Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Solutions and Media
2.2. Bacteria Isolation with the High Efficient Degradation Rate
2.3. Identification of the Optimum Selected PAHs Degradation Bacteria
2.4. External Factors Affecting Degradation of PAH (BaA, Pyr and BaP)
2.4.1. Contaminant Concentration
2.4.2. Temperature
2.4.3. pH
2.4.4. NaCl Concentration
2.4.5. PAHs Concentration
2.5. Degradation Process of Three Single PAHs
2.5.1. The Growth of Bacteria in the Degradation with Time
2.5.2. Surface Hydrophobicity of Bacteria with Time
2.6. Quantification of Composite PAHs by GC-FID Analysis
3. Results and Discussion
3.1. The Effect of Contaminant Concentration
3.2. Degradation Efficiency of PAHs Degrading Bacteria
3.3. Bioassay of PAH-2 Bacteria
3.4. Effect of Environmental Factors on the PAHs Degradation by PAH-2
3.5. Degradation Process of Three PAHs by PAH-2
3.5.1. Degradation Rate of Single PAHs with Time
3.5.2. Changes in Bacterial Hydrophobicity during Degradation
3.6. Degradation of PAH Mixtures, Aromatic Components, and Crude Oil by PAH-2
3.6.1. Mixed PAHs Degradation Efficiency
3.6.2. Degradation Efficiency of Pure Aromatic Components
3.6.3. The Efficiency of PAH-2 on the Degradation of Crude Oil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Mason, O.U.; Hazen, T.C.; Borglin, S.; Chain, P.S.; Dubinsky, E.A.; Fortney, J.L.; Han, J.; Holman, H.Y.N.; Hultman, J.; Lamendella, R.; et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 2012, 6, 1715–1727. [Google Scholar] [CrossRef]
- Li, H.; Shen, T.; Bao, M. Experimental study of oil plume stability: Parametric dependences and optimization. Mar. Pollut. Bull. 2016, 111, 358–364. [Google Scholar] [CrossRef]
- Hassani, A.; Faraji, M.; Eghbali, P. Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. J. Photochem. Photobiol. A Chem. 2020, 400, 112665. [Google Scholar] [CrossRef]
- Huijer, K. Trends in Oil Spills from Tanker Ships 1995–2004; International Tanker Owners Pollution Federation (ITOPF): London, UK, 2005. [Google Scholar]
- Reddy, C.M.; Arey, J.S.; Seewald, J.S.; Sylva, S.P.; Lemkau, K.L.; Nelson, R.K.; Carmichael, C.A.; McIntyre, C.P.; Fenwick, J.; Ventura, G.T. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20229–20234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Feng, J.; Han, W.; Li, L.; Wu, M.; Fu, J.; Sheng, G. Diurnal variations of polycyclic aromatic hydrocarbons associated with PM2. 5 in Shanghai, China. J. Environ. Sci. 2010, 22, 389–396. [Google Scholar] [CrossRef]
- Vila, J.; Nieto, J.M.; Mertens, J.; Springael, D.; Grifoll, M. Microbial community structure of a heavy fuel oil-degrading marine consortium: Linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol. Ecol. 2010, 73, 349–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandran, C.; Duraipandiyan, V.; Balakrishna, K.; Ignacimuthu, S. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp.(ERI-CPDA-1) isolated from oil contaminated soil. Bioresour. Technol. 2012, 112, 83–90. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, S.B.; Sharma, R.; Chaudhary, P.; Pandey, A.K.; Ansari, R.; Vasudevan, V.; Arora, A.; Singh, S.; Saha, S. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. J. Environ. Manag. 2016, 181, 728–736. [Google Scholar] [CrossRef]
- Spasojević, J.M.; Maletić, S.P.; Rončević, S.D.; Radnović, D.V.; Čučak, D.I.; Tričković, J.S.; Dalmacija, B.D. Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment. J. Hazard. Mater. 2015, 283, 60–69. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Cadahía, B.; Lafuente, A.; Cabaleiro, T.; Pásaro, E.; Méndez, J.; Laffon, B. Initial study on the effects of Prestige oil on human health. Environ. Int. 2007, 33, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Z.; Roy-Engel, A.M.; Baddoo, M.C.; Flemington, E.K.; Wang, G.; Wang, H. The impact of oil spill to lung health—Insights from an RNA-seq study of human airway epithelial cells. Gene 2016, 578, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Duanmu, H.-S.; Cheng, A.-H. The Distribution of Polycyclic Aromatic Hydrocarbons in Water and The Progress of its Research. Technol. Innov. Manag. 2010, 2, 032. [Google Scholar]
