Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed (Brassica napus L.)
Abstract
:1. Introduction
2. Technology for Obtaining Extracts from Rapeseed (Brassica napus L.)
2.1. Conventional Extraction Methods
2.2. Modern and Greener Extraction Methods
3. Biologically Active Compounds in Rapeseed (Brassica napus L.)
3.1. The Content of Sterols in Rapeseed
3.2. The Content of Phenolic Compounds in Rapeseed
3.3. Vitamins and Glucosinolates in Rapeseed
3.4. Mineral Composition of Rapeseed
3.5. Fatty Acid Composition of Rapeseed
4. Pharmacological Properties and Therapeutic Activity of Rapeseed (Brassica napus L.)
4.1. Rapeseed in Diabetes and Obesity
4.2. Rapeseed in Treatment of Cardiovascular Diseases
4.3. Antioxidant Properties of Rapeseed
4.4. Antiviral and Antibacterial Activity of Rapeseed
4.5. Anticancer Properties of Rapeseed
4.6. Rapeseed in Treatment of Hypertension
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iniguez-Luy, F.L.; Federico, M.L. The Genetics of Brassica napus. In Genetics and Genomics of the Brassicaceae; Schmidt, R., Bancroft, I., Eds.; Springer: New York, NY, USA, 2011; Volume 9, pp. 291–322. [Google Scholar] [CrossRef]
- Tetteh, E.T.; de Koff, J.P.; Pokharel, B.; Link, R.; Robbins, C. Effect of Winter Canola Cultivar on Seed Yield, Oil, and Protein Content. Agron. J. 2019, 111, 2811–2820. [Google Scholar] [CrossRef] [Green Version]
- Orazbayev, K.; Zheksembiev, R.K.; Digarbayeva, A.M. Cultivation of rapeseed as an intermediate fodder crop in the foothill irrigated conditions of the Zailiysky Alatau. Vestn. KazNU. Biol. Ser. 2011, 52, 149–151. Available online: https://bb.kaznu.kz/index.php/biology/article/view/438 (accessed on 8 March 2021).
- Yerzhanova, S.T.; Meirman, G.T.; Abayev, S.S.; Shegebayev, G.O.; Aynebekova, B.A.; Kaskabayev, N.B. Winter rapeseed is a perspective crop in the Southern and South-Eastern regions of Kazakhstan. In Proceedings of the “Actual Problems of Agro-Science in the Context of Adaptation to Global Climate Change” Devoted to the 75th Anniversary of the Doctor of Agricultural Sciences, Professor, Academician of National Academy of Sciences and Academy of Agricultural of Sciences of the Republic of Kazakhstan Meiirman Galiolla, Almaty, Kazakhstan, 17–18 June 2021; Available online: https://kazniizr.kz/wp-content/uploads/2021/06/Sbornik-konf.-75-let.-Mejrman-G.T.-08.06.21.pdf (accessed on 30 July 2022).
- Malik, R. Prospects for Brassica carinata as an oilseed crop in India. Exp. Agric. 1990, 26, 125–129. [Google Scholar] [CrossRef]
- Salunkhe, D.K. World Oilseeds: Chemistry, Technology, and Utilization; Van Nostrand Reinhold: New York, NY, USA, 1992; Available online: https://lib.ugent.be/catalog/rug01:000261128 (accessed on 10 January 2022).
- Di Lena, G.; Sanchez del Pulgar, J.; Lucarini, M.; Durazzo, A.; Ondrejíčková, P.; Oancea, F.; Frincu, R.-M.; Aguzzi, A.; Ferrari Nicoli, S.; Casini, I.; et al. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021, 26, 6787. [Google Scholar] [CrossRef]
- Future Market Insights (2018) Rapeseed Oil Market: Industrial Applications of Rapeseed Oil in Biodiesel Production to Compete with Its Use in Food Processing: Global Industry Analysis (2013–2017) & Opportunity Assessment (2018–2027). Available online: https://www.futuremarketinsights.com/reports/rapeseed-oil-market (accessed on 5 September 2022).
- STATISTA. Worldwide Oilseed Production since 2008. Available online: https://www.statista.com/statistics/267271/worldwideoilseed-production-since-2008 (accessed on 8 September 2022).
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends Food Sci. Technol. 2020, 100, 88–102. [Google Scholar] [CrossRef]
- Yates, K.; Pohl, F.; Busch, M.; Mozer, A.; Watters, L.; Shiryaev, A.; Kong Thoo Lin, P. Determination of sinapine in rapeseed pomace extract: Its antioxidant and acetylcholinesterase inhibition properties. Food Chem. 2019, 276, 768–775. [Google Scholar] [CrossRef]
- El-Beltagi, H.E.S.; Mohamed, A.A. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Fats Oil 2010, 61, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Rabiej-Kozioł, D.; Tymczewska, A.; Szydłowska-Czerniak, A. Changes in Quality of Cold-Pressed Rapeseed Oil with Sinapic Acid Ester-Gelatin Films during Storage. Foods 2022, 11, 3341. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- Thiyam-Holländer, U.; Eskin, N.A.M.; Matthäus, B. Canola and Rapeseed: Production, Processing, Food Quality, and Nutrition, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; p. 374. [Google Scholar]
- Tileuberdi, N.N.; Torgauytova, N.; Turgumbayeva, A.A. Collection of Materials of the X All-Russian Scientific Conference of Students and Graduate Students with International Participation “Young Pharmacy–the Potential of the Future”; SPCPU: Saint-Petersburg, Russia, 2020; p. 860. Available online: http://pharm-spb.ru/docs/conf/2020_Tezisi%20dokladov_Molodaya%20farmatsiya.pdf (accessed on 19 May 2021).
