Modeling Postmortem Ethanol Production/Insights into the Origin of Higher Alcohols
Abstract
:1. Introduction
2. Microbial Generation and Detection of Higher Alcohols
2.1. Fermentation Pathways Generating Ethanol and Higher Alcohols
2.2. Detection of Higher Alcohols
3. Higher Alcohols as Biomarkers of Postmortem Ethanol Production
3.1. Higher Alcohols in Autopsy Cases
3.2. Post-Sampling Production of Higher Alcohols
3.3. Higher Alcohols in Blood of Living Individuals
3.4. Specific Roles of 1-Propanol
4. Modeling Microbial Ethanol Production
4.1. Higher Alcohols in Microbial Cultures
4.2. Models to Calculate Microbial Ethanol
5. Concluding Remarks
Funding
Conflicts of Interest
References
- Wigmore, J.G. Wigmore on Alcohol: Courtroom Alcohol Toxicology for the Medicolegal Professional, 1st ed.; Irwin Law: Toronto, ON, Canada, 2011. [Google Scholar]
- Ziavrou, K.; Boumba, V.A.; Vougiouklakis, T.G. Insights into the origin of postmortem ethanol. Int. J. Toxicol. 2005, 24, 69–77. [Google Scholar] [CrossRef]
- Kugelberg, F.C.; Jones, A.W. Interpreting results of ethanol analysis in postmortem specimens: A review of the literature. Forensic Sci. Int. 2007, 165, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. The auto-brewery syndrome: A perfect metabolic “storm” with clinical and forensic implications. J. Clin. Med. 2021, 10, 4637. [Google Scholar] [CrossRef] [PubMed]
- Cowan, D.M.; Maskrey, J.R.; Fung, E.S.; Scott, P.K.; Finley, B.L. Best-practices approach to determination of blood alcohol concentration (BAC) at specific time points: Combination of ante-mortem alcohol pharmacokinetic modeling and post-mortem alcohol generation and transport considerations. Regul. Toxicol. Pharmacol. 2016, 78, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, H.; Jones, A.W.; Wang, F.; Zhang, Y.; Rao, Y. Evaluation and review of ways to differentiate sources of ethanol in postmortem blood. Int. J. Leg. Med. 2020, 134, 2081–2093. [Google Scholar] [CrossRef]
- Helander, A.; Beck, O.; Jones, A.W. Distinguishing ingested ethanol from microbial formation by analysis of urinary 5-hydroxytryptophol and 5-hydroxyindoleacetic acid. J. Forensic Sci. 1995, 40, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Wurst, F.M.; Kempter, C.; Metzger, J.; Seidl, S.; Alt, A. Ethyl glucuronide: A marker of recent alcohol consumption with clinical and forensic implications. Alcohol 2000, 20, 111–116. [Google Scholar] [CrossRef]
- Hansson, P.; Varga, A.; Krantz, P.; Alling, C. Phosphatidyl-ethanol in postmortem blood as a marker of previous heavy drinking. Int. J. Legal Med. 2001, 115, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Borucki, K.; Schreiner, R.; Dierkes, J.; Jachau, K.; Krause, D.; Westphal, S.; Wurst, F.M.; Luley, C.; Schmidt-Gayk, H. Detection of recent ethanol intake with new markers: Comparison of fatty acid ethyl esters in serum and of ethyl glucuronide and the ratio of 5-hydroxytryptophol ton 5-hydroxylndole acetic acid in urine. Alcohol Clin. Exp. Res. 2005, 29, 781–787. [Google Scholar] [CrossRef]
