Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications
Abstract
:1. Introduction
2. The Syntheses and Structures of Ti/Zr-substituted POMs
2.1. Ti/Zr-Substituted Monomeric POMs
2.2. Ti/Zr-Substituted Dimeric POMs
2.3. Ti/Zr-Substituted Trimeric POMs
2.4. Ti/Zr-Substituted Tetrameric POMs
2.5. Ti/Zr-Substituted Multimeric POMs
3. The Applications of Representative Ti/Zr-Substituted POMs
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cronin, L.; Müller, A. Special POM themed issue. Chem. Soc. Rev. 2012, 41, 7325–7648. [Google Scholar]
- Misra, A.; Kozma, K.; Streb, C.; Nyman, M. Beyond charge balance: Counter-cations in polyoxometalate chemistry. Angew. Chem. Int. Ed. 2020, 59, 596–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-X.; Zhang, X.-B.; Li, Y.-L.; Huang, S.-L.; Yang, G.-Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260–213275. [Google Scholar] [CrossRef]
- Pope, M.T.; Müller, A. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Coronado, E.; Giménez-Saiz, C.; Gómez-García, C.J. Recent advances in polyoxometalate-containing molecular conductors. Coord. Chem. Rev. 2005, 249, 1776–1796. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, F.P.; Hao, J.; Wei, Y.G. The chemistry of organoimido derivatives of polyoxometalates. Dalton Trans. 2012, 41, 3599–3615. [Google Scholar] [CrossRef]
- Wang, S.S.; Yang, G.Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef]
- Clemente-Juan, J.M.; Coronado, E.; Gaita-Ariño, A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 2012, 41, 7464–7478. [Google Scholar] [CrossRef]
- Long, D.L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self-assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121. [Google Scholar] [CrossRef]
- Gupta, R.; Khan, I.; Hussain, F.; Bossoch, A.M.; Mbomekalle, I.M.; Oliveira, P.D.; Sadakane, M.; Kato, C.; Ichihashi, K.; Inoue, K.; et al. Two new sandwich-type manganese {Mn5}-substituted polyoxotungstates: Syntheses, crystal structures, electrochemistry, and magnetic properties. Inorg. Chem. 2017, 56, 8759–8767. [Google Scholar] [CrossRef]
- Xu, B.B.; Lu, M.; Kang, J.; Wang, D.G.; Brown, J.; Peng, Z.H. Synthesis and optical properties of conjugated polymers containing polyoxometalate clusters as side-chain pendants. Chem. Mater. 2005, 17, 2841–2851. [Google Scholar] [CrossRef]
- Rong, C.; Pope, M.T. Lacunary polyoxometalate anions are. Pi.-acceptor ligands. Characteriza-tion of some tungstoruthenate (II, III, IV, V) heteropolyanions and their atom-transfer reactivity. J. Am. Chem. Soc. 1992, 114, 2932–2938. [Google Scholar] [CrossRef]
- Li, C.; Jimbo, A.; Yamaguchi, K.; Suzuki, K. A protecting group strategy to access stable lacunary polyoxomolybdates for introducing multinuclear metal clusters. Chem. Sci. 2021, 12, 1240–1244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-W.; Zhao, Q.; Chen, C.-A.; Sun, J.-J.; Lv, H.J.; Yang, G.-Y. Chiral {Ni6PW9} cluste-organic framework: Synthesis, structure, and properties. Inorg. Chem. 2022, 61, 7477–7483. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wang, R.J.; Xin, X.; Zhang, M.; Liu, T.F.; Lv, H.J.; Yang, G.-Y. Synergy of nitrogen vacancies and intercalation of carbon species for enhancing sunlight photocatalytic hydrogen production of carbon nitride. Appl. Catal. B Environ. 2022, 314, 121497–121509. [Google Scholar]
- Yonesato, K.; Yamazoe, S.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. A molecular hybrid of an atomically precise silver nanocluster and polyoxometalates for H2 cleavage into protons and electrons. Angew. Chem. Int. Ed. 2021, 60, 16994–16998. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Z.-W.; Li, X.-X.; Zheng, S.-T.; Yang, G.-Y. Multicomponent cooperative assembly of nanoscale boron-rich polyoxotungstates {B30Si6Ni12Ln6W27(OH)26O168}, {B30Si5Ni12Ln7W27(OH)26O166(H2O)}, and {B22Si4Ni12Ln4W36(OH)12O178}. CCS Chem. 2021, 3, 1232–1241. [Google Scholar]
- Xie, S.S.; Jiang, J.J.; Wang, D.; Tang, Z.G.; Mi, R.F.; Chen, L.J.; Zhao, J.W. Tricarboxylic-ligand-decorated lanthanoid-inserted heteropolyoxometalates built by mixed-heteroatom-directing polyoxotungstate units: Syntheses, structures, and electrochemical. Inorg. Chem. 2021, 60, 7536–7544. [Google Scholar] [CrossRef]
