Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods
Abstract
:1. Introduction
2. Results
2.1. Kjeldahl Method
2.2. Lowry Method
2.3. Experimental Statistical Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Protein Standard
3.3. Sample Collection and Preparation
Sample Soaking and Sprouting
3.4. Chemical Analysis
3.4.1. Kjeldahl Method
3.4.2. Protein Extraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pontén, F.; Jirström, K.; Uhlen, M. The Human Protein Atlas—a tool for pathology. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2008, 216, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Tortora, G.J.; Derrickson, B.H. Introduction to the Human Body; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Young, V.R. Amino acids and proteins in relation to the nutrition of elderly people. Age Ageing 1990, 19 (Suppl. S1), S10–S24. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.-P.; Huggins, R.A. A review of body composition studies with emphasis on total body water and fat. Am. J. Clin. Nutr. 1979, 32, 630–647. [Google Scholar] [CrossRef] [PubMed]
- Porstmann, T.; Kiessig, S. Enzyme immunoassay techniques an overview. J. Immunol. Methods 1992, 150, 5–21. [Google Scholar] [CrossRef]
- Heath, P.R.; Shaw, P.J. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2002, 26, 438–458. [Google Scholar] [CrossRef]
- Latham, M.C. Human Nutrition in the Developing World; Food & Agriculture Org.: Rome, Italy, 1997. [Google Scholar]
- Müller, O.; Krawinkel, M. Malnutrition and health in developing countries. Cmaj 2005, 173, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Chelly, J.; Khelfaoui, M.; Francis, F.; Chérif, B.; Bienvenu, T. Genetics and pathophysiology of mental retardation. Eur. J. Hum. Genet. 2006, 14, 701–713. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, G.; Wang, W.; Jiang, C.; Cao, L. Identification and comparison of proteomic and peptide profiles of mung bean seeds and sprouts. BMC Chem. 2020, 14, 1–12. [Google Scholar] [CrossRef]
- Randhir, R.; Lin, Y.-T.; Shetty, K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 2004, 39, 637–646. [Google Scholar] [CrossRef]
- Bau, H.M.; Villaume, C.; Nicolas, J.P.; Méjean, L. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agric. 1997, 73, 1–9. [Google Scholar] [CrossRef]
- Mubarak, A. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89, 489–495. [Google Scholar] [CrossRef]
- Ahmed, S.; Hasan, M.M. Legumes: An overview. RADS J. Pharm. Pharm. Sci. 2014, 2, 34–38. [Google Scholar]
- Maphosa, Y.; Jideani, V.A. The role of legumes in human nutrition. Funct. Food-Improv. Health Through Adequate Food 2017, 1, 13. [Google Scholar]
- Huang, X.; Cai, W.; Xu, B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chem. 2014, 143, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Muehlbauer, F.J.; McPhee, K.E. Lentil (Lens culinaris Medik.). Genet. Resour. Chromosome Eng. Crop Improv. Grain Legumes 2005, 1, 219–230. [Google Scholar]
- Liu, W.; Hu, B.; Dehghan, M.; Mente, A.; Wang, C.; Yan, R.; Rangarajan, S.; Tse, L.A.; Yusuf, S.; Liu, X. Fruit, vegetable, and legume intake and the risk of all-cause, cardiovascular, and cancer mortality: A prospective study. Clin. Nutr. 2021, 40, 4316–4323. [Google Scholar] [CrossRef]
