Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid
Abstract
:1. Introduction
2. Results
2.1. IMS MS Screening
2.2. Structural Elucidation by IMS CID MS/MS of Uncommon Glycoforms
3. Materials and Methods
3.1. Cerebrospinal Fluid Sampling
3.2. Gangliosides Extraction and Purification
3.3. Ion Mobility Mass Spectrometry
3.4. Ganglioside Abbreviation and Assignment of the Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yu, R.; Yanagisawa, M.; Ariga, T. Glycosphingolipid Structures. In Comprehensive Glycoscience; Kamerling, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 73–122. [Google Scholar]
- Ariga, T.; Yu, R.K. Antiglycolipid antibodies in Guillain-Barré syndrome and related diseases: Review of clinical features and antibody specificities. J. Neurosci. Res. 2005, 80, 1–17. [Google Scholar] [CrossRef]
- Sipione, S.; Monyror, J.; Galleguillos, D.; Steinberg, N.; Kadam, V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front. Neurosci. 2020, 14, 1004. [Google Scholar] [CrossRef] [PubMed]
- Iwabuchi, K.; Yamamura, S.; Prinetti, A.; Handa, K.; Hakomori, S.-I. GM3-enriched Microdomain Involved in Cell Adhesion and Signal Transduction through Carbohydrate-Carbohydrate Interaction in Mouse Melanoma B16 Cells. J. Biol. Chem. 1998, 273, 9130–9138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.K.; Bieberich, E.; Xia, T.; Zeng, G. Regulation of ganglioside biosynthesis in the nervous system. J. Lipid Res. 2004, 45, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.A.; Cross, H.; Proukakis, C.; Priestman, D.A.; Neville, D.C.A.; Reinkensmeier, G.; Wang, H.; Wiznitzer, M.; Gurtz, K.; Verganelaki, A.; et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat. Genet. 2004, 36, 1225–1229. [Google Scholar] [CrossRef] [Green Version]
- Boukhris, A.; Schüle-Freyer, R.; Loureiro, J.L.; Lourenço, C.M.; Mundwiller, E.; Gonzalez, M.A.; Charles, P.; Gauthier, J.; Rekik, I.; Lebrigio, R.F.A.; et al. Alteration of Ganglioside Biosynthesis Responsible for Complex Hereditary Spastic Paraplegia. Am. J. Hum. Genet. 2013, 93, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Fragaki, K.; Ait-El-Mkadem, S.; Chaussenot, A.; Gire, C.; Mengual, R.; Bonesso, L.; Bénéteau, M.; Ricci, J.E.; Desquiret-Dumas, V.; Procaccio, V.; et al. Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur. J. Hum. Genet. 2012, 21, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Harlalka, G.V.; Lehman, A.; Chioza, B.; Baple, E.L.; Maroofian, R.; Cross, H.; Sreekantan-Nair, A.; Priestman, D.A.; Al-Turki, S.; McEntagart, M.E.; et al. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 2013, 136, 3618–3624. [Google Scholar] [CrossRef] [Green Version]
- Sarbu, M.; Dehelean, L.; Munteanu, C.; Vukelić, Ž.; Zamfir, A.D. Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry. Anal. Biochem. 2017, 521, 40–54. [Google Scholar] [CrossRef]
- Sarbu, M.; Robu, A.C.; Ghiulai, R.M.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Anal. Chem. 2016, 88, 5166–5178. [Google Scholar] [CrossRef]
- Ica, R.; Petrut, A.; Munteanu, C.; Sarbu, M.; Vukelić, Ž.; Petrica, L.; Zamfir, A.D. Orbitrap mass spectrometry for monitoring the ganglioside pattern in human cerebellum development and aging. J. Mass Spectrom. 2020, 55, e4502. [Google Scholar] [CrossRef]
- Schnaar, R.L.; Kinoshita, T. Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2017; pp. 2015–2017. [Google Scholar]