- Cai, J.; Ye, R.; Jia, K.; Qiao, X.; Zhao, L.; Liu, J.; Sun, W. pH-controlled construction of lanthanide clusters from lacunary polyoxometalate with single-molecule magnet behavior. Inorg. Chem. Commun. 2020, 112, 107694. [Google Scholar] [CrossRef]
- Li, C.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Self-Assembly of Anionic Polyoxometalate–Organic Architectures Based on Lacunary Phosphomolybdates and Pyridyl Ligands. J. Am. Chem. Soc. 2019, 141, 7687–7692. [Google Scholar] [CrossRef]
- Khajavian, R.; Jodaian, V.; Taghipour, F.; Mague, J.T.; Mirzaei, M. Roles of organic fragments in redirecting crystal/molecular structures of inorganic-organic hybrids based on lacunary Keggin-type polyoxometalates. Molecules 2021, 26, 5994. [Google Scholar] [CrossRef]
- Zheng, S.-T.; Yang, G.-Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.W.; Li, Y.Z.; Chen, L.J.; Yang, G.Y. Research progress on polyoxometalate-based transition-metal–rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Commun. 2016, 52, 4418–4445. [Google Scholar] [CrossRef]
- Knoth, W.H.; Domaille, P.J.; Roe, D.C. Halometal derivatives of W12PO403− and related 183W NMR studies. Inorg. Chem. 1983, 22, 198–201. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Maksimov, G.M.; Maksimovskaya, R.I.; Kovaleva, L.A.; Fedotov, M.A.; Grigoriev, V.A.; Hill, C.L. A dimeric titanium-containing polyoxometalate. Synthesis, characterization, and catalysis of H2O2-based thioether oxidation. Inorg. Chem. 2000, 39, 3828–3837.26. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.-Y.; Shan, Q.-J.; Gong, J.; Lu, R.-Q.; Wang, D.-R. Synthesis, properties and characterization of Dawson-type tungstophosphate heteropoly complexes substituted by titanium and peroxotitanium. J. Chem. Soc. Dalton Trans. 1997, 23, 4525–4528. [Google Scholar] [CrossRef]
- Sakai, Y.; Kitakoga, Y.; Hayashi, K.; Yoza, K.; Nomiya, K. Isolation and molecular structure of a monomeric, tris [peroxotitanium (IV)]-substituted α-Dawson polyoxometalate derived from the tetrameric anhydride form composed of four tris [titanium (IV)]-substituted α-Dawson substructures and four bridging titanium (IV) octahedral groups. Eur. J. Inorg. Chem. 2004, 23, 4646–4652. [Google Scholar]
- Hayashi, K.; Takahashi, M.; Nomiya, K. Novel Ti–O–Ti bonding species constructed in a metal-oxide cluster. Dalton Trans. 2005, 23, 3751–3756. [Google Scholar] [CrossRef]
- Hayashi, K.; Murakami, H.; Nomiya, K. Novel Ti−O−Ti bonding species constructed in a metal-oxide cluster: Reaction products of bis (oxalato) oxotitanate (IV) with the dimeric, 1,2-dititanium (IV)-substituted Keggin polyoxotungstate. Inorg. Chem. 2006, 45, 8078–8085. [Google Scholar] [CrossRef]
- Nomiya, K.; Mouri, Y.; Sakai, Y.; Matsunaga, S. Reaction products of titanium (IV) sulfate with the two, dimeric precursors, 1,2,3-tri-titanium (IV)- and 1,2-di-titanium (IV)-substituted α-Keggin polyoxometalates (POMs), under acidic conditions. A tetra-titanium (IV) oxide cluster and one coordinated sulfate ion grafted on a di-lacunary Keggin POM. Inorg. Chem. Commun. 2012, 19, 10–14. [Google Scholar]
- An, H.Y.; Zhang, Y.M.; Hou, Y.J.; Hu, T.; Yang, W.; Chang, S.Z.; Zhang, J.J. Hybrid dimers based on metal-substituted Keggin polyoxometalates (metal = Ti, Ln) for cyanosilylation catalysis. Dalton Trans. 2018, 47, 9079–9089. [Google Scholar] [CrossRef]
- Solé-Daura, A.; Zhang, T.; Fouilloux, H.; Robert, C.; Thomas, C.M.; Chamoreau, L.-M.; Carbó, J.J.; Proust, A.; Guillemot, G.; Poblet, J.M. Catalyst design for alkene epoxidation by molecular analogues of heterogeneous titanium-silicalite catalysts. ACS Catal. 2020, 10, 4737–4750. [Google Scholar] [CrossRef]
- Chauveau, F.; Eberle, J.; Lefebvre, J. Synthèse de molécules élaborées à partir de métaux de transition: Un polyoxométallate mixte de tungstène VI et de zirconium IV. Nouv. J. Chim. 1985, 9, 315. [Google Scholar]
- Villanneau, R.; Carabineiro, H.; Carrier, X.; Thouvenot, R.; Herson, P.; Lemos, F.; Ribeiro, F.R.; Che, M. Synthesis and characterization of Zr (IV) polyoxotungstates as molecular analogues of zirconia-supported tungsten catalysts. J. Phys. Chem. B 2004, 108, 12465–12471. [Google Scholar] [CrossRef]