- Commendatore, M.G.; Esteves, J.L. An assessment of oil pollution in the coastal zone of Patagonia, Argentina. Environ. Manag. 2007, 40, 814–821. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; Del Pino-García, R.; Muñiz-Rodríguez, P. Alternative natural seasoning to improve the microbial stability of low-salt beef patties. Food Chem. 2017, 227, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Von Lau, E.; Gan, S.; Ng, H.K.; Poh, P.E. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ. Pollut. 2014, 184, 640–649. [Google Scholar]
- Harayama, S.; Kishira, H.; Kasai, Y. Petroleum biodegradation in marine environments. J. Mol. Microbiol. Biotechnol. 1999, 1, 63–70. [Google Scholar]
- Head, I.M.; Jones, D.M.; Röling, W.F.M. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 2006, 4, 173–182. [Google Scholar] [CrossRef]
- Li, H.; Meng, L.; Shen, T.; Zhang, J.; Bao, M.; Sun, P. The formation process and responsive impacts of single oil droplet in submerged process. Mar. Pollut. Bull. 2017, 124, 139–146. [Google Scholar] [CrossRef]
- Ghanbari, F.; Wang, Q.; Hassani, A.; Wacawek, S.; Lin, K. Electrochemical activation of peroxides for treatment of contaminated water with landfill leachate: Efficacy, toxicity and biodegradability evaluation. Chemosphere 2021, 279, 130610. [Google Scholar] [CrossRef]
- Rockne, K.J.; Strand, S.E. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res. 2001, 35, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.C.; Jones, K.C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ. Pollut. 1993, 81, 229–249. [Google Scholar] [CrossRef]
- McErlean, C.; Marchant, R.; Banat, I.M. An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie Van Leeuwenhoek 2006, 90, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Fecko, P.; Pertile, E.; Lyckova, B.; Vojtkova, H.; Janakova, I.; Tora, M. Biodegradacja odpadów niebezpiecznych. Inżynieria Miner. 2010, 11, 41–48. [Google Scholar]
- Haritash, A.; Kaushik, C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Dang, Z.; Lu, G.; Yi, X. Biodegradation mechanism of polycyclic aromatic hydrocarbons (PAHs) in soil: A review. Bull. Mineral. Petrol. Geochem. 2003, 22, 356–360. [Google Scholar]
- Wu, Y.; Teng, Y.; Li, Z.; Liao, X.; Luo, Y. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol. Biochem. 2008, 40, 789–796. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Bao, M.; Li, S. Solid inoculants as a practice for bioaugmentation to enhance bioremediation of hydrocarbon contaminated areas. Chemosphere 2021, 263, 128175. [Google Scholar] [CrossRef]
- Dong, X.; Cai, M. Manual of Systematics and Identification of General Bacteria; Science Press: Beijing, China, 2001. [Google Scholar]
- Cappello, S.; Böhringer, C.R.; Bergami, M.; Conzelmann, K.-K.; Ghanem, A.; Tomassy, G.S.; Arlotta, P.; Mainardi, M.; Allegra, M.; Caleo, M. A radial glia-specific role of RhoA in double cortex formation. Neuron 2012, 73, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Hassanshahian, M.; Emtiazi, G.; Caruso, G.; Cappello, S. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: A mesocosm simulation study. Mar. Environ. Res. 2014, 95, 28–38. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Timmis, K.N.; Golyshin, P.N. Obligate oil-degrading marine bacteria. Curr. Opin. Biotechnol. 2007, 18, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bao, M.; Li, Y.; Zhao, L.; King, T.; Xie, Y. Effects of suspended particulate matter, surface oil layer thickness and surfactants on the formation and transport of oil-sediment aggregates (OSA). Int. Biodeterior. Biodegrad. 2020, 149, 104925. [Google Scholar] [CrossRef]
- Liu, B.; Ju, M.; Liu, J.; Wu, W.; Li, X. Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Mar. Pollut. Bull. 2016, 106, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Moodley, P.; Kana, E.G. Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification. Bioresour. Technol. 2017, 235, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Frade, V.M.F.; Dias, M.; Teixeira, A.C.S.C.; Palma, M.S.A. Environmental contamination by fluoroquinolones. Braz. J. Pharm. Sci. 2014, 50, 41–54. [Google Scholar] [CrossRef]