- Brandenburg, K.; Holst, O. Glycolipids: Distribution and biological function. eLS 2015. [Google Scholar] [CrossRef]
- Telano, L.N.; Baker, S. Physiology, cerebral spinal fluid. In StatPearls, Treasure Island (FL); StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Füvesi, J.; Hanrieder, J.; Bencsik, K.; Rajda, C.; Kovacs, S.K.; Kaizer, L.; Beniczky, S.; Vecsei, L.; Bergquist, J. Proteomic Analysis of Cerebrospinal Fluid in a Fulminant Case of Multiple Sclerosis. Int. J. Mol. Sci. 2012, 13, 7676–7693. [Google Scholar] [CrossRef]
- Sasso, B.L.; Agnello, L.; Bivona, G.; Bellia, C.; Ciaccio, M. Cerebrospinal Fluid Analysis in Multiple Sclerosis Diagnosis: An Update. Medicina 2019, 55, 245. [Google Scholar] [CrossRef] [Green Version]
- Ruprecht, K.; Tumani, H. Cerebrospinal fluid diagnostics in multiple sclerosis. Der Nervenarzt 2016, 87, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Pentsova, E.I.; Shah, R.; Tang, J.; Boire, A.; You, D.; Briggs, S.; Omuro, A.; Lin, X.; Fleisher, M.; Grommes, C.; et al. Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid. J. Clin. Oncol. 2016, 34, 2404–2415. [Google Scholar] [CrossRef]
- Pan, W.; Gu, W.; Nagpal, S.; Gephart, M.H.; Quake, S.R. Brain Tumor Mutations Detected in Cerebral Spinal Fluid. Clin. Chem. 2015, 61, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Melisko, M.E.; Magbanua, M.J.M.; Kablanian, A.T.; Scott, J.H.; Rugo, H.S.; Park, J.W. Detection of cerebrospinal fluid tumor cells and its clinical relevance in leptomeningeal metastasis of breast cancer. Breast Cancer Res. Treat. 2015, 154, 339–349. [Google Scholar] [CrossRef]
- Powers, C.J.; Dickerson, R.; Zhang, S.W.; Rink, C.; Roy, S.; Sen, C.K. Human cerebrospinal fluid microRNA: Temporal changes following subarachnoid hemorrhage. Physiol. Genom. 2016, 48, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, H.; Skillbäck, T.; Mattsson, N.; Trojanowski, J.Q.; Portelius, E.; Shaw, L.M.; Weiner, M.W.; Blennow, K.; Alzheimer’s Disease Neuroimaging Initiative. Association of Cerebrospinal Fluid Neurofilament Light Concentration With Alzheimer Disease Progression. JAMA Neurol. 2016, 73, 60–67. [Google Scholar] [CrossRef]
- Dayon, L.; Galindo, A.N.; Wojcik, J.; Cominetti, O.; Corthésy, J.; Oikonomidi, A.; Henry, H.; Kussmann, M.; Migliavacca, E.; Severin, I.; et al. Alzheimer disease pathology and the cerebrospinal fluid proteome. Alzheimer’s Res. Ther. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Schindler, S.E.; Li, Y.; Todd, K.W.; Herries, E.M.; Henson, R.L.; Gray, J.D.; Wang, G.; Graham, D.L.; Shaw, L.M.; Trojanowski, J.Q.; et al. Emerging cerebrospinal fluid biomarkers in autosomal dominant Alzheimer’s disease. Alzheimer’s Dement. 2019, 15, 655–665. [Google Scholar] [CrossRef]
- Nissen, M.S.; Nilsson, A.C.; Forsberg, J.; Milthers, J.; Wirenfeldt, M.; Bonde, C.; Byg, K.-E.; Ellingsen, T.; Blaabjerg, M. Use of Cerebrospinal Fluid Biomarkers in Diagnosis and Monitoring of Rheumatoid Meningitis. Front. Neurol. 2019, 10, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittrich, T.D.; Marsch, S.; Egli, A.; Rüegg, S.; De Marchis, G.M.; Tschudin-Sutter, S.; Sutter, R. Predictors of infectious meningitis or encephalitis: The yield of cerebrospinal fluid in a cross-sectional study. BMC Infect. Dis. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Blinder, T.; Lewerenz, J. Cerebrospinal Fluid Findings in Patients With Autoimmune Encephalitis—A Systematic Analysis. Front. Neurol. 2019, 10, 804. [Google Scholar] [CrossRef] [Green Version]
