Chiral Separations of Pyrethroic Acids Using Cyclodextrin Selectors
Abstract
:1. Introduction
1.1. The Phenomenon of Chirality
1.2. Pyrethroids
1.3. Separation of Enantiomers
1.4. Cyclodextrins
2. Result and Discussions
2.1. Results of Gas Chromatographic Measurements
2.2. Results of Supercritical Fluid Chromatography (SFC) Measurements
2.3. Results of Capillary Electrophoresis (CE) Measurements
3. Experimental Section
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poppe, L.; Nógrádi, M.; Nagy, J. (Eds.) Stereochemistry and Stereoselective Synthesis: An Introduction; Wiley: New York, NY, USA, 2016; ISBN 3527339019. [Google Scholar]
- Kim, J.H.; Scialli, A.R. Thalidomide: The tragedy of birth defects and the effective treatment of disease. Toxicol. Sci. 2011, 122, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration, Department of Health and Human Services, USA. Policy Statement for the Development of New Stereoisomeric Drugs. Fed. Regist. 1992, 57, 102. [Google Scholar]
- Jeschke, P. Current status of chirality in agrochemicals. Pest Manag. Sci. 2018, 74, 2389–2404. [Google Scholar] [CrossRef]
- Eljarrat, E. (Ed.) Pyrethroid Insecticides; Springer: Berlin/Heidelberg, Germany, 2021; ISBN -13: 9783030556983. [Google Scholar]
- Nishi, K.; Huang, H.; Kamita, S.G.; Kim, I.H.; Morisseau, C.; Hammock, B.D. Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE2. Arch. Biochem. Biophys. 2006, 445, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Soderlund, D.M. Molecular Mechanisms of Pyrethroid Insecticide Neurotoxicity. Recent Adv. Arch. Toxicol. 2012, 86, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Xu, N.; Mu, P.; Wang, B. Stereoselective Separation and Acute Toxicity of Tau-Fluvalinate to Zebrafish. J. Chem. 2015, 2015, 931908. [Google Scholar] [CrossRef] [Green Version]
- Zhang, O.; Yu, Q.; He, Y.; Zhu, W.; Zhoub, Z.; He, L. Chiral pyrethroid insecticide fenpropathrin and its metabolite: Enantiomeric separation and pharmacokinetic degradation in soils by reverse-phase high-performance liquid chromatography. Anal. Methods 2017, 30, 4439–4446. [Google Scholar] [CrossRef]
- Maia, A.S.; Ribeiro, A.R.; Castro, P.M.L.; Tiritan, M.E. Chiral Analysis of Pesticides and Drugs of Environmental Concern: Biodegradation and Enantiomeric Fraction. Symmetry 2017, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Wallworth, D. Latest Advances in Environmental Chiral Applications. LC GC Eur. 2016, 29, 39–42. [Google Scholar]
- Taniguchi, T.; Taketomo, Y.; Moriyama, M.; Matsuo, N.; Tanabe, Y. Synthesis and Stereostructure-Activity Relationship of Novel Pyrethroids Possessing Two Asymmetric Centers on a Cyclopropane Ring. Molecules 2019, 24, 1023. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Dong, X.; Chen, X.; Guo, X.; Zhao, L. Stereoselective Analysis of Chiral Pyrethroid Insecticides Tetramethrin and α-Cypermethrin in Fruits, Vegetables, and Cereals. J. Agric. Food Chem. 2019, 67, 9362–9370. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, Y. Enantiomer separation of synthetic pyrethroids by subcritical and supercritical fluid chromatography with chiral stationary phases. Anal. Sci. 1993, 9, 33–37. [Google Scholar] [CrossRef]
- McCauley, J.P.; Subbarao, L.; Chen, R. Enantiomeric and Diastereomeric Separations of Pyrethroids Using UPC2; 2012 Waters Application Notes 720004530EN AG-PDF; Waters Corporation: Milford, MA, USA, 2012. [Google Scholar]
- Corcellas, C.; Eljarrat, E.; Barceló, D. Enantiomeric-selective determination of pyrethroids: Application to human samples. Anal. Bioanal. Chem. 2015, 407, 779–786. [Google Scholar] [CrossRef]