- Høiseth, G.; Karinen, R.; Christophersen, A.S.; Olsen, L.; Normann, P.T.; Mørland, J. A study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem ingestion of alcohol. Forensic Sci. Int. 2007, 165, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhang, X.; Li, J.; Huang, Z.; Lin, Z.; Wang, J.; Zhang, C.; Rao, Y. Stability of ethyl glucuronide, ethyl sulfate, phosphatidylethanols and fatty acid ethyl esters in postmortem human blood. J. Anal. Toxicol. 2018, 42, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, J.; Huang, Z.; Wang, F.; Zhang, Y.; Chang, J.; Rao, Y. Assessment of the role played by n-propanol in distinction of ethanol source in postmortem blood with the assistance of ethyl glucuronide and ethyl sulfate. Forensic Toxicol. 2020, 38, 195–202. [Google Scholar] [CrossRef]
- Wozniak, M.K.; Wiergowski, M.; Namiesnik, J.; Biziuk, M. Biomarkers of alcohol consumption in body fluids-possibilities and limitations of application in tox icological analysis. Curr. Med. Chem. 2019, 26, 177–196. [Google Scholar] [CrossRef]
- Nanikawa, R.; Amrno, K.; Hashimoto, Y.; Hamada, K. Medicolegal studies on alcohol detected in dead bodies-alcohol levels in skeletal muscle. Forensic Sci. Int. 1982, 20, 133–140. [Google Scholar] [CrossRef]
- Nanikawa, R.; Moriya, F.; Hashimoto, Y. Experimental studies on the mechanism of ethanol formation in corpses. Z. Rechtsmed. 1988, 101, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Leikin, J.B.; Watson, W.A. Post-mortem toxicology: What the dead can and cannot tell us. J. Toxicol. Clin. Toxicol. 2003, 41, 47–56. [Google Scholar] [CrossRef]
- Lewis, R.J.; Johnson, R.D.; Angier, M.K.; Vu, N.T. Ethanol formation in unadulterated postmortem tissues. Forensic Sci. Int. 2004, 146, 17–24. [Google Scholar] [CrossRef]
- Moriya, F.; Hashimoto, Y. Postmortem production of ethanol and n-propanol in the brain of drowned persons. Am. J. Forensic Med. Pathol. 2004, 25, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, R.J.; Connally, G. Interpretation of analytical toxicology results in life and at postmortem. Toxicol. Rev. 2005, 24, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Statheropoulos, M.; Spiliopoulou, C.; Agapiou, A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci. Int. 2005, 153, 147–155. [Google Scholar] [CrossRef]
- Skopp, G. Postmortem toxicology. Forensic Sci. Med. Pathol. 2010, 6, 314–325. [Google Scholar] [CrossRef]
- Paczkowski, S.; Schutz, S. Post-mortem volatiles of vertebrate tissue. Appl. Microbiol. Biotechnol. 2011, 91, 917–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummer, O.H. Alcohol congeners and the source of ethanol. In Encyclopedia of Forensic Sciences, 2nd ed.; Siegel, J.A., Saukko, P.J., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 318–322. [Google Scholar]
- Rodda, L.N.; Beyer, J.; Gerostamoulos, D.; Drummer, O.H. Alcohol congener analysis and the source of alcohol: A review. Forensic Sci. Med. Pathol. 2013, 9, 194–207. [Google Scholar] [CrossRef]
- Liang, H.; Kuang, S.; Guo, L.; Yu, T.; Rao, Y. Assessment of the role played by N-propanol found in postmortem blood in the discrimination between antemortem consumption and postmortem formation of ethanol using rats. J. Forensic Sci. 2016, 61, 122–126. [Google Scholar] [CrossRef]