- Rivera, D.; Rommi, K.; Fernandes, M.M.; Lantto, R.; Tzanov, T. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications. Int. J. Cosmet. Sci. 2015, 37, 496–505. [Google Scholar] [CrossRef]
- Saeidnia, S.; Gohari, A.R. Importance of Brassica napus as a medicinal food plant. J. Med. Plants Res. 2012, 6, 2700–2703. [Google Scholar] [CrossRef]
- Huang, J.F.; Zheng, X.Q.; Lin, J.L.; Zhang, K.; Tian, H.J.; Zhou, W.X.; Wang, H.; Gao, Z.; Jin, H.M.; Wu, A.M. Sinapic Acid Inhibits IL-1β-Induced Apoptosis and Catabolism in Nucleus Pulposus Cells and Ameliorates Intervertebral Disk Degeneration. J. Inflamm. Res. 2020, 13, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Fernández, S.; Pilar, M.D.; Pérez, M.; Velasco Pazos, T.; Cartea González, P.; Elena, M. Antioxi-dant properties of Brassica vegetables. Funct. Plant. Sci. Biotechnol. 2011, 5, 43–55. Available online: http://hdl.handle.net/10261/77986 (accessed on 27 June 2022).
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Katayoon, D.; Akram, T.; Mahdi, V. Investigation of Antipseudomanal Activity of Brassica Napus L. In Proceedings of the International Proceedings of Chemical, Biological & Environmental Engineering, Singapore, 7–9 January 2011; Available online: https://www.researchgate.net/publication/257310288_Investigation_of_Antipseudomanal_Activity_of_Brassica_Napus_L (accessed on 1 August 2022).
- Szydłowska-Czerniak, A.; Tułodziecka, A. Antioxidant Capacity of Rapeseed Extracts Obtained by Conventional and Ultrasound-Assisted Extraction. J. Am. Oil Chem. Soc. 2014, 91, 2011–2019. [Google Scholar] [CrossRef] [Green Version]
- Abaza, A.M. Isolation and identification of defensive flavonoids from Brassica napus leaves extract with promising biological activity to control the cotton leafworm, Spodoptera littoralis (boisd.). Egypt. J. Agric. Res. 2018, 96, 47–64. [Google Scholar] [CrossRef]
- Hussain, S.; Rehman, A.U.; Obied, H.K.; Luckett, D.J.; Blanchard, C.L. Extraction, Chemical Characterization, In Vitro Antioxidant, and Antidiabetic Activity of Canola (Brassica napus L.) Meal. Separations 2022, 9, 38. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z. Concurrent extraction and transformation of bioactive phenolic compounds from rapeseed meal using pressurized solvent extraction system. J. Ind. Crops Prod. 2016, 94, 152–159. [Google Scholar] [CrossRef]
- Asl, P.J.; Niazmand, R.; Jahani, M. Theoretical and experimental assessment of supercritical CO2 in the extraction of phytosterols from rapeseed oil deodorizer distillates. J. Food Eng. 2019, 269, 109748. [Google Scholar] [CrossRef]
- Thiel, A.; Muffler, K.; Tippkötter, N.; Suck, K.; Sohling, U.; Hruschka, S.M.; Ulber, R. A novel integrated downstream processing approach to recover sinapic acid, phytic acid and proteins from rapeseed meal. J. Chem. Technol. Biotechnol. 2015, 11, 1999–2006. [Google Scholar] [CrossRef]
- Asl, P.J.; Niazmand, R.; Yahyavi, F. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: A comparison with conventional solvent extraction. Heliyon 2020, 6, e03592. [Google Scholar] [CrossRef]
- Tarkowská, D.; Strnad, M. Protocol for Extraction and Isolation of Brassinosteroids from Plant Tissues. Methods Mol. Biol. 2017, 1564, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko, M.; Jokić, S.; Lepojević, Ž.; Vidović, S.; Marić, B.; Radojčić Redovniković, I. Optimization of the Supercritical CO2 Extraction of Oil from Rapeseed Using Response Surface Methodology. Food Technol. Biotechnol. 2012, 50, 208–215. Available online: https://hrcak.srce.hr/83934 (accessed on 18 August 2022).