- Juvancz, Z.; Grolimund, K.; Schurig, V. Pharmaceutical Applications of a Bonded Cyclodextrin Stationary Phase. J. Microcol. Sep. 1993, 5, 459–467. [Google Scholar] [CrossRef]
- Schurig, V.; Juvancz, Z.; Nicholson, G.J.; Schmalzing, D. Separation of enantiomers on immobilized polysiloxane-anchored permethyl-β-cyclodextrin (CHIRASIL-DEX) by supercritical fluid chromatography. J. High Resolut. Chromatogr. 1991, 14, 58–62. [Google Scholar] [CrossRef]
- Iványi, R.; Jicsinszky, L.; Juvancz, Z. Permethyl monoamino β-cyclodextrin a new chiral selective agent for capillary electrophoresis. Chromatographia 2001, 53, 166–172. [Google Scholar] [CrossRef]
- Iványi, R.; Jicsinszky, L.; Juvancz, Z. Chiral Separation of Pyrethroic Acids with Single Isomer Permethyl Monoamino β-Cyclodextrin Selector. Electrophoresis 2001, 22, 3232–3236. [Google Scholar] [CrossRef]
- Varga, E.; Sohajda, T.; Juvancz, Z.; Bodane Kendrovics, R.; Szekely, E.; Bansaghi, G. Development of Electrophoretic Method for Simultaneous Determination of Enantiomeric Ratio and Composition of Diastereomeric salt mixtures. Chromatographia 2013, 78, 881–888. [Google Scholar] [CrossRef]
- Sanganyado, E.; Munjanja, B.K.; Nollet, M.L. (Eds.) Chiral Organic Pollutants, Monitoring and Characterization in Food and the Environment; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Dalgliesh, C.E. The optical resolution of aromatic amino-acids on paper. J. Chem. Soc. 1952, 137, 3940–3942. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral recognition in separation science—An update. J. Chromatogr. A 2016, 1467, 56–78. [Google Scholar] [CrossRef]
- Juvancz, Z.; Bodáné-Kendrovics, R.; Szente, L.; Maklári, D. Cyclodextrins are the Dominant Chiral Selective Agents in the Capillary Separation Techniques. Period. Polytech. Chem. Eng. 2021, 65, 580–594. [Google Scholar] [CrossRef]
- Koppenhoefler, B.; Epperlein, U. Overview of the Gas Chromatographic Separation of Enantiomers Containing a Three-Membered Ring. J. Chromatogr. Sci. 1995, 33, 244–255. [Google Scholar] [CrossRef]
- Juvancz, Z.; Szejtli, J. Role of cyclodextrins in chiral selective chromatography. Trends Anal. Chem. 2002, 21, 379–388. [Google Scholar] [CrossRef]
- Juvancz, Z.; Bodane-Kendrovics, R.; Ivanyi, R.; Szente, L. The role of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 2008, 29, 1701–1702. [Google Scholar] [CrossRef]
- Szejtli, J.; Osa, T. (Eds.) Comprehensive Supermolecular Chemistry, Volume 3: Cyclodextrins; Pergamon Press: Oxford, UK, 1999; ISBN 0-08-042715-4. [Google Scholar]
- König, W.A. Gas Chromatographic Enantiomer Separation with Modified Cyclodextrins; Hüthig: Heidelberg, Germany, 1992; ISBN -13: 978-3778520260. [Google Scholar]
- Chankvetadze, B. Capillary Electrophoresis in Chiral Analysis; Willey: New York, NY, USA, 1997; ISBN -10: 0471974153. [Google Scholar]
- Juvancz, Z.; Markides, K.E.; Jicsinszky, L. Enantiomer Separation of Disopyramide with Capillary Electrophoresis Using Various Cyclodextrins. Electrophoresis 1997, 18, 1002–1016. [Google Scholar] [CrossRef] [PubMed]
- Juvancz, Z.; Alexander, G.; Szejtli, J. Permethylated β-cyclodextrin as Stationary Phase in Capillary Gas Chromatography. J. High Resolut. Chromatogr. 1987, 10, 105–107. [Google Scholar] [CrossRef]
- Jung, M.; Schmalzing, D.; Schurig, V. Theoretical approach to the gas chromatogrphic separation of enantiomers on dissolved cyclodextrin derivatives. J. Cromatogr. A 1991, 552, 43–57. [Google Scholar] [CrossRef]
