Oligomeric Proanthocyanidins and Bamboo Leaf Flavonoids Improve the Quality of Bull Semen Cryopreservation
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Concentrations OPC and BLF Separately on Parameters of Bovine Semen after Thawing
2.1.1. Effects of Different Concentrations of OPC addition on Kinematic Parameters of Frozen Bovine Semen
2.1.2. Effects of Different Concentrations of BLF addition on Kinematic Parameters of Frozen Bovine Semen
2.1.3. Effects of Different Concentrations of OPC on the Integrity of the Plasma Membrane, Acrosome, and Total Motility after Thawing of Bovine Semen
2.1.4. Effects of Different Concentrations of BLF on the Integrity of the Plasma Membrane, Acrosome, and Total Motility after Thawing of Bovine Semen
2.1.5. Effects of Different Concentrations of OPC on the Antioxidant Enzyme Activity of Bovine Semen after Thawing
2.1.6. Effects of Different Concentrations of BLF on the Antioxidant Enzyme Activity of Bovine Semen after Thawing
2.1.7. Effects of Different Concentrations of OPC on the Oxidation Products of Bovine Semen after Thawing
2.1.8. Effects of Different Concentrations of BLF on the Oxidation Products of Bovine Semen after Thawing
2.2. Effects of Combined Addition of OPC and BLF on Parameters of Semen after Thawing
2.2.1. Effects of Combination of 50 mg/L OPC and Different Concentration of BLF on Kinematic Parameters of Frozen Bovine Semen
2.2.2. Effects of Combination of 50 mg/L OPC and Different Concentration of BLF on the Plasma Membrane, Acrosome, and Total Motility of Bovine Semen
2.2.3. Effects of Combination of 50 mg/L OPC and Different Concentration of BLF on the on the Antioxidant Enzyme Activity of Bovine Semen after Thawing
2.2.4. Effects of Combination of 50 mg/L OPC and Different Concentration of BLF on the Oxidation Products of Bovine Semen after Thawing
3. Materials and Methods
3.1. Chemicals
3.2. Experimental Design
3.3. Animals
3.4. Bull Semen Collection
3.5. Basic Extender
3.6. Semen Processing
3.7. Evaluation of Post-Thawed Sperm
3.7.1. Computer Assisted Semen Analysis
3.7.2. Acrosome Integrity
3.7.3. Plasma Membrane Integrity
3.7.4. Endogenous Antioxidant Indices Detection in the Frozen–Thawed Semen
3.7.5. MDA and ROS Concentration Determination in Post-Thawed Semen
3.8. Statistical Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bell, M.; Wang, R.; Hellstrom, W.J.; Sikka, S.C. Effect of cryoprotective additives and cryopreservation protocol on sperm membrane lipid peroxidation and recovery of motile human sperm. J. Androl. 1993, 14, 472–478. [Google Scholar] [PubMed]
- Gandini, L.; Lombardo, F.; Paoli, D.; Caponecchia, L.; Familiari, G.; Verlengia, C.; Dondero, F.; Lenzi, A. Study of apoptotic DNA fragmentation in human spermatozoa. Hum. Reprod. 2000, 15, 830–839. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, C. The enzymatic antioxidant system of human spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Yu, D.-H.; Kim, Y.-J. Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm. Theriogenology 2010, 73, 282–292. [Google Scholar] [CrossRef]
- Hu, J.-H.; Li, Q.-W.; Zhang, T.; Jiang, Z.-L. Effect of Gynostemma Pentaphyllum polysaccharide on boar spermatozoa quality following freezing-thawing. Cryobiology 2009, 59, 244–249. [Google Scholar] [CrossRef]