- Doljanski, F.; Kapeller, M. Cell surface shedding—The phenomenon and its possible significance. J. Theor. Biol. 1976, 62, 253–270. [Google Scholar] [CrossRef]
- Milhorat, T.; Hammock, K. Cerebrospinal fluid as reflection of internal milieu of brain. In Neurobiology of Cerebrospinal Fluid; Wood, J.H., Ed.; Plenum Press: New York, NY, USA, 1983; p. 1. [Google Scholar]
- Ladisch, S.; Chang, F.; Li, R.; Cogen, P.; Johnson, D. Detection of medulloblastoma and astrocytoma-associated ganglioside GD3 in cerebrospinal fluid. Cancer Lett. 1997, 120, 71–78. [Google Scholar] [CrossRef]
- Nordin, V.; Lekman, A.; Johansson, M.; Fredman, P.; Gillberg, C. Gangliosides in cerebrospinal fluid in children with autism spectrum disorders. Dev. Med. Child Neurol. 2008, 40, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledeen, R.W.; Yu, R.K. Gangliosides of CSF and plasma: Their relation to the nervous system. In Sphingolipids, Sphingolipidoses and Allied Disorders; Volk, B.W., Aronson, S.M., Eds.; Plenum Press: New York, NY, USA, 1972; p. 77. [Google Scholar]
- Avrova, N.F.; Vlasova, Y.A. Brain Gangliosides and Their Function as Natural Adaptogenes. In Evolutionary Physiology and Biochemistry-Advances and Perspectives; IntechOpen: London, UK, 2018. [Google Scholar]
- Bohrer, B.C.; Merenbloom, S.I.; Koeniger, S.L.; Hilderbrand, A.E.; Clemmer, D.E. Biomolecule Analysis by Ion Mobility Spectrometry. Annu. Rev. Anal. Chem. 2008, 1, 293–327. [Google Scholar] [CrossRef] [Green Version]
- Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H., Jr. Ion mobility-mass spectrometry. Biol. Mass Spectrom. 2008, 43, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Gelb, A.; Dodds, E. Carbohydrate and Glycoconjugate Analysis by Ion Mobility Mass Spectrometry: Opportunities and Challenges. Curr. Metabolomics 2014, 1, 291–305. [Google Scholar] [CrossRef]
- Stow, S.M.; Lareau, N.M.; Hines, K.M.; McNees, C.R.; Goodwin, C.R.; Bachmann, B.O.; Mclean, J.A. Structural separations for natural product characterization by ion mobility–mass spectrometry fundamental theory to emerging applications. In Natural Products Analysis: Instrumentation, Methods, and Applications; Havlíček, V., Spížek, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 397–431. [Google Scholar]
- Jackson, S.N.; Ugarov, M.; Egan, T.; Post, J.D.; Langlais, D.; Schultz, J.A.; Woods, A.S. MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. Biol. Mass Spectrom. 2007, 42, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.N.; Colsch, B.; Egan, T.; Lewis, E.K.; Schultz, J.A.; Woods, A.S. Gangliosides’ analysis by MALDI-ion mobility MS. Analyst 2010, 136, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, R.; Webb, I.K.; Deng, L.; Garimella, S.V.B.; Prost, S.A.; Ibrahim, Y.M.; Baker, E.S.; Smith, R.D. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations. Int. J. Mol. Sci. 2017, 18, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarbu, M.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Electrospray ionization ion mobility mass spectrometry provides novel insights into the pattern and activity of fetal hippocampus gangliosides. Biochimie 2017, 139, 81–94. [Google Scholar] [CrossRef]
- Sarbu, M.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst 2018, 143, 5234–5246. [Google Scholar] [CrossRef]