- Uquiche, E.; Romero, V.; Ortíz, J.; Del Valle, J.M. Extraction of oil and minor lipids from cold-press rapeseed cake with Supercritical CO2. Braz. J. Chem. Eng. 2012, 29, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Russin, T.A.; Boye, J.I.; Arcand, Y.; Rajamohamed, S.H. Alternative techniques for defatting soy: A practical review. Food Bioprocess. Technol. 2011, 4, 200–223. [Google Scholar] [CrossRef]
- Guo, T.; Wan, C.; Huang, F. Extraction of rapeseed cake oil using subcritical R134a/butane: Process optimization and quality evaluation. Food Sci. Nutr. 2019, 7, 3570–3580. [Google Scholar] [CrossRef]
- Campbell, K.A.; Glatz, C.E.; Johnson, L.A.; Jung, S.; de Moura, J.M.N.; Kapchie, V.; Murphy, P. Advances in aqueous extraction processing of soybeans. J. Am. Oil Chem. Soc. 2011, 88, 449–465. [Google Scholar] [CrossRef]
- Jokić, S.; Bijuk, M.; Aladić, K.; Bilić, M.; Maja, M. Optimization of supercritical CO2 extraction of grape seed oil using response surface methodology. Int. J. Food Sci. Technol. 2016, 51, 403–410. [Google Scholar] [CrossRef]
- Sahena, F.; Zaidul, I.; Jinap, S.; Karim, A.A.; Abbas, K.A.; Norulaini, N.; Omar, A. Application of supercritical CO2 in lipid extraction—A review. J. Food Eng. 2009, 95, 240–253. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, C.; Zhou, Q.I.; Liu, C.; Li, W.; Huang, F. Influence of microwaves treatment of rapeseed on phenolic compounds and canolol content. J. Agric. Food Chem. 2014, 62, 1956–1963. [Google Scholar] [CrossRef]
- Normén, L.; Frohlich, J.; Trautwein, E. Role of plant sterols in cholesterol lowering. In Phytosterols as Functional Food Components and Nutraceuticals; Dutta, P.C., Ed.; CRC Press: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Hamama, A.A.; Bhardwaj, H.L.; Starner, D.E. Genotype and growing location effects on phytosterols in canola oil. J. Am. Oil Chem. Soc. 2003, 80, 1121–1126. [Google Scholar] [CrossRef]
- Vlahakis, C.; Hazebroek, J. Phytosterol accumulation in canola, sunflower, and soybean oils: Effects of genetics, planting location, and temperature. J. Am. Oil Chem. Soc. 2000, 77, 49–53. [Google Scholar] [CrossRef]
- Gawrysiak-Witulska, M.; Rudzińska, M.; Wawrzyniak, J.; Siger, A. The Effect of Temperature and Moisture Content of Stored Rapeseed on the Phytosterol Degradation Rate. J. Am. Oil Chem. Soc. 2012, 89, 1673–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malíkova, J.; Swaczynova, J.; Kolar, Z.; Strnad, M. Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 2008, 69, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; de Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.; Hornero-Méndez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res. Int. 2012, 46, 438–450. [Google Scholar] [CrossRef]
- Bauer, B.; Kostik, V.; Gjorgjeska, B. Fatty acid composition of seed oil obtained from different canola varieties. Farm. Glas. 2015, 71, 1–7. Available online: https://www.researchgate.net/publication/281653448_Fatty_acid_composition_of_seed_oil_obtained_from_different_canola_varieties (accessed on 25 August 2021).
- Michelini, F.M.; Zorrilla, P.; Robello, C.; Alche, L.E. Immunomodulatory activity of an anti-HSV-1 synthetic stigmastaneanalog. Bioorganic Med. Chem. 2013, 21, 560–568. [Google Scholar] [CrossRef]
- Calil, I.P.; Fontes, E.P. Plant immunity against viruses: Antiviral immune receptors in focus. Ann. Bot. 2016, 119, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Romanutti, C.; Castilla, V.; Coto, C.E.; Wachsman, M.B. Antiviral effect of a synthetic brassinosteroid on the replication of vesicular stomatitis virus in Vero cells. Int. J. Antimicrob. Agents 2007, 29, 311–316. [Google Scholar] [CrossRef]
- Kaur Kohli, S.; Bhardwaj, A.; Bhardwaj, V.; Sharma, A.; Kalia, N.; Landi, M.; Bhardwaj, R. Therapeutic Potential of Brassinosteroids in Biomedical and Clinical Research. Biomolecules 2020, 10, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Yao, Y.; Zhao, G.; Cheng, W.; Liu, H.; Liu, C.; Shi, Z.; Chen, Y.; Wang, S. Comparison and analysis of fatty acids, sterols, and tocopherols in eight vegetable oils. J. Agric. Food Chem. 2011, 59, 12493–12498. [Google Scholar] [CrossRef] [PubMed]
- Li, F.J.; Shen, L.; Ji, H.F. Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer’s disease: A meta-analysis. J. Alzheimer’s Dis. 2012, 31, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, H.; Zadernowski, R.; Sosulski, F. Phenolic acid in oilseed flours. Nahrung/Food 1983, 27, 449–453. [Google Scholar] [CrossRef]
- Amarowicz, R.; Shahidi, F. Chromatographic separation ofglucopyranosyl sinapate from canola meal. JAOCS J. Am. Oil Chem. Soc. 1994, 71, 551–552. [Google Scholar] [CrossRef]
- Kozlowska, H.; Naczk, M.; Shahidi, F.; Zadernowski, R. Phenolic Acids and Tannins in Rapeseed and Canola. In Canola and Rapeseed; Shahidi, F., Ed.; Springer: Boston, MA, USA, 1990. [Google Scholar] [CrossRef]
- Wakamatsu, D.; Morimura, S.; Sawa, T.; Sawa, T.; Kida, K.; Nakai, C.; Maeda, H. Isolation, identification, and structure of a po-tent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci. Biotechnol. Biochem. 2005, 69, 1568–1574. [Google Scholar] [CrossRef]
- Kuwahara, H.; Kanazawa, A.; Wakamatu, D.; Morimura, S.; Kida, K.; Maeda, H. Antioxidative and Antimutagenic activities of 4-Vinyl-2, 6-dimethoxyphenol (Canolol) Isolated from Canola Oil. J. Agric. Food Chem. 2004, 52, 4380–4387. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, G.; Chen, S.; Chen, Y.; Jiang, J.; Wang, Y.-P. Correlation Analysis of Phenolic Contents and Antioxidation in Yellow- and Black-Seeded Brassica napus. Molecules 2018, 23, 1815. [Google Scholar] [CrossRef] [Green Version]
- Granado, F.; Olmedilla, B.; Blanco, I. Nutritional and clinical relevance of lutein in human health. Br. J. Nutr. 2003, 90, 487–502. [Google Scholar] [CrossRef] [Green Version]
- Sergeyev, A.V.; Ananev, V.S.; Kapitanov, A.B.; Korostylev, S.A.; Bukreev, Y.M.; Vlasenkova, N.K.; Prosalkova, I.R.; Reshetnikova, V.V.; Shubina, I.Z. Pharmacokinetics of carotenoids and carotene-containing drugs. Russ. J. Biother. 2017, 16, 92–106. Available online: https://cyberleninka.ru/article/n/farmakokinetika-karotinoidov-i-karotinsoderzhaschih-preparatov/viewer (accessed on 15 February 2022). [CrossRef] [Green Version]
- Soundararajan, P.; Kim, J.S. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018, 23, 2983. [Google Scholar] [CrossRef] [PubMed]
- Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, S.S. Inhibition of carcinogenesis by isothiocyanates. Drug Metab. Rev. 2000, 32, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Katalova, E.A.; Penzina, T.N. Sources of Vitamin C. Scientist 2018, 1, 15–17. Available online: https://cyberleninka.ru/article/n/istochniki-vitamina-s (accessed on 4 April 2022).
