Design, Synthesis and Fungicidal Activity of N-(thiophen-2-yl) Nicotinamide Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Fungicidal Activities In Vivo in a Greenhouse
2.3. Field Trials against CDM
3. Materials and Methods
3.1. Chemicals and Target Compounds
3.1.1. General Synthetic Procedures
3.1.2. Chemical Property of the Compounds
3.2. Fungicidal Activities In Vivo in a Greenhouse
3.3. Field Trials against CDM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rajasekaran, K.; Stromberg, K.D.; Cary, J.W.; Cleveland, T.E. Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J. Agric. Food Chem. 2001, 49, 2799–2803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, S.; Zhang, J.; Reiter, R.J.; Wang, Y.; Qiu, D.; Luo, X.; Khalid, A.R.; Wang, H.; Feng, L.; et al. Synergistic anti-oomycete effect of melatonin with a biofungicide against oomycetic black shank disease. J. Pineal Res. 2018, 65, e12492. [Google Scholar] [CrossRef] [PubMed]
- Gould, F.; Brown, Z.S.; Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 2018, 360, 728–732. [Google Scholar] [CrossRef] [Green Version]
- de Chaves, M.A.; Reginatto, P.; da Costa, B.S.; de Paschoal, R.I.; Teixeira, M.L.; Fuentefria, A.M. Fungicide Resistance in Fusarium Graminearum Species Complex. Curr. Microbiol. 2022, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, S.; Li, H.; Lu, A.; Wang, Z.; Yao, Y.; Wang, Q. Discovery, structural optimization, and mode of action of essramycin alkaloid and its derivatives as anti-tobacco mosaic virus and anti-phytopathogenic fungus agents. J. Agric. Food Chem. 2020, 68, 471–484. [Google Scholar] [CrossRef]
- Xia, Q.; Dong, J.; Li, L.; Wang, Q.; Liu, Y.; Wang, Q. Discovery of glycosylated genipin derivatives as novel antiviral, insecticidal, and fungicidal agents. J. Agric. Food Chem. 2018, 66, 1341–1348. [Google Scholar] [CrossRef]
- Lei, P.; Xu, Y.; Du, J.; Yang, X.L.; Yuan, H.Z.; Xu, G.F.; Ling, Y. Design, synthesis and fungicidal activity of N-Substituted Benzoyl-1,2,3,4-Tetrahydroquinolyl-1-Carboxamide. Bioorg. Med. Chem. Lett. 2016, 26, 2544–2546. [Google Scholar] [CrossRef]
- Loiseleur, O. Natural products in the discovery of agrochemicals. Chimia 2017, 71, 810–822. [Google Scholar] [CrossRef]
- Sparks, T.C.; Hahn, D.R.; Garizi, N.V. Natural products, their derivatives, mimics and synthetic equivalents: Role in agrochemical discovery. Pest Manag. Sci. 2017, 73, 700–715. [Google Scholar] [CrossRef]
- Davison, E.K.; Sperry, J. Natural products with heteroatom-rich ring systems. J. Nat. Prod. 2017, 80, 3060–3079. [Google Scholar] [CrossRef]
- Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem. 2014, 57, 5845–5859. [Google Scholar] [CrossRef] [PubMed]
- Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in Agriculture. In Heterocycles in Life and Society, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2011; pp. 185–207. [Google Scholar] [CrossRef]
- Hemmerling, F.; Hahn, F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J. Org. Chem. 2016, 12, 1512–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci. 2013, 69, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Kim, S.W.; Youn, J.H. Effects of nicotinic acid on gene expression: Potential mechanisms and implications for wanted and unwanted effects of the lipid-lowering drug. J. Clin. Endocrinol. Metab. 2011, 96, 3048–3055. [Google Scholar] [CrossRef]
- Sinthupoom, N.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications. Eur. Food Res. Technol. 2015, 240, 1–17. [Google Scholar] [CrossRef]
- Ashton, I.P.; Abulnaja, K.O.; Pallett, K.E.; Cole, D.J.; Harwood, J.L. Diflufenican, a carotenogenesis inhibitor, also reduces acyl lipid synthesis. Pestic. Biochem. Physiol. 1992, 43, 14–21. [Google Scholar] [CrossRef]
- Morita, M.; Ueda, T.; Yoneda, T.; Koyanagi, T.; Haga, T. Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Manag. Sci. 2007, 63, 969–973. [Google Scholar] [CrossRef]
- Ma, S.; Ji, R.; Wang, X.; Yu, C.; Yu, Y.; Yang, X. Fluorescence detection of boscalid pesticide residues in grape juice. Optik 2019, 180, 236–239. [Google Scholar] [CrossRef]
- Hatamoto, M.; Aizawa, R.; Kobayashi, Y.; Fujimura, M. A novel fungicide Aminopyrifen Inhibits GWT-1 protein in Glycosylphosphatidylinositol-Anchor biosynthesis in neurospora crassa. Pestic. Biochem. Physiol. 2019, 156, 1–8. [Google Scholar] [CrossRef]
- O’Sullivan, A.C.; Loiseleur, O.; Staiger, R.; Luksch, T.; Pitterna, T. Preparation of N-Cyclylamides as Nematicides. Patent WO 2,013,143,811, 3 October 2013. [Google Scholar]
- Hallenbach, W.; Schwarz, H.G.; Ilg, K.; Goergens, U.; Koebberling, J.; Turberg, A.; Boehnke, N.; Maue, M.; Velten, R.; Harschneck, T.; et al. Preparation of Substituted Benzamides for Treating Arthropodes. Patent WO 2,015,067,646, 14 May 2015. [Google Scholar]
- Phillips, G.; Fevig, T.L.; Lau, P.H.; Klemm, G.H.; Mao, M.K.; Ma, C.; Gloeckner, J.A.; Clark, A.S. Process research on the synthesis of silthiofam: A novel fungicide for wheat. Org. Process. Res. Dev. 2002, 6, 357–366. [Google Scholar] [CrossRef]
- Kim, D.S.; Chun, S.J.; Jeon, J.J.; Lee, S.W.; Joe, G.H. Synthesis and fungicidal activity of ethaboxam against oomycetes. Pest Manag. Sci. 2004, 60, 1007–1012. [Google Scholar] [CrossRef]
- Yanase, Y.; Katsuta, H.; Tomiya, K.; Enomoto, M.; Sakamoto, O. Development of a novel fungicide, penthiopyrad. J. Pestic. Sci. 2013, 38, 167–168. [Google Scholar] [CrossRef] [Green Version]
- Zuniga, A.I.; Oliveira, M.S.; Rebello, C.S.; Peres, N.A. Baseline sensitivity of botrytis cinerea isolates from strawberry to isofetamid compared to other SDHIs. Plant Dis. 2020, 104, 1224–1230. [Google Scholar] [CrossRef]
