Semi-Embedding Zn-Co3O4 Derived from Hybrid ZIFs into Wood-Derived Carbon for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Wood Pretreatment
3.3. Preparation of HZ@Wood
3.4. Preparation of Zn-Co@CW and Zn-Co3O4@CW-230
3.5. Characterization and Electrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, J.; Wang, X.M.; Wang, L.C.; Xiong, W.N.; Li, M.Y.; Hua, Z.H.; Zhao, L.L.; Zhou, C.; Liu, X.B.; Chen, H.; et al. Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors. Carbon 2022, 196, 532–539. [Google Scholar] [CrossRef]
- Xiao, J.; Han, J.W.; Zhang, C.; Ling, G.W.; Kang, F.Y.; Yang, Q.H. Dimensionality, Function and Performance of Carbon Materials in Energy Storage Devices. Adv. Energy Mater. 2022, 12, 2100775. [Google Scholar] [CrossRef]
- Lin, T.Q.; Chen, I.W.; Liu, F.X.; Yang, C.Y.; Bi, H.; Xu, F.F.; Huang, F.Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, M.L.; Liu, T.; Chen, C.J.; Yue, M.; Pastel, G.; Yao, Y.G.; Xie, H.; Gan, W.T.; Gong, A.; Li, X.F.; et al. Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Mater. 2020, 27, 327–332. [Google Scholar] [CrossRef]
- Guo, R.Q.; Zhang, L.X.; Lu, Y.; Zhang, X.L.; Yang, D.J. Research progress of nanocellulose for electrochemical energy storage: A review. J. Energy Chem. 2020, 51, 342–361. [Google Scholar] [CrossRef]
- Lin, J.; Reddy, R.C.K.; Zeng, C.H.; Lin, X.M.; Zeb, A.; Su, C.Y. Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: A review. Coord. Chem. Rev. 2021, 446, 214118. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Bandosz, T.J. Building MOF Nanocomposites with Oxidized Graphitic Carbon Nitride Nanospheres: The Effect of Framework Geometry on the Structural Heterogeneity. Molecules 2019, 24, 4529. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Huang, Z.D.; Shuck, C.E.; Liang, G.J.; Gogotsi, Y.; Zhi, C.Y. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef]
- Yang, C.H.; Xiong, J.W.; Ou, X.; Wu, C.F.; Xiong, X.H.; Wang, J.H.; Huang, K.; Liu, M.L. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater. Today Energy 2018, 8, 37–44. [Google Scholar] [CrossRef]
- Cao, W.X.; Yang, F.Q. Supercapacitors from high fructose corn syrup-derived activated carbons. Mater. Today Energy 2018, 9, 406–415. [Google Scholar] [CrossRef]
- Prasankumar, T.; Salpekar, D.; Bhattacharyya, S.; Manoharan, K.; Yadav, R.M.; Miller, K.A.; Vajtai, R.; Jose, S.; Roy, S.; Ajayan, P.M. Biomass derived hierarchical porous carbon for supercapacitor application and dilute stream CO2 capture. Carbon 2022, 199, 249–257. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Y.; Zhao, X.; Chen, H.; Chen, G.; Wang, S. Seven years of biochar amendment has a negligible effect on soil available P and a progressive effect on organic C in paddy soils. Biochar 2022, 4, 1. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; He, S.; Du, H.; Liu, K.; Zhang, C.; Jiang, S. Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers 2022, 14, 2521. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, X.; Wang, Z.; Wang, L.; Guo, Y.; Zhou, C.; Li, X.; Du, K.; Luo, Y. Nickel-cobalt layered double hydroxide nanosheets anchored to the inner wall of wood carbon tracheids by nitrogen-doped atoms for high-performance supercapacitors. J. Colloid Interface Sci. 2022, 608, 70–78. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Wang, Z.; Li, Z.; Wang, L.; Ouyang, J.; Zhou, C.; Luo, Y. Sophora-like Nickel–Cobalt Sulfide and Carbon Nanotube Composites in Carbonized Wood Slice Electrodes for All-Solid-State Supercapacitors. ACS Appl. Energ Mater. 2022, 5, 7400–7407. [Google Scholar] [CrossRef]