- Premrov Bajuk, B.; Pihlar, T.; Pogačnik, N.; Klinc, P. Dialysis of the goat semen and its effect on the quality of frozen/thawed spermatozoa processed in the presence of egg yolk. Anim. Reprod. Sci. 2018, 198, 65–73. [Google Scholar] [CrossRef]
- Neagu, V.R.; García, B.M.; Sandoval, C.S.; Rodríguez, A.M.; Ferrusola, C.O.; Fernández, L.G.; Tapia, J.A.; Peña, F.J. Freezing dog semen in presence of the antioxidant butylated hydroxytoluene improves postthaw sperm membrane integrity. Theriogenology 2010, 73, 645–650. [Google Scholar] [CrossRef]
- Lv, C.; Larbi, A.; Wu, G.; Hong, Q.; Quan, G. Improving the quality of cryopreserved goat semen with a commercial bull extender supplemented with resveratrol. Anim. Reprod. Sci. 2019, 208, 106127. [Google Scholar] [CrossRef]
- Appiah, M.O.; He, B.; Lu, W.; Wang, J. Antioxidative effect of melatonin on cryopreserved chicken semen. Cryobiology 2019, 89, 90–95. [Google Scholar] [CrossRef]
- Ferreira, D.; Slade, D. Oligomeric proanthocyanidins: Naturally occurring O-heterocycles. Nat. Prod. Rep. 2002, 19, 517–541. [Google Scholar] [CrossRef]
- Sun, C.; Jin, W.; Shi, H. Oligomeric proanthocyanidins protects A549 cells against H2O2-induced oxidative stress via the Nrf2-ARE pathway. Int. J. Mol. Med. 2017, 39, 1548–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, M.-H.; Wang, Y.-T.; Li, Q.; Lv, G.-F. Oligomeric proanthocyanidins inhibit apoptosis of chondrocytes induced by interleukin-1β. Mol. Med. Rep. 2017, 16, 4195–4200. [Google Scholar] [CrossRef]
- Toden, S.; Ravindranathan, P.; Gu, J.; Cardenas, J.; Yuchang, M.; Goel, A. Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Sci. Rep. 2018, 8, 3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokozawa, T.; Park, C.H.; Noh, J.S.; Roh, S.S. Role of oligomeric proanthocyanidins derived from an extract of persimmon fruits in the oxidative stress-related aging process. Molecules 2014, 19, 6707–6726. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Shang, F.; Zhang, Y.; Wang, R.; Jia, Y.; Li, K. Persimmon oligomeric proanthocyanidins alleviate ultraviolet B-induced skin damage by regulating oxidative stress and inflammatory responses. Free Radic. Res. 2020, 54, 765–776. [Google Scholar] [CrossRef]
- Zhu, F.-Q.; Hu, J.; Lv, F.-H.; Cheng, P.; Gao, S. Effects of oligomeric grape seed proanthocyanidins on L-NAME-induced hypertension in pregnant mice: Role of oxidative stress and endothelial dysfunction. Phytother. Res. 2018, 32, 1836–18477. [Google Scholar] [CrossRef]
- Li, Q.; Shaoyong, W.; Li, Y.; Chen, M.; Hu, Y.; Liu, B.; Yang, G.; Hu, J. Effects of oligomeric proanthocyanidins on quality of boar semen during liquid preservation at 17 °C. Anim. Reprod. Sci. 2018, 198, 47–56. [Google Scholar] [CrossRef]
- Gong, J.; Xia, D.; Huang, J.; Ge, Q.; Mao, J.; Liu, S.; Zhang, Y. Functional components of bamboo shavings and bamboo leaf extracts and their antioxidant activities in vitro. J. Med. Food 2015, 18, 453–459. [Google Scholar] [CrossRef]
- Shu, G.; Kong, F.; Xu, D.; Yin, L.; He, C.; Lin, J.; Fu, H.; Wang, K.; Tian, Y.; Zhao, X. Bamboo leaf flavone changed the community of cecum microbiota and improved the immune function in broilers. Sci. Rep. 2020, 10, 12324. [Google Scholar] [CrossRef] [PubMed]
- Wedler, J.; Daubitz, T.; Schlotterbeck, G.; Butterweck, V. In vitro anti-inflammatory and wound-healing potential of a Phyllostachys edulis leaf extract--identification of isoorientin as an active compound. Planta Med. 2014, 80, 1678–1684. [Google Scholar] [CrossRef] [Green Version]