- Swanston, J. Thiophene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2006; Volume 36, pp. 657–669. [Google Scholar] [CrossRef]
- Wang, B.; Shi, Y.; Zhan, Y.; Zhang, L.; Zhang, Y.; Wang, L.; Zhang, X.; Li, Y.; Li, Z.; Li, B. Synthesis and biological activity of novel furan/thiophene and piperazine-containing (Bis)1,2,4-Triazole mannich bases. Chin. J. Chem. 2015, 33, 1124–1134. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.H.; Liu, Y.; Chen, Y.R.; Pan, E.S.; You, W.W.; Zhao, P.L. Design, synthesis and biological evaluation of novel 1,2,4-Triazolo [3,4-b][1,3,4] Thiadiazines bearing furan and Thiophene nucleus. Eur. J. Med. Chem. 2015, 103, 335–342. [Google Scholar] [CrossRef]
- Wang, X.; Ren, Z.; Mei, Y.; Liu, M.; Chen, M.; Si, W.; Yang, C.; Song, Y. Design, synthesis, and antifungal activity of 3-(Thiophen-2-Yl)-1,5-Dihydro-2H-Pyrrol-2-One derivatives bearing a carbonic ester group. J. Heterocycl. Chem. 2019, 56, 165–171. [Google Scholar] [CrossRef]
- Wu, H.B.; Kuang, M.S.; Lan, H.P.; Wen, Y.X.; Liu, T.T. Novel bithiophene dimers from Echinops Latifolius as potential antifungal and nematicidal agents. J. Agric. Food Chem. 2020, 68, 11939–11945. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Y.; Liu, Q.; Li, A.; Wang, W.; Gu, W. Design, synthesis, and antifungal activity of novel Thiophene/Furan-1,3,4-Oxadiazole carboxamides as potent succinate dehydrogenase inhibitors. J. Agric. Food Chem. 2021, 69, 13373–13385. [Google Scholar] [CrossRef]
- Guan, A.; Wang, M.; Yang, J.; Wang, L.; Xie, Y.; Lan, J.; Liu, C. Discovery of a new fungicide candidate through lead optimization of Pyrimidinamine derivatives and its activity against cucumber downy mildew. J. Agric. Food Chem. 2017, 65, 10829–10835. [Google Scholar] [CrossRef]
Compd. | Rn | R1 | R2 | R3 | WPM | SCR | CA | CDM |
---|---|---|---|---|---|---|---|---|
4a | 2-CH3-5-CN-6-Cl | OC2H5 | CH3 | CN | 0 | 0 | 0 | 100 |
4b | 2-CH3-5-Cl-6-Br | OC2H5 | CH3 | CN | 0 | 50 | 0 | 100 |
4c | 5,6-Br2 | OC2H5 | CH3 | CN | 0 | 0 | 100 | 100 |
4d | 5-F-6-Br | OC2H5 | CH3 | CN | 0 | 0 | 0 | 100 |
4e | 5-F-6-Cl | OC2H5 | CH3 | CN | 0 | 0 | 0 | 100 |
4f | 5,6-Cl2 | OC2H5 | CH3 | CN | 0 | 0 | 0 | 100 |
4g | 5-Br-6-Cl | OCH3 | CH3 | CN | 0 | 0 | 100 | 100 |
4h | 6-Br | OCH3 | CH3 | CN | 0 | 0 | 100 | 100 |
4i | 5,6-Cl2 | OCH3 | CH3 | CN | 0 | 0 | 0 | 98 |
4j | 5,6-Cl2 | OC3H7-i | CH3 | CN | 0 | 0 | 40 | 100 |
4k | 5,6-Cl2 | OC3H7-n | CH3 | CN | 0 | 0 | 30 | 100 |
4l | 5,6-Cl2 | OC4H9-n | CH3 | CN | 0 | 0 | 0 | 100 |
4m | 5,6-Cl2 | OC2H4OCH3 | CH3 | CN | 0 | 0 | 0 | 50 |
4n | 5,6-Cl2 | OCH2C6H5 | CH3 | CN | 0 | 0 | 0 | 85 |
4o | 5,6-Cl2 | NHCH3 | CH3 | CN | 0 | 0 | 30 | 0 |