- Corry, J.E.I. Possible sources of ethanol ante- and postmortem: Its relation to the biochemistry and microbiology of decomposition. J. Appl. Bacteriol. 1978, 44, 1–56. [Google Scholar] [CrossRef]
- Felby, S.; Nielsen, E. Congener production in blood samples during preparation and storage. Blutalkohol 1995, 32, 50–58. [Google Scholar] [PubMed]
- Boumba, V.; Kourkoumelis, N.; Ziavrou, K.; Vougiouklakis, T. Estimating a reliable cutoff point of 1-propanol in postmortem blood as marker of microbial ethanol production. J. Forensic Sci. Med. 2019, 5, 141–146. [Google Scholar] [CrossRef]
- Bonte, W.; Hey, F. Concerning storage alterations of the congener content of blood and urine samples. Blutalkohol 1983, 20, 109–122. [Google Scholar]
- Gubala, W. n-Butanol in blood as the indicator of how long a dead body lay in water. Forensic Sci. Int. 1990, 46, 127–128. [Google Scholar] [CrossRef]
- Bonte, W. Begleitstoffe alkoholischer Getränke, Arbeitsmethoden der medizinischen und Naturwissenschaftlichen Kriminalistik, Bd 17; Schmidt-Römhild: Lübeck, Germany, 1989. [Google Scholar]
- Boumba, V.A.; Economou, V.; Kourkoumelis, N.; Papadopoulou, C.; Vougiouklakis, T. Microbial ethanol production: Experimental study and multivariate evaluation. Forensic Sci. Int. 2012, 215, 189–198. [Google Scholar] [CrossRef]
- Boumba, V.A.; Kourkoumelis, N.; Gousia, P.; Papadopoulou, C.; Vougiouklakis, T. Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: Applicability to real postmortem cases and to postmortem blood derived microbial cultures. Forensic Sci. Int. 2013, 232, 191–198. [Google Scholar] [CrossRef]
- Velivasi, G.; Kourkoumelis, N.; Sakkas, H.; Boumba, V.A. Modeling microbial ethanol production by S. aureus, K. pneumoniae, and E. faecalis under aerobic/anaerobic conditions—Applicability to laboratory cultures and real postmortem cases. Int. J. Leg. Med. 2021, 135, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- Velivasi, G.; Sakkas, I.; Kourkoumelis, N.; Boumba, V.A. Modeling postmortem ethanol production by C. albicans: Experimental study and multivariate evaluation. Forensic Sci. Int. 2021, 324, 110809. [Google Scholar] [CrossRef] [PubMed]
- Saukko, P.; Knight, B. Knights Forensic Pathology: The Pathophysiology of Death, 3rd ed.; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Boumba, V.A.; Ziavrou, K.S.; Vougiouklakis, T. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyse. Forensic Sci. Int. 2008, 174, 133–151. [Google Scholar] [CrossRef]
- Jungmann, L.; Große Perdekamp, M.; Bohnert, M.; Auwärter, V.; Pollak, S. Complex suicide by ethanol intoxication and inhalation of fire fumes in an old lady: Interdisciplinary elucidation including post-mortem analysis of congener alcohols. Forensic Sci. Int. 2011, 209, e11–e15. [Google Scholar] [CrossRef]
- Boumba, V.A.; Kourkoumelis, N.; Ziavrou, K.S.; Fragkouli, K.; Vougiouklakis, T. Patterns of the most abundant volatiles detected in post-mortem blood. Rom. J. Leg. Med. 2012, 20, 147–154. [Google Scholar] [CrossRef]