- Mhitaryanc, L.A.; Mhitaryanc, G.A.; Marasheva, A.N.; Timofeenko, T.I. Features of the chemical composition of rape seeds of modern breeding varieties. News of higher educational institutions. Food Technol. 2012, 328, 33–36. Available online: https://cyberleninka.ru/article/n/osobennosti-himicheskogo-sostava-semyan-rapsa-sovremennyh-selektsionnyh-sortov (accessed on 28 April 2022).
- Lutsenko, A.S.; Rozhinskaya, L.Y.; Toroptsova, N.V.; Belaya, Z.E. The role of calcium and vitamin D medications in prevention and treatment of osteoporosis. Osteoporos. Bone Dis. 2017, 20, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Trisvetova, E.L. Magnesium in clinical practice. Ration. Pharmacother. Cardiol. 2012, 8, 545–553. Available online: https://cyberleninka.ru/article/n/magniy-v-klinicheskoy-praktike (accessed on 18 May 2022). [CrossRef]
- Cadet, E.; Gadenne, M.; Capront, D.; Rochette, J. Donnes recentes sur metabolisme du fer: Un etat de transition. Rev. Med. Interne 2005, 26, 315–324. [Google Scholar] [CrossRef]
- Vatutin, N.T.; Kalinkina, N.V.; Smirnova, A.S.; Kashanskaya, O.K.; Milner, I.A. The role of iron in the human body. Bulletin of V.N. Karazin Kharkiv National University. Ser. Med. 2012, 24, 74–80. Available online: https://cyberleninka.ru/article/n/rol-zheleza-v-organizme-cheloveka (accessed on 8 October 2021).
- Flakelar, C.L.; Adjonu, R.; Doran, G.; Howitt, J.A.; Luckett, D.J.; Prenzler, P.D. Phytosterol, Tocopherol and Carotenoid Retention during Commercial Processing of Brassica napus (Canola) Oil. Processes 2022, 10, 580. [Google Scholar] [CrossRef]
- Sagan, A.; Blicharz-Kania, A.; Szmigielski, M.; Andrejko, D.; Sobczak, P.; Zawiślak, K.; Starek, A. Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid. Sustainability 2019, 11, 5638. Available online: https://www.researchgate.net/publication/336522946_Assessment_of_the_Properties_of_Rapeseed_Oil_Enriched_with_Oils_Characterized_by_High_Content_of_a-linolenic_Acid (accessed on 30 June 2021). [CrossRef] [Green Version]
- Pospišil, M.; Škevin, D.; Mustapić, Z.; Neđeral Nakić, S.; Butorac, J.; Matijević, D. Fatty Acid Composition in Oil of Recent Rapeseed Hybrids and 00 Cultivars. Agric. Conspec. Sci. 2007, 72, 187–193. Available online: https://hrcak.srce.hr/17086 (accessed on 26 October 2022).
- Severin, E.S. Biochemistry; Textbook for High Schools; GEOTAR-Media: Moscow, Russia, 2003; pp. 371–374. Available online: https://www.studentlibrary.ru/book/ISBN9785970433126.html (accessed on 11 December 2021).
- Volovic, V.T.; Leonidova, T.V.; Korovina, L.M.; Blohina, N.A.; Kasarina, N.P. Comparison of the fatty acid composition of various edible oils. Int. J. Appl. Basic Res. 2019, 5, 147–152. Available online: https://applied-research.ru/ru/article/view?id=12754 (accessed on 16 March 2022).