- Papandreou, C.; Becerra-Tomás, N.; Bulló, M.; Martínez-González, M.Á.; Corella, D.; Estruch, R.; Ros, E.; Arós, F.; Schroder, H.; Fitó, M. Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clin. Nutr. 2019, 38, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Tayyem, R.F.; Bawadi, H.A.; Shehadah, I.; Agraib, L.M.; Al-Awwad, N.J.; Heath, D.D.; Bani-Hani, K.E. Consumption of whole grains, refined cereals, and legumes and its association with colorectal cancer among Jordanians. Integr. Cancer Ther. 2016, 15, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Bhatty, R. Composition and quality of lentil (Lens culinaris Medik): A review. Can. Inst. Food Sci. Technol. J. 1988, 21, 144–160. [Google Scholar] [CrossRef]
- Winham, D.; Webb, D.; Barr, A. Beans and good health. Nutr. Today 2008, 43, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.; Raai, M.N.; Zain, N.A.M.; Massawe, F.; Singh, A.; Wan, W.A.A.Q.I. In search of alternative proteins: Unlocking the potential of underutilized tropical legumes. Food Secur. 2019, 11, 1205–1215. [Google Scholar] [CrossRef]
- Hadidi, M.; Jafarzadeh, S.; Ibarz, A. Modified mung bean protein: Optimization of microwave-assisted phosphorylation and its functional and structural characterizations. LWT 2021, 151, 112119. [Google Scholar] [CrossRef]
- Teferra, T.F. Advanced and feasible pulses processing technologies for Ethiopia to achieve better economic and nutritional goals: A review. Heliyon 2021, e07459. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.J.; Layman, D.K.; Tomé, D.; Schaafsma, G. Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 2008, 87, 1576S–1581S. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Busquets, R.; Naushad, M.; Puignou, L. Cooking with elaborate recipes can reduce the formation of mutagenic heterocyclic amines and promote co-mutagenic amines. Food Addit. Contam. Part A 2019, 36, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Azam, M. Shrimp as a substantial source of carcinogenic heterocyclic amines. Food Res. Int. 2021, 140, 109977. [Google Scholar] [CrossRef]
- Aristoy, M.C.; Toldrá, F. Essential amino acids. In Handbook of Seafood and Seafood Products Analysis; CRC Press: Boca Raton, FL, USA, 2009; pp. 305–326. [Google Scholar]
- Khan, M.R.; Busquets, R.; Santos, F.J.; Puignou, L. New method for the analysis of heterocyclic amines in meat extracts using pressurised liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2008, 1194, 155–160. [Google Scholar] [CrossRef]
- Khan, M.; Bertus, L.; Busquets, R.; Puignou, L. Mutagenic heterocyclic amine content in thermally processed offal products. Food Chem. 2009, 112, 838–843. [Google Scholar] [CrossRef]
- Khan, M.; Mila, A.; Busquets, R.; Santos, F.; Puignou, L. Preparation and characterisation of fried chicken as a laboratory reference material for the analysis of heterocyclic amines. J. Chromatogr. B 2009, 877, 1997–2002. [Google Scholar] [CrossRef]
- Amy, B. Understanding Food & Principles and Preparation. U. S. Am. Thomson Wadsworth 2008, 3, 27. [Google Scholar]
- Khan, M.R.; Busquets, R.; Saurina, J.; Hernandez, S.; Puignou, L. Identification of seafood as an important dietary source of heterocyclic amines by chemometry and chromatography–mass spectrometry. Chem. Res. Toxicol. 2013, 26, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Naushad, M.; Alothman, Z.A.; Alsohaimi, I.H.; Algamdi, M.S. Solid phase extraction and ultra performance liquid chromatography-tandem mass spectrometric identification of carcinogenic/mutagenic heterocyclic amines in cooked camel meat. RSC Adv. 2015, 5, 2479–2485. [Google Scholar] [CrossRef]