- Carabineiro, H.; Villanneau, R.; Carrier, X.; Herson, P.; Lemos, F.; Ribeiro, F.R.; Proust, A.; Che, M. Zirconium-substituted isopolytungstates: Structural models for zirconia-supported tungsten catalysts. Inorg. Chem. 2006, 45, 1915–1923. [Google Scholar] [CrossRef]
- Sokolov, M.N.; Izarova, N.V.; Peresypkina, E.V.; Mainichev, D.A.; Fedin, V.P. Zirconium and hafnium aqua complexes [(H2O)3M(P2W17O61)]6−: Synthesis, characterization and substitution of water by chiral ligand. Inorg. Chim. Acta 2009, 362, 3756–3762. [Google Scholar] [CrossRef]
- Falber, A.; Burton-Pye, B.P.; Radivojevic, I.; Todaro, L.; Saleh, R.; Francesconi, L.C.; Drain, C.M. Ternary porphyrinato HfIV and ZrIV polyoxometalate complexes. Eur. J. Inorg. Chem. 2009, 2009, 2459–2466. [Google Scholar] [CrossRef]
- Radivojevic, I.; Ithisuphalap, K.; Burton-Pye, B.P.; Saleh, R.; Francesconi, L.C.; Drain, C.M. Ternary phthalocyanato Hf (IV) and Zr (IV) polyoxometalate complexes. RSC Adv. 2013, 3, 2174–2177. [Google Scholar] [CrossRef]
- Lin, Y.; Weakley, T.J.R.; Rapko, B.; Finke, R.G. Polyoxoanions derived from A-β-SiW9O3410−: Synthesis, single-crystal structural determination, and solution structural characterization by 183W NMR and IR of A-β-Si2W18Ti6O7714-. Inorg. Chem. 1993, 32, 5095–5101. [Google Scholar] [CrossRef]
- Nomiya, K.; Takahashi, M.; Ohsawa, K.; Widegren, J.A. Synthesis and characterization of tri-titanium (IV)-1,2,3-substituted α-Keggin polyoxotungstates with heteroatoms P and Si. Crystal structure of the dimeric, Ti–O–Ti bridged anhydride form K10H2[α,α-P2W18Ti6O77]⋅17H2O and confirmation of dimeric forms in aqueous solution by ultracentrifugation molecular weight measurements. J. Chem. Soc. Dalton Trans. 2001, 19, 2872–2878. [Google Scholar] [CrossRef]
- McGlone, T.; Vila-Nadal, L.; Miras, H.N.; Long, D.L.; Poblet, J.M.; Cronin, L. Assembly of titanium embedded polyoxometalates with unprecedented structural features. Dalton Trans. 2010, 39, 11599–11604. [Google Scholar] [CrossRef]
- Al-Kadamany, G.; Bassil, B.S.; Raad, F.; Kortz, U. The oxalato-titanium-containing tungstophosphate (V) dimers, [Ti8(C2O4)8P2W18O76(H2O)4]18− and [Ti6(C2O4)4P4W32O124]20−. J Clust. Sci. 2014, 25, 867–878. [Google Scholar] [CrossRef]
- Matsuki, Y.; Hoshino, T.; Takaku, S.; Matsunaga, S.; Nomiya, K. Synthesis and molecular structure of a water-soluble, dimeric tri-titanium (IV)-substituted Wells−Dawson polyoxometalate containing two bridging (C5Me5)Rh2+ groups. Inorg. Chem. 2015, 54, 11105–11113. [Google Scholar] [CrossRef] [PubMed]
- Nomiya, K.; Takahashi, M.; Widegren, J.A.; Aizawa, T.; Sakai, Y.; Kasuga, N.C. Synthesis and pH-variable ultracentrifugation molecular weight measurements of the dimeric, Ti–O–Ti bridged anhydride form of a novel di-TiIV-1,2-substituted α-Keggin polyoxotungstate. Molecular structure of the [(α-1,2-PW10Ti2O39)2]10− polyoxoanion. J. Chem. Soc. Dalton Trans. 2002, 19, 3679–3685. [Google Scholar] [CrossRef]
- Goto, Y.; Kamata, K.; Yamaguchi, K.; Uehara, K.; Hikichi, S.; Mizuno, N. Synthesis, structural characterization, and catalytic performance of dititanium-substituted γ-Keggin silicotungstate. Inorg. Chem. 2006, 45, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.X.; Li, D.L.; Wu, H.B.; Zhang, C.L.; Wang, X.H. Synthesis and structure of dititanium-containing 10-tungstogermanate [{γ-GeTi2W10O36(OH)2}2(μ-O)2]8−. Inorg. Chem. Commun. 2008, 11, 835–836. [Google Scholar] [CrossRef]
- Hussain, F.; Bassil, B.S.; Kortz, U.; Kholdeeva, O.A.; Timofeeva, M.N.; de Oliveira, P.; Keita, B.; Nadjo, L. Dititanium-containing 19-tungstodiarsenate (III) [Ti2(OH)2As2W19O67(H2O)]8−: Synthesis, structure, electrochemistry, and oxidation catalysis. Chem. Eur. J. 2007, 13, 4733–4742. [Google Scholar] [CrossRef]
- Murakami, H.; Hayashi, K.; Tsukada, I.; Hasegawa, T.; Yoshida, S.; Miyano, R.; Kato, C.N.; Nomiya, K. Novel solid-state 8H+-heteropolyacid. Synthesis and molecular structure of a free-acid form of a Dawson-Type sandwich complex, [Ti2{P2W15O54(OH2)2}2]8−. Bull. Chem. Soc. Jpn. 2007, 80, 2161–2169. [Google Scholar] [CrossRef]
- Yoshida, S.; Murakami, H.; Sakai, Y.; Nomiya, K. Syntheses, molecular structures and pH-dependent monomer-dimer equilibria of Dawson α2-monotitanium (IV)-substituted polyoxometalates. Dalton Trans. 2008, 34, 4630–4638. [Google Scholar] [CrossRef]
