Donor-Acceptor Dyads and Triads Employing Core-Substituted Naphthalene Diimides: A Synthetic and Spectro (Electrochemical) Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Dyads and Triads
2.2. Investigation of Optical and Electrochemical Properties
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pearce, N.; Davies, E.S.; Horvath, R.; Pfeiffer, C.R.; Sun, X.-Z.; Lewis, W.; McMaster, J.; George, M.W.; Champness, N.R. Thionated naphthalene diimides: Tuneable chromophores for applications in photoactive dyads. Phys. Chem. Chem. Phys. 2018, 20, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Quinn, S.; Davies, E.S.; Pfeiffer, C.R.; Lewis, W.; McMaster, J.; Champness, N.R. Core-Substituted Naphthalene Diimides: Influence of Substituent Conformation on Strong Visible Absorption. ChemPlusChem 2017, 82, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Pearce, N.; Davies, E.S.; Lewis, W.; Champness, N.R. Thionated Perylene Diimide–Phenothiazine Dyad: Synthesis, Structure, and Electrochemical Studies. ACS Omega 2018, 3, 14236–14244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, N.; Reynolds, K.E.A.; Kayal, S.; Sun, X.Z.; Davies, E.S.; Malagreca, F.; Schürmann, C.J.; Ito, S.; Yamano, A.; Argent, S.P.; et al. Selective photoinduced charge separation in perylenediimide-pillar[5]arene rotaxanes. Nat. Commun. 2022, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, S.V.; al Kobaisi, M.; Jadhav, R.W.; Morajkar, P.P.; Jones, L.A.; George, S. Naphthalene diimides: Perspectives and promise. Chem. Soc. Rev. 2021, 50, 9845–9998. [Google Scholar] [CrossRef]
- Ha, Y.H.; Oh, J.G.; Park, S.; Kwon, S.-K.; An, T.K.; Jang, J.; Kim, Y.-H. Novel naphthalene-diimide-based small molecule with a bithiophene linker for use in organic field-effect transistors. Org. Electron. 2018, 63, 250–256. [Google Scholar] [CrossRef]
- Sommer, M.J. Conjugated polymers based on naphthalene diimide for organic electronics. Mater. Chem. C 2014, 2, 3088–3098. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Y.; Liu, Y. 25th Anniversary Article: Recent Advances in n-Type and Ambipolar Organic Field-Effect Transistors. Adv. Mater. 2013, 25, 5372–5391. [Google Scholar] [CrossRef]
- Zhou, N.; Facchetti, A. Naphthalenediimide (NDI) polymers for all-polymer photovoltaics. Mater. Today 2018, 21, 377–390. [Google Scholar] [CrossRef]
- Valero, S.; Cabrera-Espinoza, A.; Collavini, S.; Pascual, J.; Marinova, N.; Kosta, I.; Delgado, J.L. Naphthalene Diimide-Based Molecules for Efficient and Stable Perovskite Solar Cells. Eur. J. Org. 2020, 33, 5329–5339. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, C.; Negri, F.; Li, Y.; Wang, Z. Dodecatwistarene Imides with Zigzag-Twisted Conformation for Organic Electronics. Angew. Chem. Int. Ed. 2020, 59, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, G.; Zhang, L.; Wang, Z. Integrating pyracylene and naphthalenediimides into planar structures: Synthesis and characterization. Dyes Pigments 2019, 168, 295–299. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, C.-H.; She, N.-Z.; Juan, C.-Y.; Chang, B.; Li, M.-H.; Wang, H.-C.; Cheng, H.-W.; Yabushita, A.; Yang, Y.; et al. Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A 2021, 9, 20510–20517. [Google Scholar] [CrossRef]