- Gan, T.; Zhou, X.Y.; Fan, G.X.; Ling, H.W.; Ying, C.J.; Li, W. Effect and mechanism of bamboo leaf flavonoids on depression in type 2 diabetic rats. Zhonghua Yi Xue Za Zhi 2019, 99, 1251–1255. [Google Scholar] [PubMed]
- Yang, C.; Yifan, L.; Dan, L.; Qian, Y.; Ming-yan, J. Bamboo leaf flavones and tea polyphenols show a lipid-lowering effect in a rat model of hyperlipidemia. Drug Res. 2015, 65, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, Z.; Cao, G.; Huang, S.; Yang, H. Bamboo leaf flavonoids extracts alleviate oxidative stress in HepG2 cells via naturally modulating reactive oxygen species production and Nrf2-mediated antioxidant defense responses. J. Food Sci. 2019, 84, 1609–1620. [Google Scholar] [CrossRef]
- Tarig, A.A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Goh, Y.M.; Baiee, F.H.; Khumran, A.M.; Salman, H.; Ebrahimi, M. Effect of different concentrations of egg yolk and virgin coconut oil in Tris-based extenders on chilled and frozen-thawed bull semen. Anim. Reprod. Sci. 2017, 182, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Shukla, S.; Gupta, S. Apigenin and cancer chemoprevention: Progress, potential and promise (review). Int. J. Oncol. 2007, 30, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Yang, L.; Wu, L.; He, H.; Geng, G.; Xu, D.; Chen, H.; Li, Q. Combined effect of apigenin and ferulic acid on frozen-thawed boar sperm quality. Anim. Sci. J. 2018, 89, 956–965. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, J.K.; Srivastava, N.; Ghosh, S.K. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreservation Biobanking 2019, 17, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, S.T. CASA—Practical aspects. J. Androl. 2000, 21, 515–524. [Google Scholar] [PubMed]
- Silva, P.F.N.; Gadella, B.M. Detection of damage in mammalian sperm cells. Theriogenology 2006, 65, 958–978. [Google Scholar] [CrossRef]
- Bucak, M.N.; Tuncer, P.B.; Sarıözkan, S.; Başpınar, N.; Taşpınar, M.; Coyan, K.; Bilgili, A.; Akalın, P.P.; Büyükleblebici, S.; Aydos, S.; et al. Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters: Antioxidants protect DNA integrity against cryodamage. Cryobiology 2010, 61, 248–253. [Google Scholar] [CrossRef]
- Zhou, Q.; Han, X.; Li, R.; Zhao, W.; Bai, B.; Yan, C.; Dong, X. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. Phytomedicine 2018, 51, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Büyükleblebici, S.; Tuncer, P.B.; Bucak, M.N.; Eken, A.; Sarıözkan, S.; Taşdemir, U.; Endirlik, B.Ü. Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results. Anim. Reprod. Sci. 2014, 150, 77–83. [Google Scholar] [CrossRef]
- Hussaini, S.M.H.; Zhandi, M.; Shahneh, A.Z.; Sharafi, M.; Nejati-Javaremi, A.; Yousefi, A.; Emamverdi, M.; Shehab-El-Deen, M.A.M.M.; Pastor, F.M. Effect of tert-butyl hydroquinone on bull semen cryopreservation. Cryo Lett. 2018, 38, 372–378. [Google Scholar]
- Salmon, V.M.; Leclerc, P.; Bailey, J.L. Novel technical strategies to optimize cryopreservation of goat semen using cholesterol-loaded cyclodextrin. Cryobiology 2017, 74, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Feng, T.; Dai, G.; Wang, Y.; Zhu, H.; Hu, J. Lycopene and alpha-lipoic acid improve semen antioxidant enzymes activity and cashmere goat sperm function after cryopreservation. Cryobiology 2018, 84, 27–32. [Google Scholar] [CrossRef] [PubMed]