- Xu, L.J.; Zhou, W.Z.; Zhang, L.Y.; Li, B.; Zang, H.Y.; Wang, Y.H.; Li, Y.G. Organic-inorganic hybrid assemblies based on Ti-substituted polyoxometalates for photocatalytic dye degradation. CrystEngComm 2015, 17, 3708–3714. [Google Scholar] [CrossRef]
- Gaunt, A.J.; May, L.; Collison, D.; Fox, O.D. A novel zirconium polyoxometalate complex that contains both a coordinated saturated anion, [PMo12O40]3−, and a coordinated unsaturated anion, [PMo11O39]7−. Inorg. Chem. 2003, 42, 5049–5051. [Google Scholar] [CrossRef]
- Cai, L.L.; Li, Y.X.; Yu, C.J.; Ji, H.M.; Liu, Y.; Liu, S.X. Spontaneous resolution of a chiral polyoxometalate: Synthesis, crystal structures and properties. Inorg. Chim. Acta 2009, 362, 2895–2899. [Google Scholar] [CrossRef]
- Niu, Y.J.; Liu, B.; Xue, G.L.; Hu, H.M.; Fu, F.; Wang, J.W. A new sandwich polyoxometalate based on Keggin-type monolacunary polyoxotungstoborate anion, [Zr(α-BW11O39)2]14−. Inorg. Chem. Commun. 2009, 12, 853–855. [Google Scholar] [CrossRef]
- Kato, C.N.; Shinohara, A.; Hayashi, K.; Nomiya, K. Syntheses and X-ray crystal structures of zirconium (IV) and hafnium (IV) complexes containing monovacant Wells-Dawson and Keggin polyoxotungstates. Inorg. Chem. 2006, 45, 8108–8119. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Hill, C.L. Multiple reversible protonation of polyoxoanion surfaces: Direct observation of dynamic structural effects from proton transfer. Angew. Chem. Int. Ed. 2007, 46, 3877–3880. [Google Scholar] [CrossRef] [Green Version]
- Kholdeeva, O.A.; Maksimov, G.M.; Maksimovskaya, R.I.; Vanina, M.P.; Trubitsina, T.A.; Naumov, D.Y.; Kolesov, B.A.; Antonova, N.S.; Carbó, J.J.; Poblet, J.M. ZrIV-monosubstituted Keggin-type dimeric polyoxometalates: Synthesis, characterization, catalysis of H2O2-based oxidations, and theoretical study. Inorg. Chem. 2006, 45, 7224–7234. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Kikukawa, Y.; Tsuchida, K.; Nakagawa, Y.; Uehara, K.; Yamaguchi, K.; Mizuno, N. Synthesis and structural characterization of a γ-Keggin-type dimeric silicotungstate with a Bis (µ-hydroxo) dizirconium core [(γ-SiW10O36)2Zr2(µ-OH)2]10−. Inorg. Chem. 2007, 46, 8502–8504. [Google Scholar] [CrossRef]
- Sokolov, M.N.; Izarova, N.V.; Peresypkina, E.V.; Virovets, A.V.; Fedin, V.P. Synthesis and structures of dinuclear ZrIV and HfIV hydroxo complexes with the monolacunar Keggin and Dawson anions. Russ. Chem. Bull. 2009, 58, 507–512. [Google Scholar] [CrossRef]
- Villanneau, R.; Racimor, D.; Messner-Henning, E.; Rousselière, H.; Picart, S.; Thouvenot, R.; Proust, A. Insights into the coordination chemistry of phosphonate derivatives of heteropolyoxotungstates. Inorg. Chem. 2011, 50, 1164–1166. [Google Scholar] [CrossRef]
- Villanneau, R.; Djamâa, A.B.; Chamoreau, L.-M.; Gontard, G.; Proust, A. Bisorganophosphonyl and -organoarsenyl derivatives of heteropolytungstates as hard ligands for early-transition-metal and lanthanide cations. Eur. J. Inorg. Chem. 2013, 2013, 1815–1820. [Google Scholar] [CrossRef]
- Fang, X.; Anderson, T.M.; Hill, C.L. Enantiomerically pure polytungstates: Chirality transfer through zirconium coordination centers to nanosized inorganic clusters. Angew. Chem. Int. Ed. 2005, 44, 3540–3544. [Google Scholar] [CrossRef]
- Leclerc-Laronze, N.; Marrot, J.; Haouas, M.; Taulelle, F.; Cadot, E. Slow-proton dynamics within a zirconium-containing sandwich-like complex based on the trivacant anion α-[SiW9O34]10− synthesis, structure and NMR spectroscopy. Eur. J. Inorg. Chem. 2008, 31, 4920–4926. [Google Scholar] [CrossRef]
- Chen, L.L.; Li, L.L.; Liu, B.; Xue, G.L.; Hu, H.M.; Fu, F.; Wang, J.W. A zirconium-containing sandwich-type dimer based on trivacant α- and β-[GeW9O34]10− units, [Zr3O(OH)2(α-GeW9O34)(β-GeW9O34)]12−. Inorg. Chem. Commun. 2009, 12, 1035–1037. [Google Scholar] [CrossRef]
- Saku, Y.; Sakai, Y.; Shinohara, A.; Hayashi, K.; Yoshida, S.; Kato, C.N.; Yoza, K.; Nomiya, K. Sandwich-type HfIV and ZrIV complexes composed of tri-lacunary Keggin polyoxometalates: Structure of [M3(μ-OH)3(A-α-PW9O34)2]9− (M = Hf and Zr). Dalton Trans. 2009, 5, 805–813. [Google Scholar] [CrossRef]