- Khan, M.R. Influence of food condiments on the formation of carcinogenic heterocyclic amines in cooked chicken and determination by LC-MS/MS. Food Addit. Contam. Part A 2015, 32, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Young, V.R.; Pellett, P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S. [Google Scholar] [CrossRef]
- Khan, M.R.; Naushad, M.; Alothman, Z.A.; Algamdi, M.S.; Alsohaimi, I.H.; Ghfar, A.A. Effect of natural food condiments on carcinogenic/mutagenic heterocyclic amines formation in thermally processed camel meat. J. Food Process. Preserv. 2017, 41, e12819. [Google Scholar] [CrossRef]
- Alsohaimi, I.H.; Khan, M.R.; Ali, H.M.; Azam, M. Emergence of mutagenic/carcinogenic heterocyclic amines in traditional Saudi chicken dishes prepared from local restaurants. Food Chem. Toxicol. 2019, 132, 110677. [Google Scholar] [CrossRef]
- Khan, M.R.; Busquets, R.; Azam, M. Blueberry, raspberry, and strawberry extracts reduce the formation of carcinogenic heterocyclic amines in fried camel, beef and chicken meats. Food Control 2021, 123, 107852. [Google Scholar] [CrossRef]
- Baudoin, J.-P.; Maquet, A. Improvement of protein and amino acid contents in seeds of food legumes. A case study in Phaseolus. BASE 1999, 3, 220–224. [Google Scholar]
- Wang, T.L.; Domoney, C.; Hedley, C.L.; Casey, R.; Grusak, M.A. Can we improve the nutritional quality of legume seeds? Plant Physiol. 2003, 131, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Erbersdobler, H.; Barth, C.; Jah-reis, G. Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernahr. Umsch. 2017, 64, 134–139. [Google Scholar]
- Subuola, F.; Widodo, Y.; Kehinde, T. Processing and utilization of legumes in the tropics. Trends Vital Food Control Eng. 2012, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Kusumah, S.; Andoyo, R.; Rialita, T. Protein Isolation Techniques of Beans Using Different Methods: A Review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012053. [Google Scholar]
- Kaur, M.; Singh, N. Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chem. 2007, 102, 366–374. [Google Scholar] [CrossRef]
- Ram, S.; Narwal, S.; Gupta, O.P.; Pandey, V.; Singh, G.P. Anti-nutritional factors and bioavailability: Approaches, challenges, and opportunities. In Wheat and Barley Grain Biofortification; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–128. [Google Scholar]
- Mohan, V.; Tresina, P.; Daffodil, E. Antinutritional factors in legume seeds: Characteristics and determination. Encycl. Food Health 2016, 211–220. [Google Scholar] [CrossRef]
- El Adawy, T. Chemical, nutritional and functional properties of mung bean protein isolate and concentrate. Menofiya J. Agric. Res. 1996, 6, 657–672. [Google Scholar]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [Green Version]
- Chau, C.F.; Cheung, P.C.K.; Wong, Y.S. Effects of cooking on content of amino acids and antinutrients in three Chinese indigenous legume seeds. J. Sci. Food Agric. 1997, 75, 447–452. [Google Scholar] [CrossRef]
- Barampama, Z.; Simard, R.E. Effects of soaking, cooking and fermentation on composition, in-vitro starch digestibility and nutritive value of common beans. Plant Foods Hum. Nutr. 1995, 48, 349–365. [Google Scholar] [CrossRef]
- Kon, S.; Sanshuck, D.W. Phytate content and its effect on cooking quality of beans. J. Food Process. Preserv. 1981, 5, 169–178. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness 2018, 7, 11–33. [Google Scholar] [CrossRef]
- Tiwari, U.; Servan, A.; Nigam, D. Comparative study on antioxidant activity, phytochemical analysis and mineral composition of the Mung Bean (Vigna Radiata) and its sprouts. J Pharm. Phytochem. 2017, 6, 336. [Google Scholar]