- Sarbu, M.; Clemmer, D.E.; Zamfir, A.D. Ion mobility mass spectrometry of human melanoma gangliosides. Biochimie 2020, 177, 226–237. [Google Scholar] [CrossRef]
- Sarbu, M.; Petrica, L.; Clemmer, D.E.; Vukelić, Ž.; Zamfir, A.D. Gangliosides of Human Glioblastoma Multiforme: A Comprehensive Mapping and Structural Analysis by Ion Mobility Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32, 1249–1257. [Google Scholar] [CrossRef]
- Sarbu, M.; Raab, S.; Henderson, L.; Fabris, D.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Cerebrospinal fluid: Profiling and fragmentation of gangliosides by ion mobility mass spectrometry. Biochimie 2020, 170, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Kusunoki, S.; Chiba, A.; Kon, K.; Ando, S.; Arisawa, K.; Tate, A.; Kanazawa, I. N-acetylgalactosaminyl GD1a is a target molecule for serum antibody in Guillain-Barré syndrome. Ann. Neurol. 1994, 35, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Kaida, K.; Kusunoki, S.; Kamakura, K.; Motoyoshi, K.; Kanazawa, I. GalNAc-GD1a in human peripheral nerve: Target sites of anti-ganglioside antibody. Neurology 2003, 61, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Kaida, K.; Sonoo, M.; Ogawa, G.; Kamakura, K.; Ueda-Sada, M.; Arita, M.; Motoyoshi, K.; Kusunoki, S. GM1/GalNAc-GD1a complex: A target for pure motor Guillain-Barre syndrome. Neurology 2008, 71, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Kaida, K.; Kusunoki, S.; Kamakura, K.; Motoyoshi, K.; Kanazawa, I. Guillain-Barré syndrome with antibody to a ganglioside, N-acetylgalactosaminyl GD1a. Brain 2000, 123, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koga, M.; Gilbert, M.; Takahashi, M.; Li, J.; Hirata, K.; Kanda, T.; Yuki, N. GQ1b-seronegative Fisher syndrome: Clinical features and new serological markers. J. Neurol. 2012, 259, 1366–1374. [Google Scholar] [CrossRef]
- Yoshino, H.; Ariga, T.; Suzuki, A.; Yu, R.K.; Miyatake, T. Identification of gangliosides recognized by IgG anti-GalNAc-GD1a antibodies in bovine spinal motor neurons and motor nerves. Brain Res. 2008, 1227, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H. Distribution of gangliosides in the nervous tissues recognized by axonal form of Guillain-Barré syndrome. Neuroimmunology 1997, 5, 174–175. [Google Scholar]
- Zamfir, A.; Vukelić, Ž.; Bindila, L.; Peter-Katalinić, J.; Almeida, R.; Sterling, A.; Allen, M. Fully-automated chip-based nanoelectrospray tandem mass spectrometry of gangliosides from human cerebellum. J. Am. Soc. Mass Spectrom. 2004, 15, 1649–1657. [Google Scholar] [CrossRef] [Green Version]
- Svennerholm, L.; Fredman, P. A procedure for the quantitative isolation of brain gangliosides. Biochim. Biophys. Acta Lipids Lipid Metab. 1980, 617, 97–109. [Google Scholar] [CrossRef]
- Vukelic, Z.; Metelmann, W.; Müthing, J.; Kos, M.; Peter-Katalinic, J. Anencephaly: Structural Characterization of Gangliosides in Defined Brain Regions. Biol. Chem. 2001, 382, 259–274. [Google Scholar] [CrossRef]
- Svennerholm, L. Ganglioside designation. Adv. Exp. Med. Biol. 1980, 125, 11. [Google Scholar] [CrossRef]
- Chester, M.A. IUPAC-IUB joint commission on biochemical nomenclature (JCBN). Eur. J. Biochem. 1998, 257, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Domon, B.; Costello, C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988, 5, 397–409. [Google Scholar] [CrossRef]