- Wei, K.Y.; Yang, T.; Qin, S.J.; Ma, X.; Li, X.X.; Yang, G.Y. Hydrothermal synthesis, structural characterization and proton-conducting property of a 3-D framework based on Zr3Na3-substituted polyoxometalate building blocks. Chin. J. Struct. Chem. 2016, 35, 1461–1468. [Google Scholar]
- Zhang, Z.; Zhao, J.-W.; Yang, G.-Y. Tri-ZrIV substituted sandwiched polyoxometalate with mixed trilacunary Keggin-/Dawson-type polyoxotungstate units. Eur. J. Inorg. Chem. 2017, 2017, 3244–3247. [Google Scholar] [CrossRef]
- Gaunt, A.J.; May, I.; Collison, D.; Travis Holman, K.; Pope, M.T. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32− and [Zr4(μ3-O)2(μ2-OH)2(H2O)4(P2W16O59)2]14−. J. Mol. Struct. 2003, 656, 101–106. [Google Scholar] [CrossRef]
- Fang, X.; Anderson, T.M.; Hou, Y.; Hill, C.L. Stereoisomerism in polyoxometalates: Structural and spectroscopic studies of bis (malate)-functionalized cluster systems. Chem. Commun. 2005, 40, 5044–5046. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Han, H.Y.; Wang, Y.G.; Wang, X.; Li, Y.G.; Wang, E.B. Modification of tetranuclear zirconium-substituted polyoxometalates-syntheses, structures, and peroxidase-like catalytic activities. Eur. J. Inorg. Chem. 2013, 2013, 1926–1934. [Google Scholar] [CrossRef]
- Kikukawa, Y.; Yamaguchi, S.; Tsuchida, K.; Nakagawa, Y.; Uehara, K.; Yamaguchi, K.; Mizuno, N. Synthesis and catalysis of di- and tetranuclear metal sandwich-type silicotungstates [(γ-SiW10O36)2M2(µ-OH)2]10− and [(γ-SiW10O36)2M4(µ4-O)(µ-OH)6]8− (M = Zr or Hf). J. Am. Chem. Soc. 2008, 130, 5472–5478. [Google Scholar] [CrossRef]
- Chen, L.L.; Liu, Y.; Chen, S.H.; Hu, H.M.; Fu, F.; Wang, J.W.; Xue, G.L. Acetate-functionalized zirconium-substituted tungstogermanate, [Zr4O2(OH)2(CH3COO)2(α-GeW10O37)2]12−. J. Clust. Sci. 2009, 20, 331–340. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.-X.; Zhang, C.-D.; Tan, R.-K.; Ma, F.-J.; Li, S.-J.; Zhang, Y.-Y. An acetate-functionalized tetranuclear zirconium sandwiching polyoxometalate complex. Eur. J. Inorg. Chem. 2010, 2010, 3473–3477. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.-L.; Yang, G.-Y. Two inorganic-organic hybrid polyoxotungstates constructed from tetra-ZrIV-substituted sandwich-type germanotungstates functionalized by tris ligand. Inorg. Chem. Commun. 2017, 85, 32–36. [Google Scholar] [CrossRef]
- Ni, Z.-H.; Zhang, Z.; Yang, G.-Y. Two new tetra-Zr (IV)-substituted sandwich-type polyoxometalates functionalized by different organic amine ligands. J. Clust. Sci. 2018, 29, 1185–1191. [Google Scholar] [CrossRef]
- Ni, Z.-H.; Li, H.-L.; Li, X.-Y.; Yang, G.-Y. Zr4-substituted polyoxometalate dimers decorated by D-tartaric acid/glycolic acid: Syntheses, structures and optical/electrochemical properties. CrystEngComm 2019, 21, 876–883. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Zhang, Z.; Li, H.-L.; Li, X.-Y.; Yang, G.-Y. A new oxalate-functionalized tetra-ZrⅣ-substituted sandwich-type silicotungstate: Hydrothermal synthesis, structural characterization and catalytic oxidation of thioethers. Eur. J. Inorg. Chem. 2019, 2019, 417–422. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhao, J.W.; Zhang, Z.; Sun, J.J.; Li, X.Y.; Yang, B.F.; Yang, G.Y. Enantiomeric polyoxometalates based on malate chirality-inducing tetra-ZrIV-substituted Keggin dimeric clusters. Inorg. Chem. 2019, 58, 4657–4664. [Google Scholar] [CrossRef]
- Al-Kadamany, G.; Mal, S.S.; Milev, B.; Donoeva, B.G.; Maksimovskaya, R.I.; Kholdeeva, O.A.; Kortz, U. Hexazirconium- and hexahafnium-containing tungstoarsenates (III) and their oxidation catalysis properties. Chem. Eur. J. 2010, 16, 11797–11800. [Google Scholar] [CrossRef]
- Bassil, S.B.; Dickman, M.H.; Kortz, U. Synthesis and structure of asymmetric zirconium-substituted silicotungstates, [Zr6O2(OH)4(H2O)3(β-SiW10O37)3]14− and [Zr4O2(OH)2(H2O)4(β-SiW10O37)2]10−. Inorg. Chem. 2006, 45, 2394–2396. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.L.; Wang, Y.L.; Yang, G.Y. Syntheses, structures, and electrochemical properties of three new acetate-functionalized zirconium-substituted germanotungstates: From dimer to tetramer. Inorg. Chem. 2019, 58, 2372–2378. [Google Scholar] [CrossRef]
