; Azat, S.; Kuterbekov, K.; Bekmyrza, K.; Bakbolat, B.; Bigaj, M.; Mansurov, Z. Influence of metal oxide particles on bandgap of 1D photocatalysts based on SrTiO3/PAN fibers. Nanomaterials 2020, 10, 1734. [Google Scholar] [CrossRef] [PubMed]
- Daulbayev, C.; Sultanov, F.; Korobeinyk, A.V.; Yeleuov, M.; Azat, S.; Bakbolat, B.; Umirzakov, A.; Mansurov, Z. Bio-waste-derived few-layered graphene/ SrTiO3/PAN as efficient photocatalytic system for water splitting. Appl. Surf. Sci. 2021, 549, 149176. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Li, Y.; Zhang, M.; Zheng, Y. Designing a 0D/1D s-scheme heterojunction of cadmium selenide and polymeric carbon nitride for photocatalytic water splitting and carbon dioxide reduction. Molecules 2022, 27, 6286. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534. [Google Scholar]
- Lee, G.-J.; Wu, J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 2017, 318, 8–22. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Y.; Lu, S.; Guo, W.; Zou, J.; Fang, Z. Controllable sulphur vacancies confined in nanoporous zns nanoplates for visible-light photocatalytic hydrogen evolution. Chem. Commun. 2021, 57, 8186–8189. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef] [PubMed]
- Di Liberto, G.; Cipriano, L.A.; Tosoni, S.; Pacchioni, G. Rational design of semiconductor heterojunctions for photocatalysis. Chem. Eur. J. 2021, 27, 13306–13317. [Google Scholar] [CrossRef]
- Yang, H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 2021, 142, 111406. [Google Scholar] [CrossRef]
- Bai, S.; Xiong, Y. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem. Commun. 2015, 51, 10261–10271. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of zno nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type ii heterostructures and their enhanced photocatalysis properties: A review. Nanoscale 2013, 5, 8326–8339. [Google Scholar] [CrossRef] [PubMed]
- Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Piña-Pérez, Y.; Aguilar-Martínez, O.; Acevedo-Peña, P.; Santolalla-Vargas, C.E.; Oros-Ruíz, S.; Galindo-Hernández, F.; Gómez, R.; Tzompantzi, F. Novel zns-zno composite synthesized by the solvothermal method through the partial sulfidation of zno for h2 production without sacrificial agent. Appl. Catal. B Environ. 2018, 230, 125–134. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Zhu, B.; Wang, J.; Lan, H.; Chen, X. Synthesis of porous zns, zno and zns/zno nanosheets and their photocatalytic properties. RSC Adv. 2017, 7, 30956–30962. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Jiang, J.; Shen, S.; Guo, L. Zns/zno heterojunction as photoelectrode: Type ii band alignment towards enhanced photoelectrochemical performance. Int. J. Hydrog. Energy 2013, 38, 13097–13103. [Google Scholar] [CrossRef]
- Luan, Q.; Chen, Q.; Zheng, J.; Guan, R.; Fang, Y.; Hu, X. Construction of 2d-zns@zno z-scheme heterostructured nanosheets with a highly ordered zno core and disordered zns shell for enhancing photocatalytic hydrogen evolution. ChemNanoMat 2020, 6, 470–479. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Z.; Zhang, Y.; Xu, H.; Cao, S.; Zhang, R. All-solid-state z-scheme pt/zns-zno heterostructure sheets for photocatalytic simultaneous evolution of H2 and O2. Chem. Eng. J. 2020, 385, 123782. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, J.; Liu, J.; Lu, J.; Shi, W.; Yang, G.; Wang, G.; Feng, P.; Cheng, P. Metal–organic framework-derived zno/zns heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production. Adv. Sci. 2018, 5, 1700590. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Tsai, T.-Y.; Chen, D.-H.; Huang, Q.-J.; Cheng, W.-H.; Clearfield, A. Ab initio structure study from in-house powder diffraction of a novel zns(en)0.5 structure with layered wurtzite zns fragment. Chem. Commun. 2003, 886–887. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Ren, Y.; Zheng, Y.; Pan, A.; Zhu, T. In-situ copper doping with zno/zns heterostructures to promote interfacial photocatalysis of microsized particles. ChemCatChem 2021, 13, 564–573. [Google Scholar] [CrossRef]
- Fang, Z.; Weng, S.; Ye, X.; Feng, W.; Zheng, Z.; Lu, M.; Lin, S.; Fu, X.; Liu, P. Defect engineering and phase junction architecture of wide-bandgap zns for conflicting visible light activity in photocatalytic h2 evolution. ACS Appl. Mater. Inter. 2015, 7, 13915–13924. [Google Scholar] [CrossRef]