- Juvancz, Z.; Markides, K.E. Enantiomer separation Using Supercritical Fluid chromatography, A promising possibility. LC-GC Int. 1992, 5, 44–56. [Google Scholar]
- West, C. Recent trends in chiral supercritical fluid chromatography. Trends Anal. Chem. 2019, 120, 115648. [Google Scholar] [CrossRef]
- Rudaz, S.; Le Saux, T.; Prat, J.; Gareil, P.; Veuthey, J.L. Ultrashort partial-filling technique in capillary electrophoresis for infinite resolution of tramadol enantiomers and its metabolites with highly sulfated cyclodextrins. Electrophoresis 2004, 25, 2761–2771. [Google Scholar] [CrossRef]
- Wren, S.A.C.; Rowe, R.C. Theoretical aspects of chiral separation in capillary electrophoresis: I. Initial evaluation of a model. J. Chromatogr. A 1992, 603, 235–241. [Google Scholar] [CrossRef]
- Iványi, R.; Jicsinszky, L.; Juvancz, Z.; Roos, N.; Otta, K.; Szejtli, J. Influence of (hydroxy)alkylamino substituents on enantioseparation ability of single-isomer amino-β-cyclodextrin derivatives in chiral capillary electrophoresis. Electrophoresis 2004, 25, 2675–2686. [Google Scholar] [CrossRef] [PubMed]
- Blau, K.; Halket, J.M. (Eds.) Handbook of Derivatives for Chromatography, 2nd ed.; Wiley: New York, NY, USA, 1993; ISBN 978-0-471-92699-3. [Google Scholar]
Structure of Tested Compounds | Permethylated Cyclodextrin Selectors | |||||
---|---|---|---|---|---|---|
R2 | R1 | cis/trans | Alfa Dex | CYDEX-B | Chirasil-Dex | Gamma Dex |
Chrysanthemic acid | ||||||
H | Me | cis | <1.01 | 1.248 | 1.275 | 1.079 |
H | Me | trans | 1.017 | 1.12 | 1.153 | 1.084 |
Me | Me | cis | <1.01 | <1.01 * | 1.013 | <1.01 |
Me | Me | trans | <1.01 * | 1.01 | 1.01 | 1.019 |
Permethrinic acid | ||||||
H | Cl | cis | 1.224 | 1.219 | 1.284 | <1.01 |
H | Cl | trans | 1.14 | 1.142 | 1.194 | 1.095 |
Me | Cl | cis | 1.024 | 1.028 | 1.043 | <1.01 |
Me | Cl | trans | <1.01 | <1.01 | 1.01 | <1.01 |
Deltamethrinic acid | ||||||
Me | Br | cis | <1.01 | 1.038 | 1.046 | <1.01 |
Me | Br | trans | <1.01 | 1.037 | 1.040 | <1.01 |
Substituents of Carboxyl Function (R2) | Chiral Selectivity Value |
---|---|
Methyl ester | 1.043 |
Ethyl ester | <1.023 |
Propyl ester | 1.019 |
Isopropyl ester | <1.01 |
Butyl ester | 1.014 |
Secondary butyl ester | 1.034 |
Tertiary butyl ester | <1.01 |
Compounds | Resolution Values (Rs) | |
---|---|---|
15 mM PMMAβCD | 15 mM TRIMEB | |
trans-deltamethrinic acid | 11.56 | 3.24 |
cis-deltamethrinic acid | 20 | 5.64 |
trans-permethrinic acid | 6.62 | 1.69 |
cis-permethrinic acid | 17.23 | 2.37 |
trans-chrysanthemic acid | 1.08 | <0.5 |
cis-chrysanthemic acid | 8.5 | 1.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juvancz, Z.; Bodáné-Kendrovics, R.; Laczkó, Z.; Iványi, R.; Varga, E. Chiral Separations of Pyrethroic Acids Using Cyclodextrin Selectors. Molecules 2022, 27, 8718. https://doi.org/10.3390/molecules27248718
Juvancz Z, Bodáné-Kendrovics R, Laczkó Z, Iványi R, Varga E. Chiral Separations of Pyrethroic Acids Using Cyclodextrin Selectors. Molecules. 2022; 27(24):8718. https://doi.org/10.3390/molecules27248718
Chicago/Turabian StyleJuvancz, Zoltán, Rita Bodáné-Kendrovics, Zita Laczkó, Róbert Iványi, and Erzsébet Varga. 2022. "Chiral Separations of Pyrethroic Acids Using Cyclodextrin Selectors" Molecules 27, no. 24: 8718. https://doi.org/10.3390/molecules27248718
APA StyleJuvancz, Z., Bodáné-Kendrovics, R., Laczkó, Z., Iványi, R., & Varga, E. (2022). Chiral Separations of Pyrethroic Acids Using Cyclodextrin Selectors. Molecules, 27(24), 8718. https://doi.org/10.3390/molecules27248718