- Costello, C.E.; Juhasz, P.; Perreault, H. Chapter 4 New mass spectral approaches to ganglioside structure determinations. Prog. Brain Res. 1994, 101, 45–61. [Google Scholar] [CrossRef]
- Ann, Q.; Adams, J. Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li]+ ions. J. Am. Soc. Mass Spectrom. 1992, 3, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Serb, A.; Schiopu, C.; Flangea, C.; Sisu, E.; Zamfir, A.D. Top-down glycolipidomics: Fragmentation analysis of ganglioside oligosaccharide core and ceramide moiety by chip-nanoelectrospray collision-induced dissociation MS2-MS6. J. Mass Spectrom. 2009, 44, 1434–1442. [Google Scholar] [CrossRef]
- Ghiulai, R.M.; Sarbu, M.; Vukelić, Ž.; Ilie, C.; Zamfir, A.D. Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry. Glycoconj. J. 2014, 31, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Schiopu, C.; Vukelić, Ž.; Capitan, F.; Kalanj-Bognar, S.; Sisu, E.; Zamfir, A.D. Chip-nanoelectrospray quadrupole time-of-flight tandem mass spectrometry of meningioma gangliosides: A preliminary study. Electrophoresis 2012, 33, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Robu, A.C.; Vukelić, Ž.; Schiopu, C.; Capitan, F.; Zamfir, A.D. Mass spectrometry of gangliosides in extracranial tumors: Application to adrenal neuroblastoma. Anal. Biochem. 2016, 509, 1–11. [Google Scholar] [CrossRef]
m/z | Charge State | Type of Fragment Ion |
---|---|---|
161.032 | 1- | Y4β/Y3/B2α or Y2/Y1 or Y1/Y0 |
179.043 | 1- | Y4β/Z3/B2α or Y2/Z1 or Y1/Z0 |
202.064 | 1- | B1β or Y3/Y2 |
220.072 | 1- | C1β or Y3/Z2 |
281.243 | 1- | U* |
283.262 | 1- | U |
290.079 | 1- | B1α |
308.099 | 1- | C1α |
364.068 | 1- | B3/ B2α |
386.983 | 1- | 2,4X0/U |
458.569 | 2- | 1,5A3 |
539.592 | 1- | 1,5A4/B2α |
546.541 | 1- | Z0 |
552.594 | 1- | B3/B1α/2,5A1β |
562.522 | 1- | Y0* |
564.533 | 1- | Y0 |
567.113 | 1- | B4/B2α |
673.244 | 1- | C3/B1α or Y4β/B1α/Z2 |
708.496 | 1- | Z1 |
724.578 | 1- | Y1* |
726.587 | 1- | Y1 |
858.289 | 1- | B4/B1α |
873.463 | 2- | Y5α |
876.308 | 1- | C4/B1α |
888.632 | 1- | Y2 |
895.480 | 2- | Y4β/CH3CHO |
907.339 | 2- | Z4β* |
908.365 | 2- | Z4β |
916.466 | 2- | Y4β* |
917.475 | 2- | Y4β |
931.460 | 2- | 3,5A1α |
995.972 | 2- | M/*CH3CHO |
996.996 | 2- | M/CH3CHO |
1018.002 | 2- | [M* − 2H]2- |
1019.006 | 2- | [M − 2H]2- |
1038.368 | 1- | C5/B1α |
1064.376 | 1- | C4/2,5A1β |
1089.707 | 1- | Y3* |
1091.716 | 1- | Y3 |
1253.750 | 1- | Y4β/B2α |
1454.748 | 1- | Y4α* |
1456.855 | 1- | Y4α |
1526.850 | 1- | Y4β/C1α |
1542.848 | 1- | Y4β*/B1α |
1544.868 | 1- | Y4β/B1α |
1745.889 | 1- | Y5α* |
1747.945 | 1- | Y5α |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarbu, M.; Fabris, D.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid. Molecules 2022, 27, 743. https://doi.org/10.3390/molecules27030743
Sarbu M, Fabris D, Vukelić Ž, Clemmer DE, Zamfir AD. Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid. Molecules. 2022; 27(3):743. https://doi.org/10.3390/molecules27030743
Chicago/Turabian StyleSarbu, Mirela, Dragana Fabris, Željka Vukelić, David E. Clemmer, and Alina D. Zamfir. 2022. "Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid" Molecules 27, no. 3: 743. https://doi.org/10.3390/molecules27030743
APA StyleSarbu, M., Fabris, D., Vukelić, Ž., Clemmer, D. E., & Zamfir, A. D. (2022). Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid. Molecules, 27(3), 743. https://doi.org/10.3390/molecules27030743