- Boumba, V.A. Commentary on the article of Wang H, Li J, Huang Z, Wang F, Zhang Y, Chang J, Rao Y (2020) Assessment of the role played by n-propanol in distinction of ethanol source in postmortem blood with the assistance of ethyl glucuronide and ethyl sulfate. Forensic Toxicol. 2020, 38, 529–530. [Google Scholar] [CrossRef]
- Yajima, D.; Motani, H.; Kamei, K.; Sato, Y.; Hayakawa, M.; Iwase, H. Ethanol production by Candida albicans in postmortem human blood samples: Effects of blood glucose level and dilution Forensic Sci. Int. 2006, 164, 116–121. [Google Scholar] [CrossRef]
- Wunder, C.; Hain, S.; Koelzer, S.C.; Paulke, A.; Verhoff, M.A.; Toennes, S.W. Lack of effects of a “sobering” product, “Eezup!”, on the blood ethanol and congener alcohol concentration. Forensic Sci. Int. 2017, 278, 101–105. [Google Scholar]
- Wunder, C.; Weber, C.; Paulke, A.; Holz, F.; Toennes, S.W. Endogenous formation of 1-propanol and methanol after consumption of alcoholic beverages Forensic Sci. Int. 2021, 325, 110905. [Google Scholar]
- Jones, A.W.; Hylen, L.; Svensson, E.; Helander, A. Storage of specimens at 4 degrees C or addition of sodium fluoride (1%) prevents formation of ethanol in urine inoculated with Candida albicans. J. Anal. Toxicol. 1999, 23, 333–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinis-Oliveira, R.J.; Viera, D.N.; Magalhaes, T. Guidelines for collection of biological samples for clinical and forensic toxicological analysis. Forensic Sci. Res. 2017, 1, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Aamir, M.; Kirmani, S.I.; Haroon, Z.H.; Bibi, A.; Khalid, U.B. Effect of temperature and preservative on neo-ethanol formation in postmortem whole blood samples. J. College Physic. Surg. Pak. 2021, 31, 1159–1162. [Google Scholar]
- Petković, S.; Savić, S.; Zgonjanin, D.; Samojlik, I. Ethanol Concentrations in Antemortem Blood Samples Under Controlled Conditions. Alcohol Alcohol. 2008, 43, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Bonte, W. Congener analysis. In Encyclopedia of Forensic Sciences; Academia Press: Dusseldorf, Germany, 2000; pp. 93–102. [Google Scholar]
- Iffland, R.; Jones, A.W. Evaluating alleged drinking after driving–The hip-flask defence. Part 2. Congener analysis. Med. Sc. Law 2003, 43, 39–68. [Google Scholar] [CrossRef]
Ethanol/Higher Alcohols | Biochemical Pathway | Microbe Domain |
---|---|---|
Ethanol | Glucose | Bacteria, Clostridia, Yeasts |
Glycerol | Clostridia, Bacteria, Yeasts | |
Mixed acid and butanediol | Bacteria | |
/1-Butanol | Butanol-acetone and Butyrate | Clostridia, Bacteria |
Glycerol | Clostridia, Bacteria | |
/Amyl- and Isoamyl-alcohol | Amino acids (linked to pyruvate availability) | Bacteria, Clostridia Yeasts, |
/Isobutanol | Amino acids (linked to pyruvate availability) | Bacteria, Clostridia, Yeast |
/1-Propanol | Acetone (from pyruvate, FA, Glycerol) | Bacteria, Clostridia |
Amino acids (linked to pyruvate availability) | Bacteria, Clostridia, Yeasts | |
Glycerol | Bacteria, Clostridia, Yeasts |
Sample Origin | Specimen (N) | Cmax Ethanol, g/L | Cmax Higher Alcohols, mg/dL | Ref. | |||
---|---|---|---|---|---|---|---|
1-Propanol | 1-Butanol | Isobutanol | Methyl-Butanol (Amyl/Isoamyl Alcohol) | ||||