- Tripathi, A.; Iswarya, V.; Rawson, A.; Singh, N.; Oomah, B.D.; Patras, A. Chemistry of pulses—macronutrients. In Pulse Foods; Elsevier: Amsterdam, The Netherlands, 2021; pp. 31–59. [Google Scholar]
- Zhang, T.; Li, Y.; Miao, M.; Jiang, B. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem. 2011, 128, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Ghribi, A.M.; Gafsi, I.M.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. J. Food Eng. 2015, 165, 179–188. [Google Scholar] [CrossRef]
- Ariyarathna, I.R.; Karunaratne, D.N. Use of chickpea protein for encapsulation of folate to enhance nutritional potency and stability. Food Bioprod. Process. 2015, 95, 76–82. [Google Scholar] [CrossRef]
- Sulieman, M.A. Physico Chemical and Structural Characterization of Germinated and Cooked Lentils (Lens Culinaris Medic). Ph.D. Thesis, University of Khartoum, Khartoum, Sudan, October 2007. [Google Scholar]
- Sulieman, M.A.; Hassan, A.B.; Osman, G.A.; El Tyeb, M.M.; El Khalil, E.A.; El Tinay, A.H.; Babiker, E.E. Changes in total protein digestibility, fractions content and structure during cooking of lentil cultivars. Pak. J. Nutr. 2008, 7, 801–805. [Google Scholar] [CrossRef] [Green Version]
Method | Sample | Protein (%) ± SD | Mean Value (Protein, %) ± SD |
---|---|---|---|
Kjeldahl | Mung beans | 2.54 ± 0.03 | 2.45 ± 0.03 |
Lentils | 2.63 ± 0.04 | ||
Chickpeas | 2.19 ± 0.02 |
Method | Sample | Protein (%) ± SD | Mean Value (Protein, %) ± SD |
---|---|---|---|
Lowry | Mung beans | 2.96 ± 0.04 | 2.88 ± 0.03 |
Lentils | 4.10 ± 0.05 | ||
Chickpeas | 1.60 ± 0.02 |
Method Variables | Mung | Lentils | Chickpeas |
---|---|---|---|
N | 6 | 6 | 6 |
Mean * | 0.15 | 0.16 | 0.14 |
Median | 0.16 | 0.16 | 0.13 |
Standard deviation | 0.08 | 0.08 | 0.08 |
Variance | 0.01 | 0.01 | 0.01 |
Skewness | 0.23 | 0.12 | 0.56 |
Standard error of skewness | 0.80 | 0.80 | 0.80 |
Range | 0.00 | 0.23 | 0.23 |
Sample Pair | N | Correlation | Sig. |
---|---|---|---|
Pair 1, mung and lentils | 6 | 0.96 | 0.002 |
Pair 2, mung and chickpeas | 6 | 0.97 | 0.001 |
Pair 3, lentils and chickpeas | 6 | 0.87 | 0.025 |
Paired Differences | t | df | Sig. (2-Tailed) | |||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Std. Error Mean | 95% Confidence Interval of the Difference | |||||
Lower | Upper | |||||||
Pair 1, mung and lentils | 0.10 | 0.03 | 0.10 | 0.37 | 0.02 | 1.00 | 5 | 0.36 |
Pair 2, mung and chickpeas | 0.01 | 0.02 | 0.01 | 0.13 | 0.03 | 1.00 | 5 | 0.36 |
Pair 3, lentils and chickpeas | 0.19 | 0.05 | 0.19 | 0.03 | 0.07 | 1.00 | 5 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizvi, N.B.; Aleem, S.; Khan, M.R.; Ashraf, S.; Busquets, R. Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules 2022, 27, 814. https://doi.org/10.3390/molecules27030814
Rizvi NB, Aleem S, Khan MR, Ashraf S, Busquets R. Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules. 2022; 27(3):814. https://doi.org/10.3390/molecules27030814
Chicago/Turabian StyleRizvi, Nayab Batool, Samina Aleem, Mohammad Rizwan Khan, Sadia Ashraf, and Rosa Busquets. 2022. "Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods" Molecules 27, no. 3: 814. https://doi.org/10.3390/molecules27030814
APA StyleRizvi, N. B., Aleem, S., Khan, M. R., Ashraf, S., & Busquets, R. (2022). Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules, 27(3), 814. https://doi.org/10.3390/molecules27030814