- Wu, W.; Wang, X.; Deng, Y.; Zhou, C.; Wang, Z.; Zhang, M.; Li, X.; Wu, Y.; Luo, Y.; Chen, D. In situ synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors. Nanoscale 2020, 12, 17738–17745. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, D.X.; Liang, H.Q.; Yin, J.W.; Xia, Y.F.; Zuo, K.H.; Zeng, Y.P. Ultra -thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochim. Acta 2020, 352, 136452. [Google Scholar] [CrossRef]
- Liu, K.; Mo, R.W.; Dong, W.J.; Zhao, W.; Huang, F.Q. Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. J. Mater. Chem. A 2020, 8, 20072–20081. [Google Scholar] [CrossRef]
- Wang, Y.M.; Lin, X.J.; Liu, T.; Chen, H.; Chen, S.; Jiang, Z.J.; Liu, J.; Huang, J.L.; Liu, M.L. Wood-Derived Hierarchically Porous Electrodes for High-Performance All-Solid-State Supercapacitors. Adv. Funct. Mater. 2018, 28, 1806207. [Google Scholar] [CrossRef]
- Karthauser, J.; Biziks, V.; Mai, C.; Militz, H. Lignin and Lignin-Derived Compounds for Wood Applications—A Review. Molecules 2021, 26, 2533. [Google Scholar] [CrossRef]
- Cao, M.M.; Liu, Y.Y.; Sun, K.; Li, H.; Lin, X.Q.; Zhang, P.X.; Zhou, L.M.; Wang, A.; Mehdi, S.; Wu, X.L.; et al. Coupling Fe3C Nanoparticles and N-Doping on Wood-Derived Carbon to Construct Reversible Cathode for Zn-Air Batteries. Small 2022, 18, 2202014. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Zhao, B.T.; Liu, T.; Mou, J.R.; Jiang, Z.J.; Liu, J.; Li, H.X.; Liu, M.L. Wood-Derived Materials for Advanced Electrochemical Energy Storage Devices. Adv. Funct. Mater. 2019, 29, 1902255. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, A.; Zhang, X.R.; Mu, J.B.; Che, H.W.; Wang, Y.M.; Wang, T.T.; Zhang, Z.X.; Kou, Z.K. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem. Eng. J. 2021, 412, 128611. [Google Scholar] [CrossRef]
- Kong, L.L.; Wang, L.; Sun, D.Y.; Meng, S.; Xu, D.D.; He, Z.X.; Dong, X.Y.; Li, Y.F.; Jin, Y.C. Aggregation-Morphology-Dependent Electrochemical Performance of Co3O4 Anode Materials for Lithium-Ion Batteries. Molecules 2019, 24, 3149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.Y.; Mu, D.B.; Chen, S.; Wu, B.R.; Wu, F. Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 3118–3125. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Y.; Li, J.J.; Zhu, S.; He, F.; He, C.N.; Liu, E.Z.; Shi, C.S.; Li, Q.F.; Zhao, N.Q. Metal-organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors. J. Alloys Compd. 2017, 693, 16–24. [Google Scholar] [CrossRef]
- Li, H.H.; Zhou, L.; Zhang, L.L.; Fan, C.Y.; Fan, H.H.; Wu, X.L.; Sun, H.Z.; Zhang, J.P. Co3O4 Nanospheres Embedded in a Nitrogen-Doped Carbon Framework: An Electrode with Fast Surface-Controlled Redox Kinetics for Lithium Storage. Acs Energy Lett. 2017, 2, 52–59. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, R.; Liu, H.; Sun, Y.; Liu, G.; Wang, Z.; Luo, Y.; Tang, X.; Zhang, X.; Hu, J. Controllable One-Dimensional Growth of Metal–Organic Frameworks Based on Uncarved Halloysite Nanotubes as High-Efficiency Solar-Fenton Catalysts. J. Phys. Chem. C 2021, 125, 25565–25579. [Google Scholar] [CrossRef]
- Ma, X.; Xiong, Y.; Liu, Y.; Han, J.; Duan, G.; Chen, Y.; He, S.; Mei, C.; Jiang, S.; Zhang, K. When MOFs meet wood: From opportunities toward applications. Chem 2022, 8, 2342–2361. [Google Scholar] [CrossRef]