- Titov, V.N.; Dygai, A.M.; Kotlovskiy, M.Y.; Kurdoyak, Y.V.; Yakimenko, A.V.; Yakimovich, I.Y.; Aksyutina, N.V.; Kotlovskiy, Y.V. Palmitic and oleic acids and their role in pathogenesis of atherosclerosis. Bull. Sib. Med. 2014, 13, 149–159. [Google Scholar] [CrossRef]
- Wallis, T.P.; Venkatesh, B.G.; Narayana, V.K.; Kvaskoff, D.; Ho, A.; Sullivan, R.K.; Windels, F.; Sah, P.; Meunier, F.A. Saturated free fatty acids and association with memory formation. Nat. Commun. 2021, 12, 3443. Available online: https://www.nature.com/articles/s41467-021-23840-3 (accessed on 19 May 2022). [CrossRef]
- Tokuda, H.; Kontani, M.; Kawashima, H.; Kiso, Y.; Shibata, H.; Osumi, N. Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis. Neurosci. Res. 2014, 88, 58–66. [Google Scholar] [CrossRef]
- Raghallaigh, S.N.; Bender, K.; Lacey, N.; Brennan, L.; Powell, F. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. Br. J. Dermatol. 2012, 166, 279–287. [Google Scholar] [CrossRef]
- Gardner, A.S.; Rahman, I.A.; Lai, C.T.; Hepworth, A.; Trengove, N.; Hartmann, P.E.; Geddes, D.T. Changes in fatty acid composition of human milk in response to cold-like symptoms in the lactating mother and infant. Nutrients 2017, 9, 1034. [Google Scholar] [CrossRef] [Green Version]
- Gorelik, K.D.; Gorelik, Y.V.; Dmitriyev, A.V.; Bykov, K.V. Fatty acids in fat emulsions for parenteral nutrition in neonatology. Neonatol. News Opin. Train. 2019, 7, 54–60. Available online: https://cyberleninka.ru/article/n/zhirnye-kisloty-v-sostave-zhirovyh-emulsiy-dlya-parenteralnogo-pitaniya-v-neonatologii (accessed on 6 September 2021).
- Plotnikova, E.Y.; Sinkova, L.K.; Isakov, L.K. The role of omega-3 unsaturated acids in the prevention and treatment of various diseases (part 1). Attend. Dr. 2018, 7, 63–67. Available online: https://www.lvrach.ru/2018/08/15437049 (accessed on 20 June 2022).
- Pennick, G.; Chavan, B.; Summers, B.; Rawlings, A.V. The effect of an amphiphilic self-assembled lipid lamellar phase on the relief of dry skin. Int. J. Cosmet. Sci. 2012, 34, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B. Erucic acid in feed and food (англ). EFSA J. 2016, 14, e04593. [Google Scholar] [CrossRef]
- Hussain, S.; Rehman, A.U.; Luckett, D.J.; Naqvi, S.; Blanchard, C.L. Protease Inhibitors Purified from the Canola Meal Extracts of Two Genetically Diverse Genotypes Exhibit Antidiabetic and Antihypertension Properties. Molecules 2021, 26, 2078. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, S.; Roohvand, F.; Ehsani, P.; Salmanian, A.H.; Ajdary, S. Canola oilseed- and Escherichia coli-derived hepatitis C virus (HCV) core proteins adjuvanted with oil bodies, induced robust Th1-oriented immune responses in immunized mice. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2020, 128, 593–602. [Google Scholar] [CrossRef]
- Mandrich, L.; Caputo, E. Brassicaceae-Derived Anticancer Agents: Towards a Green Approach to Beat Cancer. Nutrients 2020, 12, 868. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Ruan, S.; Lu, F.; Tian, W.; Ma, H. Antihypertensive effect of rapeseed peptides and their potential in improving the effectiveness of captopril. J. Sci. Food Agric. 2021, 101, 3049–3055. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2019, 47, 22–27. [Google Scholar] [CrossRef]
- Ballantyne, G.H.; Wasielewski, A.; Saunders, J.K. The Surgical Treatment of Type II Diabetes Mellitus: Changes in HOMA Insulin Resistance in the First Year Following Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) and Laparoscopic Adjustable Gastric Banding (LAGB). Obes. Surg. 2009, 19, 1297–1303. [Google Scholar] [CrossRef]
- Xu, F.; Mejia, E.G.d.; Chen, H.; Rebecca, K.; Pan, M.; He, R.; Yao, Y.; Wang, L.; Ju, X. Assessment of the DPP-IV inhibitory activity of a novel octapeptide derived from rapeseed using Caco_2 cell monolayers and molecular docking analysis. J. Food Biochem. 2020, 44, e13406. [Google Scholar] [CrossRef]
- Vosough-Ghanbari, S.; Rahimi, R.; Kharabaf, S.; Zeinali, S.; Mohammadirad, A.; Amini, S. Effects of Satureja khuzestanica on serum glucose, lipids and markers of oxidative stress in patients with type 2 diabetes mellitus: A double-blind randomized controlled trial. Evid. Based Complement. Altern. Med. 2010, 7, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Akbari, F.; Khodadadi, S.; Asgari, S.; Shirzad, H.; Mirhoseini, M.; Shahinfard, N.; Rafieian-Kopaei, M. A comparative study on hypoglycemic properties, lipid profile and bioactive components of hydro-alcoholic extracts of cooked and raw Brassica napus. J. Nephropharmacol. 2015, 5, 86–90. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297572/ (accessed on 4 July 2022).
- Lorente-Cebrian, S.; Costa, A.G.; Navas-Carretero, S.; Zabala, M.; Martinez, J.A.; Moreno-Aliaga, M.J. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: A review of the evidence. J. Physiol. Biochem. 2013, 69, 633–651. [Google Scholar] [CrossRef]
- Fedor, D.; Kelley, D.S. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ma, C.; Han, L.; Gao, H.; Zhou, Q.; Yang, M.; Chen, C.; Deng, Q.; Huang, Q.; Huang, F. Optimized rapeseed oils rich in endogenous micronutrients ameliorate risk factors of atherosclerosis in high fat diet fed rats. Lipids Health Dis. 2014, 13, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdecantos, M.P.; Perez-Matute, P.; Obesity, M.J.A. Oxidative stress: Role of antioxidant supplementation. Rev. Investig. Clin. 2009, 61, 127–139. Available online: https://pubmed.ncbi.nlm.nih.gov/19637727/ (accessed on 9 August 2022).