- Lin, Y.-C.; She, N.-Z.; Chen, C.-H.; Yabushita, A.; Lin, H.; Li, M.-H.; Chang, B.; Hsueh, T.-F.; Tsai, B.-S.; Chen, P.-T.; et al. Perylene Diimide-Fused Dithiophenepyrroles with Different End Groups as Acceptors for Organic Photovoltaics. ACS Appl. Mater. Interfaces 2022, 14, 37990–38003. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, L.K.; Gilchrist, A.M.; McNaughton, D.A.; Ryder, W.G.; Fares, M.; Gale, P.A. Progress in anion receptor chemistry. Chem 2022, 8, 46–118. [Google Scholar] [CrossRef]
- Hein, R.; Beer, P.D. Halogen bonding and chalcogen bonding mediated sensing. Chem. Sci. 2022, 13, 7098–7125. [Google Scholar] [CrossRef]
- Luo, N.; Ao, Y.-F.; Wang, D.-X.; Wang, Q.-Q. Putting Anion-π Interactions at Work for Catalysis. Chem. Eur. J. 2022, 28, e2021033. [Google Scholar] [CrossRef]
- Ling, Q.-H.; Zhu, J.-L.; Qin, Y.; Xu, L. Naphthalene diimide- and perylene diimide-based supramolecular cages. Mater. Chem. Front. 2020, 4, 3176–3189. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, L. Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coord. Chem. Rev. 2021, 430, 213665. [Google Scholar] [CrossRef]
- Sweetman, A.M.; Jarvis, S.; Sang, H.; Lekkas, I.; Rahe, P.; Wang, Y.; Wang, J.; Champness, N.R.; Kantorovich, L.; Moriarty, P.J. Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 2014, 5, 3931. [Google Scholar] [CrossRef]
- Palma, C.-A.; Bjork, J.; Bonini, M.; Dyer, M.S.; Llanes-Pallas, A.; Bonifazi, D.; Persson, M.; Samori, P. Tailoring Bicomponent Supramolecular Nanoporous Networks: Phase Segregation, Polymorphism, and Glasses at the Solid−Liquid Interface. J. Am. Chem. Soc. 2009, 131, 13062–13071. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, R.; Perez-Velasco, A.; Ravikumar, V.; Kishore, R.S.K.; Kel, O.; Gomez-Casado, A.; Jonkheijm, P.; Huskens, J.; Maroni, P.; Borkovec, M.; et al. Topologically Matching Supramolecular n/p-Heterojunction Architectures. Angew. Chem. Int. Ed. 2009, 48, 6461–6464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishore, R.S.K.; Kel, O.; Banerji, N.; Emery, D.; Bollot, G.; Mareda, J.; Gomez-Casado, A.; Jonkheijm, P.; Huskens, J.; Maroni, P.; et al. Ordered and Oriented Supramolecular n/p-Heterojunction Surface Architectures: Completion of the Primary Color Collection. J. Am. Chem. Soc. 2009, 131, 11106–11116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.; Sukhanov, A.A.; Zhao, J.; Yang, W.; Wang, Z.; Liu, Q.; Voronkova, V.K.; di Donato, M.; Escudero, D.; Jacquemin, D. Red Thermally Activated Delayed Fluorescence and the Intersystem Crossing Mechanisms in Compact Naphthalimide–Phenothiazine Electron Donor/Acceptor Dyads. J. Phys. Chem. C 2019, 123, 30171–30186. [Google Scholar] [CrossRef]
- Ye, K.; Cao, L.; van Raamsdonk, D.M.E.; Wang, Z.; Zhao, J.; Escudero, D.; Jacquemin, D. Naphthalimide-phenothiazine dyads: Effect of conformational flexibility and matching of the energy of the charge-transfer state and the localized triplet excited state on the thermally activated delayed fluorescence. Beilstein J. Org. Chem. 2022, 18, 1435–1453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, X.; Taddei, M.; Bussotti, L.; Kurganskii, I.; Li, M.; Jiang, X.; Xing, L.; Ji, S.; Huo, Y.; et al. Red Light-Emitting Thermally-Activated Delayed Fluorescence of Naphthalimide-Phenoxazine Electron Donor-Acceptor Dyad: Time-Resolved Optical and Magnetic Spectroscopic Studies. Chem. Eur. J. 2022, 28, e202200510. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.A.; Ahrens, M.J.; Sinks, L.E.; Gusev, A.V.; Ratner, M.A.; Wasielewski, M.R. Making a Molecular Wire: Charge and Spin Transport through para-Phenylene Oligomers. J. Am. Chem. Soc. 2004, 126, 5577–5584. [Google Scholar] [CrossRef]
- Damaceanu, M.-D.; Constantin, C.-P.; Bejan, A.-E.; Mihaila, M.; Kusko, M.; Diaconuc, C.; Mihalache, I.; Pascu, R. Heteroatom-mediated performance of dye-sensitized solar cells based on T-shaped molecules. Dyes Pigm. 2019, 166, 15–31. [Google Scholar] [CrossRef]
- Suseela, Y.V.; Sasikumar, M.; Govindaraju, T. An effective and regioselective bromination of 1,4,5,8-naphthalenetetracarboxylic dianhydride using tribromoisocyanuric acid. Tetrahedron Lett. 2013, 54, 6314–6318. [Google Scholar] [CrossRef]
- Sridhar, M.A.; Ramegowda, M.; Lokanath, N.K.; Prasad, J.S.; Gowda, G.B.E.; Thimmaiah, K.N. Structural Studies of Some Phenoxazine Derivatives. Mol. Cryst. Liq. Cryst. 1999, 326, 189–214. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, M.Z. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3. Z. Krist.–New Cryst. St. 2021, 236, 605–607. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K. and Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | 1st Ox E1/2/V | 1st Red E1/2/V | 2nd Red E1/2/V |
---|---|---|---|
1 | +0.33 (0.07) | −1.06 (0.07) | −1.48 (0.07) |
2 | +0.36 (0.07) | −1.04 (0.07) | −1.48 (0.07) |
3 | +0.31 (0.08) | −1.14 (0.08) | −1.52 (0.08) |
4 | +0.33 (0.08) | −1.12 (0.07) | −1.51 (0.07) |
7 | +0.32 (0.08) | −1.12 (0.07) | −1.51 (0.07) |
8 | +0.31 (0.07) | −1.15 (0.07) | −1.56 (0.07) |
9 | +0.33 (0.07) | −1.14 (0.07) | −1.54 (0.07) |
POZ-NH2 | +0.25 (0.08) | ||
PTZ-NH2 | +0.21 (0.07) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinn, S.; Davies, E.S.; Pearce, N.; Rosenberg, C.; Pfeiffer, C.R.; Orton, G.R.F.; Champness, N.R. Donor-Acceptor Dyads and Triads Employing Core-Substituted Naphthalene Diimides: A Synthetic and Spectro (Electrochemical) Study. Molecules 2022, 27, 8671. https://doi.org/10.3390/molecules27248671
Quinn S, Davies ES, Pearce N, Rosenberg C, Pfeiffer CR, Orton GRF, Champness NR. Donor-Acceptor Dyads and Triads Employing Core-Substituted Naphthalene Diimides: A Synthetic and Spectro (Electrochemical) Study. Molecules. 2022; 27(24):8671. https://doi.org/10.3390/molecules27248671
Chicago/Turabian StyleQuinn, Samuel, E. Stephen Davies, Nicholas Pearce, Callum Rosenberg, Constance R. Pfeiffer, Georgia R. F. Orton, and Neil R. Champness. 2022. "Donor-Acceptor Dyads and Triads Employing Core-Substituted Naphthalene Diimides: A Synthetic and Spectro (Electrochemical) Study" Molecules 27, no. 24: 8671. https://doi.org/10.3390/molecules27248671
APA StyleQuinn, S., Davies, E. S., Pearce, N., Rosenberg, C., Pfeiffer, C. R., Orton, G. R. F., & Champness, N. R. (2022). Donor-Acceptor Dyads and Triads Employing Core-Substituted Naphthalene Diimides: A Synthetic and Spectro (Electrochemical) Study. Molecules, 27(24), 8671. https://doi.org/10.3390/molecules27248671