- Lonkar, S.P.; Pillai, V.V.; Alhassan, S.M. Facile and scalable production of heterostructured zns-zno/graphene nano-photocatalysts for environmental remediation. Sci. Rep. 2018, 8, 13401. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xiong, J.; Liu, D.; Tang, Y.; He, S.; Hu, Z. A cathodic photocorrosion-assisted strategy to construct a cds/pt heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution. New J. Chem. 2021, 45, 10315–10324. [Google Scholar] [CrossRef]
- Xiong, J.; Wen, L.; Jiang, F.; Liu, Y.; Liang, S.; Wu, L. Ultrathin hnb 3 o 8 nanosheet: An efficient photocatalyst for the hydrogen production. J. Mater. Chem. A 2015, 3, 20627–20632. [Google Scholar] [CrossRef]
- Yu, K.; Huang, H.-B.; Zeng, X.-Y.; Xu, J.-Y.; Yu, X.-T.; Liu, H.-X.; Cao, H.-L.; Lü, J.; Cao, R. Cdzns nanorods with rich sulphur vacancies for highly efficient photocatalytic hydrogen production. Chem. Commun. 2020, 56, 7765–7768. [Google Scholar] [CrossRef]
- Huang, H.-B.; Yu, K.; Wang, J.-T.; Zhou, J.-R.; Li, H.-F.; Lü, J.; Cao, R. Controlled growth of zns/zno heterojunctions on porous biomass carbons via one-step carbothermal reduction enables visible-light-driven photocatalytic H2 production. Inorg. Chem. Front. 2019, 6, 2035–2042. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, S.-W.; Loo, S.C.J.; Xue, C. Nanoparticle heterojunctions in zns–zno hybrid nanowires for visible-light-driven photocatalytic hydrogen generation. CrystEngComm 2013, 15, 5688–5693. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, Y.; Jiang, P.; Wu, X.; Wu, R.; Chen, Y. Facile preparation of a zns/zno nanocomposite for robust sunlight photocatalytic H2 evolution from water. RSC Adv. 2015, 5, 6494–6500. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, L.; Xin, Z.; Yu, Y.; Wang, L.; Zhang, W. Visible light response and heterostructure of composite cds@ zns–zno to enhance its photocatalytic activity. J. Alloy. Compd. 2020, 813, 152190. [Google Scholar] [CrossRef]
- Hong, E.; Kim, J.H. Oxide content optimized ZnS–ZnO heterostructures via facile thermal treatment process for enhanced photocatalytic hydrogen production. Int. J. Hydrog. Energy 2014, 39, 9985–9993. [Google Scholar] [CrossRef]
- Ji, X.; Xu, H.; Liang, S.; Gan, L.; Zhang, R.; Wang, X. 3D ordered macroporous Pt/ZnS@ZnO core-shell heterostructure for highly effective photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2022, 47, 17640–17649. [Google Scholar] [CrossRef]
Photocatalyst | Sacrificial Agent in Aqueous Solution | H2 Evolution Activity /μmol·g−1·h−1 | Light/nm | Reference |
---|---|---|---|---|
N-doped ZnS/ZnO-Pt% | 0.1 M S2−/0.1 M SO32− | 1790 | λ > 400 | This work |
ZnS/ZnO | CH3OH 50 % v/v | 1242 | 254 | [15] |
ZnS/ZnO@CT | 5% lactic acid | 37.1 | 400–780 | [28] |
ZnS@ZnO | 0.1 M S2−/0.1 M SO32− | ≒4600 | Xenon lamp | [18] |
ZnS-ZnO | 0.25 M S2−/0.35 M SO32− | 22 | λ > 420 | [29] |
Pt/ZnS-ZnO | 0.1 M S2−/0.1 M SO32− | 10,700 | Xenon lamp | [19] |
ZnS/ZnO | 0.45 M S2−/0.45 M SO32− | 374 | λ > 400 | [30] |
ZnS/ZnO | 0.1 M S2−/0.1 M SO32− | ≒250 | λ > 420 | [31] |
ZnS-ZnO | 0.4 M S2− | 494.8 | Xenon lamp | [32] |
Pt/ZnS@ZnO | Water | 87.6 | Xenon lamp | [33] |
ZnO/ZnS | 0.1 M S2−/0.1 M SO32− | 415.3 | λ > 420 | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Wang, X.; Wu, J.; Han, J.; Lan, Z.; Fan, J. In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H2 Evolution Activity. Molecules 2022, 27, 8544. https://doi.org/10.3390/molecules27238544
Xiong J, Wang X, Wu J, Han J, Lan Z, Fan J. In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H2 Evolution Activity. Molecules. 2022; 27(23):8544. https://doi.org/10.3390/molecules27238544
Chicago/Turabian StyleXiong, Jinhua, Xuxu Wang, Jinling Wu, Jiaming Han, Zhiyang Lan, and Jianming Fan. 2022. "In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H2 Evolution Activity" Molecules 27, no. 23: 8544. https://doi.org/10.3390/molecules27238544
APA StyleXiong, J., Wang, X., Wu, J., Han, J., Lan, Z., & Fan, J. (2022). In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H2 Evolution Activity. Molecules, 27(23), 8544. https://doi.org/10.3390/molecules27238544