- Capel, F.; Geloen, A.; Vaysse, C.; Pineau, G.; Demaison, L.; Chardigny, J.M.; Michalski, M.C.; Malpuech-Brugère, C. Rapeseed oil fortified with micronutrients can reduce glucose intolerance during a high fat challenge in rats. Nutr. Metab. 2018, 15, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamka, M.; Morawska, A.; Krzyżanowska-Jankowska, P.; Bajerska, J.; Przysławski, J.; Walkowiak, J.; Lisowska, A. Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial. Int. J. Environ. Res. Public Health 2021, 18, 8540. [Google Scholar] [CrossRef]
- Bowen, K.J.; Kris-Etherton, P.M.; West, S.G.; Fleming, J.A.; Connelly, P.W.; Lamarche, B.; Couture, P.; Jenkins, D.J.A.; Taylor, C.G.; Zahradka, P.; et al. Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity. J. Nutr. 2019, 149, 471–478. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Seppanen-Laakso, T.; Laakso, I.; Lehtimaki, T.; Rontu, R.; Moilanen, E.; Solakivi, T.; Seppo, L.; Vanhanen, H.; Kiviranta, K.; Hiltunen, R. Elevated plasma fibrinogen caused by inadequate alpha-linolenic acid intake can be reduced by replacing fat with canola-type rapeseed oil. Prostaglandins Leukot. Essent. Fat. Acids 2010, 83, 45–54. [Google Scholar] [CrossRef]
- Ostlund, R.E.; Racette, S.B.; Okeke, A.; Stenson, W.F. Phytosterols that are naturally present in commercial corn oil significantly reduce cholesterol absorption in humans. Am. J. Clin. Nutr. 2002, 75, 1000–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Zhou, X.; Deng, Q.; Huang, Q.; Yang, J.; Huang, F. Rapeseed oil fortified with micronutrients reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids Health Dis. 2011, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meenakshi, S.; Umayaparvathi, S.; Arumugam, M.; Balasubramanian, T. In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pac. J. Trop. Biomed. 2011, 1, S66–S70. [Google Scholar] [CrossRef]
- Khatiwada, B.; Kunwar, S.; Dhakal, A.; Joshi, A.; Miya, A.R.; Subedi, P. Total phenolic content, antioxidant activity, alpha-amylase inhibitory activity and antibacterial activity of radish seed and rapeseed. Eur. J. Biotechnol. Biosci. 2018, 6, 21–25. Available online: https://www.researchgate.net/publication/337330735_Total_phenolic_content_antioxidant_activity_alpha-amylase_inhibitory_activity_and_antibacterial_activity_of_radish_seed_and_rapeseed (accessed on 1 September 2022).
- Szydłowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szłyk, E. Determination of Antioxidant Capacity, Phenolic Acids, and Fatty Acid Composition of Rapeseed Varieties. J. Agric. Food Chem. 2010, 58, 7502–7509. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Łaszewska, A. Effect of refining process on antioxidant capacity, total phenolics and prooxidants contents in rapeseed oils. Food Sci. Technol. 2015, 64, 853–859. [Google Scholar] [CrossRef]
- Stefanucci, A.; Zengin, G.; Llorent-Martinez, E.J.; Dimmito, M.P.; della Valle, A.; Pieretti, S.; Ak, G.; Sinan, K.I.; Mollica, A. Chemical characterization, antioxidant properties and enzyme inhibition of Rutabaga root’s pulp and peel (Brassica napus L.). Arab. J. Chem. 2020, 13, 7078–7086. [Google Scholar] [CrossRef]
- Dusica, J.; Jovica, V.; Zorica, N.; Gordana, P.; Gordana, T.; Maja, I.; Dragana, M. Antioxidant capacity of oilseed rape (Brassica napus) in different soil types. Turk. J. Agric. For. 2017, 41, 461–473. Available online: https://www.researchgate.net/publication/321879016_Antioxidant_capacity_of_oilseed_rape_Brassica_napus_in_different_soil_types (accessed on 22 August 2022).