- Bassil, B.S.; Mal, S.S.; Dickman, M.H.; Kortz, U.; Oelrich, H.; Walder, L. 6-peroxo-6-zirconium crown and its hafnium analogue embedded in a triangular polyanion: [M6(O2)6(OH)6(γ-SiW10O36)3]18− (M = Zr, Hf). J. Am. Chem. Soc. 2008, 130, 6696–6697. [Google Scholar] [CrossRef]
- Al-Kadamany, G.A.; Hussain, F.; Mal, S.S.; Dickman, M.H.; Leclerc-Laronze, N.; Marrot, J.; Cadot, E.; Kortz, U. Cyclic Ti9 Keggin trimers with tetrahedral (PO4) or octahedral (TiO6) capping groups. Inorg. Chem. 2008, 47, 8574–8576. [Google Scholar] [CrossRef] [PubMed]
- Nsouli, N.H.; Bassil, B.S.; Dickman, M.H.; Kortz, U.; Keita, B.; Nadjo, L. Synthesis and structure of dilacunary decatungstogermanate, [γ-GeW10O36]8−. Inorg. Chem. 2006, 45, 3858–3860. [Google Scholar] [CrossRef]
- Ren, Y.-H.; Liu, S.-X.; Cao, R.-G.; Zhao, X.-Y. Cao, J.-F.; Gao, C.-Y. Two trimeric tri-TiIV-substituted Keggin tungstogermanates based on tetrahedral linkers. Inorg. Chem. Commun. 2008, 11, 1320–1322. [Google Scholar] [CrossRef]
- Hoshino, T.; Isobe, R.; Kaneko, T.; Matsuki, Y.; Nomiya, K. Synthesis and molecular structure of a novel compound containing a carbonate-bridged hexacalcium cluster cation assembled on a trimeric trititanium (IV)-substituted Wells-Dawson polyoxometalate. Inorg. Chem. 2017, 56, 9585–9593. [Google Scholar] [CrossRef]
- Kortz, U.; Hamzeh, S.S.; Nasser, N.A. Supramolecular structures of titanium (IV)-substituted Wells-Dawson polyoxotungstates. Chem. Eur. J. 2003, 9, 2945–2952. [Google Scholar] [CrossRef]
- Nishikawa, T.; Sasaki, Y. The crystal structure of monium dodecamolybdotetraarsenate (V) tetrahydrate, (NH4)4H4As4Mo12O50·4H2O. Chem. Lett. 1975, 4, 1185–1186. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Yoza, K.; Katoa, C.N.; Nomiya, K. A first example of polyoxotungstate-based giant molecule. Synthesis and molecular structure of a tetrapod-shaped Ti–O–Ti bridged anhydride form of Dawson tri-titanium (IV)-substituted polyoxotungstate. Dalton Trans. 2003, 18, 3581–3586. [Google Scholar] [CrossRef]
- Sakai, Y.; Ohta, S.; Shintoyo, Y.; Yoshida, S.; Taguchi, Y.; Matsuki, Y.; Matsunaga, S.; Nomiya, K. Encapsulation of anion/cation in the central cavity of tetrameric polyoxometalate, composed of four trititanium (IV)-substituted α-Dawson subunits, initiated by protonation/deprotonation of the bridging oxygen atoms on the intramolecular surface. Inorg. Chem. 2011, 50, 6575–6583. [Google Scholar] [CrossRef]
- Sakai, Y.; Yoza, K.; Kato, C.N.; Nomiya, K. Tetrameric, trititanium (IV)-substituted polyoxo-tungstates with an α-Dawson substructure as soluble metal-oxide analogues: Molecular structure of the Giant “Tetrapod” [(α-1,2,3-P2W15Ti3O62)4{μ3-Ti(OH)3}4Cl]45−. Chem. Eur. J. 2003, 9, 4077–4083. [Google Scholar] [CrossRef]
- Sakai, Y.; Yoshida, S.; Hasegawa, T.; Murakami, H.; Nomiya, K. Tetrameric, tri-titanium (IV)-substituted polyoxometalates with an α-Dawson substructure as soluble metal oxide analogues. synthesis and molecular structure of three giant ‘‘tetrapods’’ encapsulating different anions (Br−, I−, and NO3−). Bull. Chem. Soc. 2007, 80, 1965–1974. [Google Scholar] [CrossRef]
- Hussain, F.; Bassil, B.S.; Bi, L.H.; Reicke, M.; Kortz, U. Structural control on the nanomolecular scale: Self-assembly of the polyoxotungstate wheel [{β-Ti2SiW10O39}4]24−. Angew. Chem. Int. Ed. 2004, 43, 3485–3488. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-Y.; Bassil, B.S.; Lin, Z.-G.; Haider, A.; Cao, J.; Stephan, H.; Viehweger, K.; Kortz, U. Ti7-containing, tetrahedral 36-tungsto-4-arsenate (III) [Ti6(TiO6)(AsW9O33)4]20−. Dalton Trans. 2014, 43, 16143–16146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.-L.; Lian, C.; Yin, D.-P.; Jia, Z.-Y.; Yang, G.-Y. A new hepta-nuclear Ti-oxo-cluster-substituted tungstoantimonate and its catalytic oxidation of thioethers. Cryst. Growth Des. 2019, 19, 376–380. [Google Scholar] [CrossRef]
- Li, H.-L.; Lian, C.; Yang, G.-Y. A ring-shaped 12-Ti-substituted poly (polyoxometalate): Synthesis, structure, and catalytic properties. Sci. China Chem. 2022, 65, 892–897. [Google Scholar] [CrossRef]
- Chen, W.-C.; Yan, L.-K.; Wu, C.-X.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. Assembly of Keggin-/Dawson-type polyoxotungstate clusters with different metal units and SeO32− heteroanion templates. Cryst. Growth Des. 2014, 14, 5099–5110. [Google Scholar] [CrossRef]