- Kim, J.; Young, C.; Lee, J.; Heo, Y.U.; Park, M.S.; Hossain, M.S.A.; Yamauchi, Y.; Kim, J.H. Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 15065–15072. [Google Scholar] [CrossRef]
- Chen, C.; Berglund, L.; Burgert, I.; Hu, L. Wood Nanomaterials and Nanotechnologies. Adv. Mater. 2021, 33, 2006207. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.K.; Puertolas, B.; Adobes-Vidal, M.; Wang, Y.R.; Sun, J.G.; Traber, J.; Burgert, I.; Perez-Ramirez, J.; Keplinger, T. Green Synthesis of Hierarchical Metal-Organic Framework/Wood Functional Composites with Superior Mechanical Properties. Adv. Sci. 2020, 7, 1902897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; He, H.; Yi, W.J.; Huang, W.; Pan, X.; Wang, M.Y.; Chao, Z.S. ZIF-67 derived Ag-Co3O4@N-doped carbon/carbon nanotubes composite and its application in Mg-air fuel cell. Electrochem. Commun. 2017, 77, 5–9. [Google Scholar] [CrossRef]
- Ma, X.F.; Zhao, S.Y.; Tian, Z.W.; Duan, G.G.; Pan, H.Y.; Yue, Y.Y.; Li, S.S.; Jian, S.J.; Yang, W.S.; Liu, K.M.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 136851. [Google Scholar] [CrossRef]
- Guo, S.Q.; Liu, J.B.; Zhang, Q.Q.; Jin, Y.H.; Wang, H. Metal organic framework derived Co3O4/Co@N-C composite as high-performance anode material for lithium-ion batteries. J. Alloys Compd. 2021, 157538. [Google Scholar] [CrossRef]
- Ma, X.; Guo, H.; Zhang, C.; Chen, D.; Tian, Z.; Wang, Y.; Chen, Y.; Wang, S.; Han, J.; Lou, Z.; et al. ZIF-67/wood derived self-supported carbon composites for electromagnetic interference shielding and sound and heat insulation. Inorg. Chem. Front. 2022, 9, 6305–6316. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, X.M.; Wang, L.C.; Wei, Y.; Zhao, Z.; Du, K.; Chen, D.Y.; Li, X.J.; Zhou, C.; Liu, G.G.; et al. ZIF-67-derived Co@N-PC anchored on tracheid skeleton from sawdust with micro/nano composite structures for boosted methylene blue degradation. Sep. Purif. Technol. 2022, 278, 119489. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, M.; Zhong, L.; Huang, J.L.; Liu, M.L. A family of MOFs@Wood-Derived hierarchical porous composites as freestanding thick electrodes of solid supercapacitors with enhanced areal capacitances and energy densities. Mater. Today Energy 2022, 24, 100951. [Google Scholar] [CrossRef]
- Qin, T.F.; Dang, S.; Hao, J.X.; Wang, Z.L.; Li, H.Q.; Wen, Y.X.; Lu, S.Q.; He, D.Y.; Cao, G.Z.; Peng, S.L. Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible all-solid-state asymmetric supercapacitor. Dalton Trans. 2018, 47, 11503–11511. [Google Scholar] [CrossRef]
- Nuamah, R.A.; Noormohammed, S.; Sarkar, D.K. Supercapacitor performance evaluation of nanostructured Ag-decorated Co-Co3O4 composite thin film electrode material. Int. J. Energ Res. 2022, 46, 13099–13110. [Google Scholar] [CrossRef]
- Ali, G.A.M.; Habeeb, O.A.; Algarni, H.; Chong, K.F. CaO impregnated highly porous honeycomb activated carbon from agriculture waste: Symmetrical supercapacitor study. J. Mater. Sci. 2018, 54, 683–692. [Google Scholar] [CrossRef]
- Deka, B.K.; Hazarika, A.; Kim, J.; Kim, N.; Jeong, H.E.; Park, Y.B.; Park, H.W. Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem. Eng. J. 2019, 355, 551–559. [Google Scholar] [CrossRef]
- Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A.; Yusoff, M.M.; Chong, K.F. Co3O4/SiO2 nanocomposites for supercapacitor application. J. Solid State Electr. 2014, 18, 2505–2512. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, W.; Wang, Z.; Li, Z.; Wang, X.; Zhou, C.; Luo, Y. Cobalt Hydroxide Nanosheets Grown on Carbon Nanotubes Anchored in Wood Carbon Scaffolding for High-Performance Hybrid Supercapacitors. Energy Fuels 2021, 35, 18815–18823. [Google Scholar] [CrossRef]
- Zheng, K.; Li, G.; Xu, C. Advanced battery-supercapacitor hybrid device based on Co/Ni-ZIFs-derived NiCo2S4 ultrathin nanosheets electrode with high performance. Appl. Surf. Sci. 2019, 490, 137–144. [Google Scholar] [CrossRef]
- Tian, R.R.; Duan, C.Y.; Feng, Y.; Cao, M.J.; Yao, J.F. Metal Organic Framework-Based CoNi Composites on Carbonized Wood as Advanced Freestanding Electrodes for Supercapacitors. Energy Fuels 2021, 35, 4604–4608. [Google Scholar] [CrossRef]
- Rafiq, M.I.; Farid, T.; Zhou, J.; Ali, A.; Tang, J.; Tang, W.H. Carbonized wood-supported hollow NiCo2S4 eccentric spheres for high-performance hybrid supercapacitors. J. Alloys Compd. 2019, 811, 151858. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zhu, Z.L.; Qiu, J.H.; Yang, S.H. High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core shell nanorods//specially reduced graphene oxide. J. Mater. Chem. C 2014, 2, 1331–1336. [Google Scholar]
- Zheng, Z.; Retana, M.; Hu, X.B.; Luna, R.; Ikuhara, Y.H.; Zhou, W.L. Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 16987–16995. [Google Scholar] [CrossRef]
- Yang, P.H.; Ding, Y.; Lin, Z.Y.; Chen, Z.W.; Li, Y.Z.; Qiang, P.F.; Ebrahimi, M.; Mai, W.J.; Wong, C.P.; Wang, Z.L. Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO2 Nanowires and Fe2O3 Nanotubes. Nano Lett. 2014, 14, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Yuan, Y.L.; Yang, J.; Meng, L.; Tang, H.C.; Zeng, Y.J.; Ye, Z.Z.; Lu, J.G. Hierarchical core-shell Co3O4/graphene hybrid fibers: Potential electrodes for supercapacitors. J. Mater. Sci. 2018, 53, 6116–6123. [Google Scholar] [CrossRef]
- Yu, N.; Zhu, M.Q.; Chen, D. Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe2/carbon cloth electrodes. J. Mater. Chem. A 2015, 3, 7910–7918. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Ouyang, J.; Wang, X.; Hua, Z.; Zhao, L.; Li, M.; Lu, Y.; Yin, W.; Liu, G.; Zhou, C.; et al. Semi-Embedding Zn-Co3O4 Derived from Hybrid ZIFs into Wood-Derived Carbon for High-Performance Supercapacitors. Molecules 2022, 27, 8572. https://doi.org/10.3390/molecules27238572
Xiong W, Ouyang J, Wang X, Hua Z, Zhao L, Li M, Lu Y, Yin W, Liu G, Zhou C, et al. Semi-Embedding Zn-Co3O4 Derived from Hybrid ZIFs into Wood-Derived Carbon for High-Performance Supercapacitors. Molecules. 2022; 27(23):8572. https://doi.org/10.3390/molecules27238572
Chicago/Turabian StyleXiong, Wanning, Jie Ouyang, Xiaoman Wang, Ziheng Hua, Linlin Zhao, Mengyao Li, Yuxin Lu, Wei Yin, Gonggang Liu, Cui Zhou, and et al. 2022. "Semi-Embedding Zn-Co3O4 Derived from Hybrid ZIFs into Wood-Derived Carbon for High-Performance Supercapacitors" Molecules 27, no. 23: 8572. https://doi.org/10.3390/molecules27238572
APA StyleXiong, W., Ouyang, J., Wang, X., Hua, Z., Zhao, L., Li, M., Lu, Y., Yin, W., Liu, G., Zhou, C., Luo, Y., & Xu, B. (2022). Semi-Embedding Zn-Co3O4 Derived from Hybrid ZIFs into Wood-Derived Carbon for High-Performance Supercapacitors. Molecules, 27(23), 8572. https://doi.org/10.3390/molecules27238572