(A) Postmortem | Blood (93) | 0.10–4.55 | 13.62 | 12.32 | 1.85 | 0.48 1 | [36] |
Blood, Femoral (1) | 6.62 | 2.4 | 0.05 | 0.45 | 1.26 1 (0.28/0.98) | [39] | |
Blood, Cardiac (1) | 8.11 | 2.3 | 0.04 | 0.51 | 1.20 1 (0.28/0.92) | [39] | |
Blood, Natural COD * (212) | 6.01 | 0.18 | nd | nd | nd | [40] | |
Blood, Violent COD (243) | 6.02 | 12.0 | nd | nd | nd | [40] | |
Blood, Undetermined COD (28) | 2.68 | 32.5 | nd | nd | nd | [40] | |
Blood (42) | 0.07–4.64 | 7.0 | nd | nd | nd | [13] | |
Blood (1) | 0.97 | 8.6 | nd | nd | nd | [6] | |
Blood | - | - | >0.03 | - | - | [32] | |
(B) Postmortem/ Post sampling | Blood (1) | 0.59/4.9 | ~0.2/0.4 | nd | nd | nd | [42] |
Blood (1) | 2.1/9.6 | ~0.4/3.0 | nd | nd | nd | [42] | |
(C) Antemortem | Plasma | 0.84/1.22 | 0.042/0.29 | - | 0.03/0.09 | 0.04 1 (0/0.04) | [43] |
Serum | 0.65–1.23 | <0.03 | nd | nd | nd | [44] |
Microbe Domain | Microbe, Culture Conditions | Max Ethanol, g/L | Max Higher Alcohols, mg/dL | Ref. | |||
---|---|---|---|---|---|---|---|
1-Propanol | 1-Butanol | Isobutanol | Methyl-Butanol 1 (Amyl/Isoamyl Alcohol) | ||||
(A) Bacteria | E. faecalis, BHI—Ae/An | 0.15 | 0.10 | 0.19 | 0.01 | 0.03 | [35] |
S. aureus, BHI—Ae/An | 0.28 | 0.20 | 0.14 | 0.08 | 0.13 | [35] | |
S. aureus, BHI—An | 0.36 | 0.23 | 0.15 | 0.08 | 0.11 | [35] | |
K. pneumoniae, BHI—Ae/An | 0.60 | 2.78 | 0.10 | 0.10 | 1.08 | [35] | |
K. pneumoniae, BHI—An | 0.64 | 2.78 | 0.14 | 0.07 | 0.72 | [35] | |
E. coli, BHI—An | 0.56 | 1.02 | 0.16 | 0.10 | 0.12 | [33] | |
E. coli, BHI—Ae | 0.55 | 2.08 | 0.21 | 0.02 | 0.05 | [34] | |
E. coli, BHI—Ae/An | 0.62 | 3.63 | 0.24 | 0.03 | 0.11 | [34] | |
(B) Clostridia | C. perfrigens, BHI—An | 0.15 | 0.70 | 1.90 | 0.15 | 0.10 | [33] |
C. sporogenes, BHI—An | 0.87 | 10.2 | 11.9 | 6.10 | 0.57 | [33] | |
(C) Yeasts | C. albicans, BHI—Ae/An | 0.62 | 0.102 | 0.05 | 0.33 | 1.30 * | [36] |
C. albicans, BHI—An | 0.89 | 0.12 | 0.06 | 0.45 | 1.48 * | [36] | |
C. alcicans, SDB—Ae/An | 9.83 | 0.51 | 0.18 | 0.85 | 1.71 * | [36] | |
C. alcicans, SDB—An | 10.1 | 0.46 | 0.15 | 0.82 | 1.70 * | [36] |
Microbe Domain | No | Model (Equation) | R2 | Microbe-Aeration Conditions, Culture Medium | Ref. |
---|---|---|---|---|---|
Bacteria | 1 | Ethanol = 0.16 * 1Propanol − 1.24 * Isobutanol + 0.27 * 1Butanol + 0.09 | 0.37 | E. faecalis-Ae/An | [35] |
2 | Ethanol = 0.28 * 1Propanol + 3.52 * Isobutanol + 0.91 * 1Butanol − 1.05 * Methyl-butanol | 0.85 | S aureus-Ae/An | [35] | |
3 | Ethanol = 0.40 * 1Propanol + 5.33 × Isobutanol + 0.04 × 1Butanol − 1.65 × Methyl-butanol + 0.01 | 0.91 | S. aureus-An | [35] | |
4 | Ethanol = 0.13 * 1Propanol + 6.17 * Isobutanol + 1.37 * 1Butanol − 0.43 * Methyl-butanol − 0.02 | 0.94 | K. pneumoniae-Ae/An | [35] | |
5 | Ethanol = 0.31 * 1Propanol − 0.41 * Methyl-butanol + 0.05 | 0.88 | K. pneumoniae-Ae/An | [35] | |
6 | Ethanol = 0.23 * 1Propanol + 1.20 * 1Butanol − 0.27 * Methyl-butanol + 0.03 | 0.90 | K. pneumoniae-An | [35] | |
7 | Ethanol = 0.36* 1Propanol − 0.71 * Methyl-butanol + 0.10 | 0.83 | K. pneumoniae-An | [35] | |
8 | Ethanol = 0.07 * 1Propanol + 0.20 * Isobutanol + 1.61 * 1Butanol + 1.15 * Methyl-butanol + 0.15 | 0.75 | E.coli-An | [33] | |