- Li, H.L.; Wang, Y.L.; Zhang, Z.; Yang, B.F.; Yang, G.Y. A new tetra-Zr (IV)-substituted polyoxotungstate aggregate. Dalton Trans. 2018, 47, 14017–14024. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.L.; Yang, G.Y. An unprecedented Zr containing polyoxometalate tetramer with mixed trilacunary/dilacunary Keggin-type polyoxotungstate units. Acta Crystallogr. Sect. C Struct. Chem. 2018, 74, 1284–1288. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.L.; Liu, Y.; Hang, S.-L.; Yang, G.Y. Three ring-shaped Zr (IV)-substituted silicotungstates: Syntheses, structures and their properties. Nanoscale 2020, 12, 18333–18341. [Google Scholar] [CrossRef]
- Li, H.L.; Lian, C.; Yin, D.P.; Yang, G.Y. Three Zr (IV)-substituted polyoxotungstate aggregates: Structural transformation from tungstoantimonate to tungstophosphate induced by pH. Inorg. Chem. 2020, 59, 12842–12849. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Wang, Y.; Yao, L.Y.; Yang, G.Y. Hepta-Zr-incorporated polyoxometalate assembly. Inorg. Chem. 2022, 61, 10410–10416. [Google Scholar] [CrossRef]
- Huang, L.; Wang, S.S.; Zhao, J.W.; Cheng, L.; Yang, G.Y. Synergistic combination of multi-ZrIV cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate. J. Am. Chem. Soc. 2014, 136, 7637–7642. [Google Scholar] [CrossRef] [PubMed]
- Chou, P.-T.; Chi, Y.; Chung, M.-W.; Lin, C.-C. Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. Coord. Chem. Rev. 2011, 255, 2653–2665. [Google Scholar] [CrossRef]
- Ma, D.-L.; Ma, V.P.-Y.; Chan, D.S.-H.; Leung, K.-H.; He, H.-Z.; Leung, C.-H. Recent advances in luminescent heavy metal complexes for sensing. Coord. Chem. Rev. 2012, 256, 3087–3113. [Google Scholar] [CrossRef]
- Daniel, C. Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coord. Chem. Rev. 2015, 282–283, 19–32. [Google Scholar] [CrossRef]
- Gómez-Coca, S.; Aravena, D.; Morales, R.; Ruiz, E. Large magnetic anisotropy in mononuclear metal complexes. Coord. Chem. Rev. 2015, 289–290, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Antonova, N.S.; Carbo, J.J.; Kortz, U.; Kholdeeva, O.A.; Poblet, J.M. Mechanistic insights into alkene epoxidation with H2O2 by Ti-and other TM-containing polyoxometalates: Role of the metal nature and coordination environment. J. Am. Chem. Soc. 2010, 132, 7488–7497. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Kovaleva, L.A.; Maksimovskaya, R.I.; Maksimov, G.M. Kinetics and mechanism of thioether oxidation with H2O2 in the presence of Ti (IV)-substituted heteropolytungstates. J. Mol. Catal. A Chem. 2000, 158, 223–229. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Trubitsina, T.A.; Maksimovskaya, R.I.; Golovin, A.V.; Neiwert, W.A.; Kolesov, B.A.; López, X.; Poblet, J.M. First isolated active titanium peroxo complex: Characterization and theoretical study. Inorg. Chem. 2004, 43, 2284–2292. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Trubitsina, T.A.; Maksimov, G.M.; Golovin, A.V.; Maksimovskaya, R.I. Synthesis, characterization, and reactivity of Ti (IV)-monosubstituted Keggin polyoxometalates. Inorg. Chem. 2005, 44, 1635–1642. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Trubitsina, T.A.; Timofeeva, M.N.; Maksimov, G.M.; Maksimovskaya, R.I.; Rogov, V.A. The role of protons in cyclohexene oxidation with H2O2 catalysed by Ti (IV)-monosubstituted Keggin polyoxometalate. J. Mol. Catal. A Chem. 2005, 232, 173–178. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Maksimovskaya, R.I. Titanium- and zirconium-monosubstituted polyoxometalates as molecular models for studying mechanisms of oxidation catalysis. J. Mol. Catal. A Chem. 2007, 262, 7–24. [Google Scholar] [CrossRef]
- Donoeva, B.G.; Trubitsina, T.A.; Antonova, N.S.; Carbó, J.J.; Poblet, J.M.; Al-Kadamany, G.; Kortz, U.; Kholdeeva, O.A. Epoxidation of alkenes with H2O2 catalyzed by dititanium-containing 19-tungstodiarsenate (III): Experimental and theoretical studies. Eur. J. Inorg. Chem. 2010, 2010, 5312–5317. [Google Scholar] [CrossRef]
- Jimenez-Lozano, P.; Ivanchikova, I.D.; Kholdeeva, O.A.; Poblet, J.M.; Carbo, J.J. Alkene oxidation by Ti-containing polyoxometalates. unambiguous characterization of the role of the protonation state. Chem. Commun. 2012, 48, 9266–9268. [Google Scholar] [CrossRef]