- Lee, N.K.; Lee, J.H.; Lim, S.M.; Lee, K.A.; Kim, Y.B.; Chang, P.S.; Paik, H.D. Short communication: Antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk. J. Dairy Sci. 2014, 97, 5383–5386. [Google Scholar] [CrossRef] [Green Version]
- Hajarizadeh, B.; Grebely, J.; Dore, G.J. Epidemiology and natural history of HCV infection. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 553–562. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Roohvand, F.; Ajdary, S.; Ehsani, P.; Hatef Salmanian, A. Heterologous Expression of Hepatitis C Virus Core Protein in Oil Seeds of Brassica napus L. Jundishapur J. Microbiol. 2015, 8, e25462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batool, N.; Arshad, M.; Hassan, F.; Ilyas, N.; Shahzad, A. Report-Physicochemical and Antimicrobial properties of canola (Brassica napus L.) seed oil. Pak. J. Pharm. Sci. 2018, 31, 2005–2009. Available online: https://www.researchgate.net/publication/327371398_Report-Physicochemical_and_Antimicrobial_properties_of_canola_Brassica_napus_L_seed_oil (accessed on 7 September 2022). [PubMed]
- Turgumbayeva, A.; Tileuberdi, N.; Zhakipbekov, K.; Tulemissov, S.; Umurzakhova, G.; Utegenova, G. Antimicrobial efficacies of Brassica Napus L. essential oils/ nanoparticles composites. J. Nanostructures 2021, 11, 524–533. [Google Scholar] [CrossRef]
- Lee, C.S.; Baek, J.; Han, S.Y. The Role of Kinase Modulators in Cellular Senescence for Use in Cancer Treatment. Molecules 2017, 22, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant. Sci. 2015, 6, 799. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, K.M.; Yuraszeck, T.M.; Li, C.C.; Zhang, Y.; Kasichayanula, S. Immunotherapy and Novel Combinations in Oncology: Current Landscape, Challenges, and Opportunities. Clin. Transl. Sci. 2016, 9, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 2007, 9, 767–776. [Google Scholar] [CrossRef]
- Johson, I.T. Cruciferous vegetables and risk of cancer of the gastrointestinal tract. Mol. Nutr. Food Res. 2018, 62, e1701000. [Google Scholar] [CrossRef] [Green Version]
- Arcidiacono, P.; Kuligina, E.; Crisanti, A.; Ragonese, F.; Rende, M.; Spaccapelo, R.; Stabile, A.; Bottoni, U.; Pistilli, A.; Calvieri, S. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur. J. Nutr. 2018, 57, 2547–2569. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Wang, W.; Zhou, Z.; Sun, C. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS ONE 2014, 9, e114764. [Google Scholar] [CrossRef] [Green Version]
- Nagai, T.; Inoue, R.; Inoue, H.; Suzuki, N. Scavenging capacities of pollen extracts from cistus ladaniferus on autoxidation, superoxide radicals, hydroxyl radicals and DPPH radicals. Nutr. Res. 2002, 22, 519–526. Available online: https://www.researchgate.net/publication/247204897_Scavenging_capacities_of_pollen_extracts_from_cistus_ladaniferus_on_autoxidation_superoxide_radicals_hydroxyl_radicals_and_DPPH_radicals (accessed on 15 July 2022). [CrossRef]
- Steigerová, J.; Oklešťková, J.; Levková, M.; Rárová, L.; Kolář, Z.; Strnad, M. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem. Biol. Interact. 2010, 188, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Akinsete, J.A.; Ion, G.; Witteand, T.R.; Hardman, W.E. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice. Carcinogenesis 2012, 33, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, S.I.; Takeshita, K.; Seeni, A.; Sugiura, S.; Tang, M.; Sato, S.Y.; Kuriyama, H.; Nakadate, M.; Abe, K.; Maeno, Y.; et al. Suppression of prostate cancer in a transgenic rat model via gamma-tocopherol activation of caspose signaling. Prostate 2009, 69, 644–651. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Bhutia, S.K.; Mallick, S.K.; Maiti, T.K. In vitro immunostimulatory properties of Abrus lectins derived peptides in tumor bearing mice. Phytomedicine 2009, 16, 776–782. [Google Scholar] [CrossRef]
- Ferrero, R.L.; Soto-Maldonado, C.; Weinstein-Oppenheimer, C.; Cabrera-Muñoz, Z.; Zúñiga-Hansen, M.E. Antiproliferative Rapeseed Defatted Meal Protein and Their Hydrolysates on MCF-7 Breast Cancer Cells and Human Fibroblasts. Foods 2021, 10, 309. [Google Scholar] [CrossRef]
- Frolova, E.V. Arterial hypertension. Russ. Fam. Dr. 2016, 20, 1–18. Available online: https://cyberleninka.ru/article/n/arterialnaya-gipertenziya-2 (accessed on 24 June 2022).
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
Technologies for Obtaining Extracts from Rapeseed | Extraction Parameters | Methods for Determining Biologically Active Substances | Pharmacological Activity | Isolated Compounds | Reference |
---|---|---|---|---|---|
Soaking method | Solvent is methanol 80%, extraction time 48 h | - | The extract has antimicrobial activity against Pseudomonas aeruginosa | - | [22] |
Ultrasonic extraction | Solvent is methanol–water, ultrasonic bath frequency 40 kHz, ultrasound power 180 W and heating power 800 W | - | The extract exhibits antioxidant activity | - | [23] |
Conventional solid–liquid extraction | Solvent is methanol–water, at room temperature with an extraction time of 30 min | - | The extract has an antioxidant effect | - | [23] |
Liquid-liquid extraction | Solvent is ethanol 60%, at room temperature, extract yield 65.8 g | Spectral methods, UV and 1H-NMR techniques | The extract contains phenolic compounds in its composition | Quercetin, kaempferol, kaempferol-3-O-glucoside, quercetin-7-O-glucoside | [24] |