9 a | Ethanol = 0.08 * 1Propanol + 1.57 * 1Butanol + 1.18 * Methyl-butanol + 0.15 | 0.74 | E.coli-An | [33] | |
10 | Ethanol = 2.25 * 1Butanol + 0.98 * Methyl-butanol + 0.15 | 0.72 | E.coli-An | [33] | |
11 | Ethanol = 0.07 * 1Propanol + 3.77 * Isobutanol − 0.26 * 1Butanol + 0.07 * Methyl-butanol + 0.39 | 0.83 | E.coli-Ae | [34] | |
12 | Ethanol = 0.05 * 1Propanol + 1.13 * Isobutanol + 0.95 * 1Butanol − 1.60 * Methyl-butanol + 0.31 | 0.90 | E.coli-Ae/An | [34] | |
13 | Ethanol = 0.05 * 1Propanol + 0.53 * 1Butanol + 0.32 | 0.75 | E.coli-Ae/An | [34] | |
14 | Ethanol = 0.05 * 1Propanol + 1.06 * Isobutanol + 1.76 * 1Butanol − 1.62 * Methyl-butanol + 0.14 | 0.81 | E.coli-An | [34] | |
Clostridia | 15 | Ethanol = 0.08 * 1Propanol + 0.03 * 1Butanol + 0.30 * Isobutanol − 0.01 * Methyl-butanol + 0.03 | 0.94 | C. perfringens-An | [33] |
16 a | Ethanol = 0.11 * 1Propanol + 0.03 * 1Butanol + 0.13 * Isobutanol + 0.03 | 0.96 | C. perfringens-An | [33] | |
17 a | Ethanol = 0.13 * 1Propanol + 0.03 * 1Butanol + 0.03 | 0.94 | C. perfringens-An | [33] | |
18 | Ethanol = − 0.11 + 4.71 * 1Propanol | 0.92 | C. perfringens-An | [33] | |
19 | Ethanol = 0.16 * 1Propanol − 0.07 * 1Butanol + 0.61 * Methyl-butanol − 0.07 * Isobutanol + 0.05 | 0.64 | C. sporogenes-An | [33] | |
20 | Ethanol = 0.17 * 1Propanol − 0.03 * 1Butanol − 0.11 * Isobutanol + 0.06 | 0.62 | C. sporogenes-An | [33] | |
21 | Ethanol = 0.15 * 1Propanol − 0.14 * Isobutanol + 0.09 | 0.60 | C. sporogenes-An | [33] | |
Yeast | 22 | Ethanol = 3.01 × 1Propanol − 0.09 × Methyl-butanol + 0.46 × Isobutanol + 0.28 | 0.49 | C. albicans-Ae/An, BHI | [36] |
23 | Ethanol = 3.98 × 1Propanol − 0.25 × Methyl-butanol + 1.10 × Isobutanol + 0.33 | 0.68 | C. albicans-An, BHI | [36] | |
24 | Ethanol = 4.30 × 1Propanol + 0.29 × Isobutanol (or Methyl butanol) + 0.28 | 0.67 | C. albicans-An, BHI | [36] | |
25 | Ethanol = 10.4 × 1Propanol − 2.24 × Methyl-butanol + 9.62 × Isobutanol + 0.76 | 0.95 | C. albicans-Ae/An, SDB | [36] | |
26 | Ethanol = 10.4 × 1Propanol + 5.58 × Isobutanol (or Methyl-butanol) + 0.43 | 0.95 | C. albicans-Ae/An, SDB | [36] | |
27 | Ethanol = 20.6 × 1Propanol + 4.13 × Methyl-butanol − 5.16 × Isobutanol − 0.42 | 0.95 | C. albicans-An, SDB | [36] | |
28 | Ethanol = 21.5 × 1Propanol + 1.31 × Isobutanol (or Methyl-butanol) − 0.38 | 0.95 | C. albicans-An, SDB | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boumba, V.A. Modeling Postmortem Ethanol Production/Insights into the Origin of Higher Alcohols. Molecules 2022, 27, 700. https://doi.org/10.3390/molecules27030700
Boumba VA. Modeling Postmortem Ethanol Production/Insights into the Origin of Higher Alcohols. Molecules. 2022; 27(3):700. https://doi.org/10.3390/molecules27030700
Chicago/Turabian StyleBoumba, Vassiliki A. 2022. "Modeling Postmortem Ethanol Production/Insights into the Origin of Higher Alcohols" Molecules 27, no. 3: 700. https://doi.org/10.3390/molecules27030700
APA StyleBoumba, V. A. (2022). Modeling Postmortem Ethanol Production/Insights into the Origin of Higher Alcohols. Molecules, 27(3), 700. https://doi.org/10.3390/molecules27030700