- Jimenez-Lozano, P.; Skobelev, I.Y.; Kholdeeva, O.A.; Poblet, J.M.; Carbo, J.J. Alkene epoxidation catalyzed by Ti-containing polyoxometalates: Unprecedented beta-oxygen transfer mechanism. Inorg. Chem. 2016, 55, 6080–6084. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Mazaud, L.; Chamoreau, L.-M.; Paris, C.; Proust, A.; Guillemot, G. Unveiling the active surface sites in heterogeneous titanium-based silicalite epoxidation catalysts: Input of silanol-functionalized polyoxotungstates as soluble analogues. ACS Catal. 2018, 8, 2330–2342. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Solé-Daura, A.; Fouilloux, H.; Poblet, J.M.; Proust, A.; Carbó, J.J.; Guillemot, G. Reaction pathway discrimination in alkene oxidation reactions by designed Ti-siloxy-polyoxometalates. ChemCatChem 2021, 13, 1220–1229. [Google Scholar] [CrossRef]
- Skobelev, I.Y.; Zalomaeva, O.V.; Kholdeeva, O.A.; Poblet, J.M.; Carbo, J.J. Mechanism of thioether oxidation over di- and tetrameric Ti centres: Kinetic and DFT studies based on model Ti-containing polyoxometalates. Chem. Eur. J. 2015, 21, 14496–14506. [Google Scholar] [CrossRef]
- Wang, K.-Y.; Lin, Z.G.; Bassil, B.S.; Xing, X.L.; Haider, A.; Keita, B.; Zhang, G.J.; Silvestru, C.; Kortz, U. Ti2--containing 18-tungsto-2-arsenate (III) monolacunary host and the incorporation of a phenylantimony (III) guest. Inorg. Chem. 2015, 54, 10530–10532. [Google Scholar] [CrossRef]
- Dupré, N.; Rémy, P.; Micoine, K.; Boglio, C.; Thorimbert, S.; Lacôte, E.; Hasenknopf, B.; Malacria, M. Chemoselective catalysis with organosoluble Lewis acidic polyoxotungstates. Chem. Eur. J. 2010, 16, 7256–7264. [Google Scholar] [CrossRef]
- Absillis, G.; Parac-Vogt, T.N. Peptide bond hydrolysis catalyzed by the Wells−Dawson Zr(α2--P2W17O61)2 polyoxometalate. Inorg. Chem. 2012, 51, 9902–9910. [Google Scholar] [CrossRef]
- Stroobants, K.; Absillis, G.; Moelants, E.; Proost, P.; Parac-Vogt, T.N. Regioselective hydrolysis of human serum albumin by Zr (IV)-substituted polyoxotungstates at the interface of positively charged protein surface patches and negatively charged amino acid residues. Chem. Eur. J. 2014, 20, 3894–3897. [Google Scholar] [CrossRef] [PubMed]
- Stroobants, K.; Goovaerts, V.; Absillis, G.; Bruylants, G.; Moelants, E.; Proost, P.; Parac-Vogt, T.N. Molecular origin of the hydrolytic activity and fixed regioselectivity of a Zr (IV)-substituted polyoxotungstate as artificial protease. Chem. Eur. J. 2014, 20, 9567–9577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, H.G.; Absillis, G.; Janssens, R.; Proost, P.; Parac-Vogt, T.N. Highly amino acid selective hydrolysis of myoglobin at aspartate residues as promoted by zirconium(IV)-substituted polyoxometalates. Angew. Chem. Int. Ed. 2015, 54, 7391–7394. [Google Scholar] [CrossRef] [PubMed]
- Ly, H.G.; Mihaylov, T.; Absillis, G.; Pierloot, K.; Parac-Vogt, T.N. Reactivity of dimeric tetrazirconium (IV) Wells-Dawson polyoxometalate toward dipeptide hydrolysis studied by a combined experimental and density functional theory approach. Inorg. Chem. 2015, 54, 11477–11492. [Google Scholar] [CrossRef] [PubMed]
- Sap, A.; De Zitter, E.; Van Meervelt, L.; Parac-Vogt, T.N. Structural characterization of the complex between hen egg-white lysozyme and Zr(IV) -substituted Keggin polyoxometalate as artificial protease. Chem. Eur. J. 2015, 21, 11692–11695. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Z.; Lv, H.; Yang, G. Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications. Molecules 2022, 27, 8799. https://doi.org/10.3390/molecules27248799
Ni Z, Lv H, Yang G. Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications. Molecules. 2022; 27(24):8799. https://doi.org/10.3390/molecules27248799
Chicago/Turabian StyleNi, Zhihui, Hongjin Lv, and Guoyu Yang. 2022. "Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications" Molecules 27, no. 24: 8799. https://doi.org/10.3390/molecules27248799
APA StyleNi, Z., Lv, H., & Yang, G. (2022). Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications. Molecules, 27(24), 8799. https://doi.org/10.3390/molecules27248799