Soxhlet extraction | Solvents: methanol, ethanol, acetone, butanol, chloroform, hexane. Extraction time: 12 h at room temperature | High-performance liquid chromatography-diode array detection | Aqueous extracts contain large amounts of glucosinolates | Synapic acids | [25] |
Pressurized solvent extraction (PSE) | Solvent is methanol 60%, extraction temperature 200 °C, extraction time 20 min | 1H NMR | Methanol extract is most suitable for extracting phenolic compounds | Sinapine thiocyanate, sinapic acid, canolol | [26] |
Supercritical CO2 extraction | Extraction time 60 min, extraction temperature 40 °C, pressure 35 MPa | High-performance liquid chromatography | The extract contains a large amount of sterols | β-sitosterol, campesterol, brassicasterol | [27] |
Solid–liquid extraction | Solvent is deionized water, temperature 50 °C, extraction time 30 min | High-performance liquid chromatography | The extract contains a large amount of synapic acid esters | Synapic acid, phytic acid, protein | [28] |
Supercritical CO2 extraction | Temperature 40 °C, pressure 350 bar (for phytosterol), 440 bar (for tocopherol), co-solvent: ethanol 5% | Gas chromatography | The extract contains a large amount of phytosterols and tocopherols | β-sitosterol, brassicasterol, campesterol, α-tocopherol | [29] |
Supercritical CO2 extraction | Pressure 20–30 MPa, temperature 40–60 °C, extraction time 4 h | Gas chromatography | The extract contains a large amount of unsaturated fatty acids | Oleic acid, stearic acid, linoleic acid | [31] |
Supercritical CO2 extraction | Pressure 20, 30 and 40 MPa; temperature 40, 50 and 60 °C | UV spectrophotometry, gas chromatography | The extract contains a large amount of fatty acids | Tocopherols, carotenoids, sterols, fatty acids | [32] |
Subcritical fluid extraction (SFE) | The ratio of butane R134a 1.5 kg/kg, extraction temperature 45 °C and extraction time 50 min | Gas chromatography, high-performance liquid chromatography | The extract had the highest tocopherols and β-carotene, higher canolol and phytosterols but fewer phospholipids | Phospholipids, fatty acids, β-carotene, tocopherols, phytosterols | [34] |
Fatty Acids | Pharmacological Activity | Quantity, % | References |
---|---|---|---|
α-linolenic acid | Reduces the risk of cardiovascular disease | 10.34 ± 0.91 | [71] |
Palmitoleic acid | Improves cognitive functions and has a positive effect on the brain | 0.28 ± 0.01 | [71] |
Erucic acid | - | 0.03 ± 0.01 | [71] |
Heptadecanic acid | Shows protective effect on the epidermis | 0.05 ± 0.02 | [72] |
Gadoleic acid | Shows moisturizing effect on the skin | 1.29 ± 0.18 | [72] |
Oleic acid | Shows antioxidant effect | 55.22 ± 0.85 | [72] |
Linoleic acid | Involved in normal functioning of cell and subcellular membranes | 24.24 ± 1.13 | [73] |
Stearic acid | Promotes the development of the nervous system and thermoregulation of the body | 2.08 ± 0.09 | [74] |
Palmitic acid | Maintain the normal function of cell membranes | 6.06 ± 0.18 | [75] |
Myristic acid | Shows antimicrobial activity | 0.25 ± 0.01 | [76] |
Arachidic acid | Helps prevent the development of stomach ulcers | 0.27 ± 0.01 | [77] |
Eicosaenoic acid | Helps to maintain normal blood pressure | 1.00 ± 0.03 | [77] |
Behenic acid | Helps to improve overall levels of hydration in skin | 0.23 ± 0.01 | [78] |
Pharmacological Properties | Therapeutic Activity of Rapeseed | Concentration | Reference |
---|---|---|---|
Antidiabetic properties | The peptides present in rapeseed affect high levels of insulin secretion | 680 µg/mL | [84] |
Hypoglycemic action | An extract derived from rapeseed significantly reduces serum triglyceride levels | 3 g/kg | [92] |
Atherosclerosis | Rapeseed oil prevents atherosclerosis by lowering plasma triglyceride and cholesterol levels | 20% | [103] |
Antioxidant activity | The methanol extract of rapeseed has an antioxidant effect | 1000 μL | [105] |
Antiviral activity | An aqueous extract of rapeseed shows antiviral activity against the A/H1N1 influenza virus | 0.5 mg/mL | [110] |
Hepatitis C virus | The extract of transgenic core protein of hepatitis C virus obtained from rapeseed shows activity against hepatitis C virus | 0.05% | [112] |
Antibacterial properties | The alcohol extract of rapeseed has an antibacterial effect on some types of pathogenic bacteria | 75 µL | [113] |
Anticancer properties | Rapeseed root extract shows an anticancer effect by inhibiting the proliferation of human cancer cells Hep G2 | 3.75–10 mg/mL | [125] |
Hypertension | Rapeseed-derived peptides shows antihypertensive effects | 1.27 mg mL−1 | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tileuberdi, N.; Turgumbayeva, A.; Yeskaliyeva, B.; Sarsenova, L.; Issayeva, R. Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed (Brassica napus L.). Molecules 2022, 27, 8824. https://doi.org/10.3390/molecules27248824
Tileuberdi N, Turgumbayeva A, Yeskaliyeva B, Sarsenova L, Issayeva R. Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed (Brassica napus L.). Molecules. 2022; 27(24):8824. https://doi.org/10.3390/molecules27248824
Chicago/Turabian StyleTileuberdi, Nazym, Aknur Turgumbayeva, Balakyz Yeskaliyeva, Lazzat Sarsenova, and Raushan Issayeva. 2022. "Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed (Brassica napus L.)" Molecules 27, no. 24: 8824. https://doi.org/10.3390/molecules27248824
APA StyleTileuberdi, N., Turgumbayeva, A., Yeskaliyeva, B., Sarsenova, L., & Issayeva, R. (2022). Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed (Brassica napus L.). Molecules, 27(24), 8824. https://doi.org/10.3390/molecules27248824