4p | 5,6-Cl2 | Cyclopropylamino | CH3 | CN | 0 | 0 | 0 | 0 |
4q | 5,6-Cl2 | NHPh | CH3 | CN | 50 | 100 | 85 | 98 |
4r | 5,6-Cl2 | OC2H5 | C2H5 | CN | 0 | 0 | 0 | 100 |
4s | 5,6-Cl2 | OC2H5 | CH3 | H | 0 | 0 | 0 | 100 |
Azoxystrobin | 100 | 100 | 100 | / a | ||||
Diflumetorim | / a | / a | / a | 100 | ||||
Flumorph | / a | / a | / a | 100 |
Compd. | Y = ax + b | EC50 (mg/L) | 95% CI a | r |
---|---|---|---|---|
4a | y = 4.14x + 1.28 | 4.69 | 3.27–6.71 | 0.98 |
4b | y = 1.71x + 2.92 | 16.52 | 13.27–20.58 | 0.94 |
4c | y = 1.87x + 2.57 | 19.89 | 16.10–24.56 | 0.95 |
4d | y = 1.62x + 2.55 | 32.44 | 26.12–40.29 | 0.95 |
4e | y = 1.58x + 2.78 | 25.61 | 20.83–31.48 | 0.97 |
4f | y = 1.15x + 4.66 | 1.96 | 1.17–3.29 | 0.95 |
4g | y = 1.62x + 2.52 | 34.29 | 27.46–42.82 | 0.94 |
4h | y = 1.62x + 2.72 | 25.54 | 20.80–31.35 | 0.97 |
4i | y = 1.48x + 3.64 | 8.31 | 6.37–10.84 | 0.97 |
4j | y = 1.58x + 2.88 | 21.94 | 17.58–27.36 | 0.93 |
4k | y = 1.58x + 2.66 | 30.41 | 24.51–37.73 | 0.95 |
4l | / b | 100–400 | / b | / b |
4m | / b | >400 | / b | / b |
4n | / b | 100–400 | / b | / b |
4o | / b | > 400 | / b | / b |
4p | / b | >400 | / b | / b |
4q | / b | 100–400 | / b | / b |
4r | y = 1.48x + 3.70 | 7.53 | 5.71–9.94 | 0.98 |
4s | y = 1.26x + 2.72 | 63.81 | 47.23–86.22 | 0.92 |
Diflumetorim | y = 1.43x + 3.10 | 21.44 | 17.21–26.70 | 0.96 |
Flumorph | y = 1.25x + 3.91 | 7.55 | 5.57–10.22 | 0.98 |
Compd. | Concentration (mg/L) | Control Efficacy (%) | |||
---|---|---|---|---|---|
r1 | r2 | r3 | Mean | ||
10% 4f EC | 50 | 55 | 53 | 50 | 53 |
100 | 74 | 66 | 69 | 70 | |
200 | 82 | 75 | 79 | 79 | |
10% Flumorph EC | 200 | 64 | 52 | 51 | 56 |
80% Mancozeb WP | 1000 | 79 | 76 | 72 | 76 |
10% Cyazofamid SC | 100 | 91 | 91 | 90 | 91 |
CK | (disease index) | 69 | 61 | 60 | 63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Lu, X.; Xu, J.; Zhang, X.; Li, Z.; Yang, X.; Ling, Y. Design, Synthesis and Fungicidal Activity of N-(thiophen-2-yl) Nicotinamide Derivatives. Molecules 2022, 27, 8700. https://doi.org/10.3390/molecules27248700
Wu H, Lu X, Xu J, Zhang X, Li Z, Yang X, Ling Y. Design, Synthesis and Fungicidal Activity of N-(thiophen-2-yl) Nicotinamide Derivatives. Molecules. 2022; 27(24):8700. https://doi.org/10.3390/molecules27248700
Chicago/Turabian StyleWu, Hongfei, Xingxing Lu, Jingbo Xu, Xiaoming Zhang, Zhinian Li, Xinling Yang, and Yun Ling. 2022. "Design, Synthesis and Fungicidal Activity of N-(thiophen-2-yl) Nicotinamide Derivatives" Molecules 27, no. 24: 8700. https://doi.org/10.3390/molecules27248700
APA StyleWu, H., Lu, X., Xu, J., Zhang, X., Li, Z., Yang, X., & Ling, Y. (2022). Design, Synthesis and Fungicidal Activity of N-(thiophen-2-yl) Nicotinamide Derivatives. Molecules, 27(24), 8700. https://doi.org/10.3390/molecules27248700