- Volkering, F.; Breure, A.M.; Van Andel, J.; Rulkens, W.H. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 1995, 61, 1699–1705. [Google Scholar] [CrossRef] [Green Version]
- Farrell, A.; Quilty, B. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J. Ind. Microbiol. Biotechnol. 2002, 28, 316–324. [Google Scholar] [CrossRef]
- Obuekwe, C.O.; Al-Jadi, Z.K.; Al-Saleh, E.S. Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int. Biodeterior. Biodegrad. 2009, 63, 273–279. [Google Scholar] [CrossRef]
- Alakomi, H.-L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heipieper, H.J.; Weber, F.J.; Sikkema, J.; Keweloh, H.; de Bont, J.A. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 1994, 12, 409–415. [Google Scholar] [CrossRef]
- Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 2006, 30, 428–471. [Google Scholar] [CrossRef] [Green Version]
- Kanaly, R.A.; Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 2000, 182, 2059–2067. [Google Scholar] [CrossRef] [Green Version]
- Andreoni, V.; Cavalca, L.; Rao, M.; Nocerino, G.; Bernasconi, S.; Dell’Amico, E.; Colombo, M.; Gianfreda, L. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 2004, 57, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Jacques, R.J.S.; Okeke, B.C.; Bento, F.M. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour. Technol. 2008, 99, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Muckian, L.M.; Grant, R.J.; Clipson, N.J.; Doyle, E.M. Bacterial community dynamics during bioremediation of phenanthrene- and fluoranthene-amended soil. Int. Biodeterior. Biodegrad. 2009, 63, 52–56. [Google Scholar] [CrossRef]
- Prabagaran, S.R.; Manorama, R.; Delille, D.; Shivaji, S. Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol. Ecol. 2006, 59, 342–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stringfellow, W.T.; Aitken, M.D. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl. Environ. Microbiol. 1995, 61, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Lotfabad, S.; Gray, M. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 2002, 60, 361–366. [Google Scholar]
- Sajna, K.V.; Sukumaran, R.K.; Gottumukkala, L.D.; Pandey, A. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour. Technol. 2015, 191, 133–139. [Google Scholar] [CrossRef]
- Zhang, T.-S. Experiments on heaving oil degradation and enhancing oil recovery by microbial treatments. Acta Pet. Sin. 2001, 22, 54–57. [Google Scholar]
- Kato, T.; Haruki, M.; Imanaka, T. Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J. Biosci. Bioeng. 2001, 91, 64–70. [Google Scholar] [CrossRef]
- Nazina, T.N.; Tourova, T.P.; Poltaraus, A.B.; Novikova, E.V.; Grigoryan, A.A.; Ivanova, A.E.; Lysenko, A.M.; Petrunyaka, V.V.; Osipov, G.A.; Belyaev, S.S.; et al. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int. J. Syst. Evol. Microbiol. 2001, 51, 433–446. [Google Scholar] [PubMed] [Green Version]
- Nazina, T.N.; Sokolova, D.S.; Grigoryan, A.A.; Shestakova, N.M.; Mikhailova, E.M.; Poltaraus, A.B.; Tourova, T.P.; Lysenko, A.M.; Osipov, G.A.; Belyaev, S.S. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst. Appl. Microbiol. 2005, 28, 43–53. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Liu, J.; Li, R.; Shen, B. Isolation of a thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway. Bioresour. Technol. 2012, 124, 83–89. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, X.; Dong, R.; King, T.; Chen, F.; Li, H. Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. Molecules 2022, 27, 687. https://doi.org/10.3390/molecules27030687
Kong X, Dong R, King T, Chen F, Li H. Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. Molecules. 2022; 27(3):687. https://doi.org/10.3390/molecules27030687
Chicago/Turabian StyleKong, Xianghui, Ranran Dong, Thomas King, Feifei Chen, and Haoshuai Li. 2022. "Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater" Molecules 27, no. 3: 687. https://doi.org/10.3390/molecules27030687
APA StyleKong, X., Dong, R., King, T., Chen, F., & Li, H. (2022). Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. Molecules, 27(3), 687. https://doi.org/10.3390/molecules27030687