OPC (mg/L) | LIN (%) | BCF (Hz) | VCL (μm/s) | VAP (μm/s) | VSL (μm/s) | ALH (μm/s) |
---|---|---|---|---|---|---|
0 | 63.78 ± 1.55 | 19.45 ± 1.67 | 123.18 ± 1.08 a | 96.31 ± 3.91 a | 78.56 ± 3.28 a | 1.62 ± 0.08 |
10 | 63.66 ± 1.48 | 20.75 ± 2.66 | 124.80 ± 2.12 ab | 99.33 ± 1.87 ab | 79.45 ± 1.11 ac | 1.72 ± 0.07 |
30 | 67.06 ± 2.71 | 19.59 ± 2.49 | 125.19 ± 2.85 ab | 99.83 ± 1.66 ab | 83.96 ± 2.92 ab | 1.75 ± 0.12 |
50 | 65.56 ± 1.99 | 20.06 ± 1.53 | 130.61 ± 2.45 b | 104.67 ± 3.52 b | 85.63 ± 3.84 b | 1.64 ± 0.09 |
70 | 66.63 ± 2.21 | 19.51 ± 2.01 | 126.95 ± 2.53 ab | 98.86 ± 2.36 ab | 84.59 ± 2.81 bc | 1.60 ± 0.08 |
BLF (mg/L) | LIN (%) | BCF (Hz) | VCL (μm/s) | VAP (μm/s) | VSL (μm/s) | ALH (μm/s) |
---|---|---|---|---|---|---|
0 | 62.14 ± 1.39 | 21.09 ± 1.32 | 121.97 ± 1.98 a | 95.56 ± 1.43 a | 75.79 ± 2.62 a | 1.62 ± 0.04 |
2 | 64.52 ± 1.10 | 20.03 ± 1.81 | 123.73 ± 2.95 a | 98.91 ± 2.12 ab | 79.84 ± 2.96 ab | 1.68 ± 0.07 |
4 | 63.90 ± 2.15 | 19.17 ± 1.17 | 129.24 ± 3.54 b | 103.38 ± 2.22 b | 82.59 ± 2.32 b | 1.71 ± 0.08 |
6 | 65.49 ± 1.52 | 19.86 ± 1.61 | 124.68 ± 2.77 ab | 102.43 ± 2.82 b | 81.65 ± 1.23 b | 1.68 ± 0.07 |
8 | 65.85 ± 2.26 | 20.15 ± 1.86 | 122.16 ± 1.79 a | 100.37 ± 2.66 ab | 80.45 ± 2.18 ab | 1.67 ± 0.08 |
OPC (mg/L)/BLF (mg/L) | LIN (%) | BCF (Hz) | VCL (μm/s) | VAP (μm/s) | VSL (μm/s) | ALH (μm/s) |
---|---|---|---|---|---|---|
OPC50 | 65.71 ± 1.99 | 20.13 ± 1.53 a | 130.32 ± 2.45 a | 104.41 ± 3.52 a | 85.35 ± 3.84 a | 1.63 ± 0.09 a |
OPC50 + BLF2 | 65.89 ± 1.18 | 24.60 ± 1.02 b | 138.35 ± 2.79 b | 110.65 ± 1.84 b | 91.16 ± 2.31 b | 1.71 ± 0.08 b |
OPC50 + BLF4 | 64.51 ± 2.75 | 23.91 ± 1.17 ab | 137.45 ± 1.65 b | 107.77 ± 3.09 ab | 88.67 ± 2.96 ab | 1.70 ± 0.02 b |
OPC50 + BLF6 | 66.52 ± 1.23 | 22.61 ± 1.79 ab | 133.02 ± 1.02 ab | 106.11 ± 3.45 ab | 88.49 ± 1.68 ab | 1.68 ± 0.07 ab |
OPC50 + BLF8 | 64.84 ± 2.84 | 21.73 ± 1.06 ab | 133.01 ± 1.09 ab | 105.74 ± 3.61 ab | 86.25 ± 3.15 ab | 1.67 ± 0.06 ab |
Ingredient | Dosage |
---|---|
corn | 45% |
soybean cake | 32% |
wheat bran | 5% |
rice bran meal | 5% |
soybean germ meal | 6% |
molasses | 2% |
bull special premix | 5% |
Ingredient | Dosage |
---|---|
crude protein | 20% |
moisture | 13% |
crude ash | 7% |
calcium | 0.6–0.7% |
total phosphorus | 0.6–0.7% |
sodium chloride | 0.8–1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Lu, P.; Li, Z.; Yuan, C.; Liu, H.; Zhao, J.; Lu, W.; Wang, J. Oligomeric Proanthocyanidins and Bamboo Leaf Flavonoids Improve the Quality of Bull Semen Cryopreservation. Molecules 2022, 27, 1144. https://doi.org/10.3390/molecules27031144
Wang H, Lu P, Li Z, Yuan C, Liu H, Zhao J, Lu W, Wang J. Oligomeric Proanthocyanidins and Bamboo Leaf Flavonoids Improve the Quality of Bull Semen Cryopreservation. Molecules. 2022; 27(3):1144. https://doi.org/10.3390/molecules27031144
Chicago/Turabian StyleWang, Hongtao, Ping Lu, Zhiqiang Li, Chongshan Yuan, Hongyu Liu, Jing Zhao, Wenfa Lu, and Jun Wang. 2022. "Oligomeric Proanthocyanidins and Bamboo Leaf Flavonoids Improve the Quality of Bull Semen Cryopreservation" Molecules 27, no. 3: 1144. https://doi.org/10.3390/molecules27031144
APA StyleWang, H., Lu, P., Li, Z., Yuan, C., Liu, H., Zhao, J., Lu, W., & Wang, J. (2022). Oligomeric Proanthocyanidins and Bamboo Leaf Flavonoids Improve the Quality of Bull Semen Cryopreservation. Molecules, 27(3), 1144. https://doi.org/10.3390/molecules27031144