One-Pot Synthesis of Novel 2-Imino-5-Arylidine-Thiazolidine Analogues and Evaluation of Their Anti-Proliferative Activity against MCF7 Breast Cancer Cell Line
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Anti-Proliferative Activity
3. Materials and Methods
3.1. Chemistry
3.2. Procedures for the Synthesis of the Propargyl Alcohol and Amine:
3.3. X-ray Single Crystal Study
3.4. Anti-Proliferative Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bi, X.; Pasunooti, K.K.; Lescar, J.; Liu, C.F. Thiazolidine-Masked α-Oxo Aldehyde Functionality for Peptide and Protein Modification. Bioconjug. Chem. 2017, 28, 325–329. [Google Scholar] [CrossRef]
- Katayama, H.; Morisue, S. A Novel Ring Opening Reaction of Peptide N-Terminal Thiazolidine with 2,2′-Dipyridyl Disulfide (DPDS) Efficient for Protein Chemical Synthesis. Tetrahedron 2017, 73, 3541–3547. [Google Scholar] [CrossRef]
- Bi, X.; Pasunooti, K.K.; Tareq, A.H.; Takyi-Williams, J.; Liu, C.F. Genetic Incorporation of 1,2-Aminothiol Functionality for Site-Specific Protein Modification: Via Thiazolidine Formation. Org. Biomol. Chem. 2016, 14, 5282–5285. [Google Scholar] [CrossRef] [Green Version]
- Sahiba, N.; Sethiya, A.; Soni, J.; Agarwal, D.K.; Agarwal, S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top. Curr. Chem. 2020, 378, 34. [Google Scholar] [CrossRef] [Green Version]
- Zaimy, M.A.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.K.; Paschepari, S.R.; Azizi, H.; Torkamandi, S.; et al. New Methods in the Diagnosis of Cancer and Gene Therapy of Cancer Based on Nanoparticles. Cancer Gene Ther. 2017, 24, 233–243. [Google Scholar] [CrossRef]
- Korkmaz, U.; Ustun, F. Experimental Breast Cancer Models: Preclinical Imaging Perspective. Curr. Radiopharm. 2021, 14, 5–14. [Google Scholar] [CrossRef]
- Gouda, M.A.; Abu-Hashem, A.A. Synthesis, Characterization, Antioxidant and Antitumor Evaluation of Some New Thiazolidine and Thiazolidinone Derivatives. Arch. Pharm. 2011, 344, 170–177. [Google Scholar] [CrossRef]
- Nishida, S.; Maruoka, H.; Yoshimura, Y.; Goto, T.; Tomita, R.; Masumoto, E.; Okabe, F.; Yamagata, K.; Fujioka, T. Synthesis and Biological Activities of Some New Thiazolidine Derivatives Containing Pyrazole Ring System. J. Heterocycl. Chem. 2012, 49, 303–309. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, H.; Zhai, S.; Yan, B. Natural Product-Inspired Synthesis of Thiazolidine and Thiazolidinone Compounds and Their Anticancer Activities. Curr. Pharm. Des. 2010, 16, 1826–1842. [Google Scholar] [CrossRef]
- Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and Anticancer and Antiviral Activities of New 2-Pyrazoline-Substituted 4-Thiazolidinones. J. Heterocycl. Chem. 2013, 50, E55–E62. [Google Scholar] [CrossRef]
- Osmaniye, D.; Levent, S.; Ardıç, C.M.; Atlı, Ö.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and Anticancer Activity of Some Novel Benzothiazole-Thiazolidine Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 249–256. [Google Scholar] [CrossRef]
- El-Gaby, M.S.A.; Ismail, Z.H.; Abdel-Gawad, S.M.; Aly, H.M.; Ghorab, M.M. Synthesis of Thiazolidine and Thiophene Derivatives for Evaluation as Anticancer Agents. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 2645–2654. [Google Scholar] [CrossRef]
- Singh, R.P.; Aziz, M.N.; Gout, D.; Fayad, W.; El-Manawaty, M.A.; Lovely, C.J. Novel Thiazolidines: Synthesis, Antiproliferative Properties and 2D-QSAR Studies. Bioorg. Med. Chem. 2019, 27, 115047. [Google Scholar] [CrossRef]
- Saralkar, P.; Geldenhuys, W.J. Screening for Anticancer Properties of Thiazolidinedione Compounds in a Galactose Media Metastatic Breast Cancer Cell Model. Med. Chem. Res. 2019, 28, 2165–2170. [Google Scholar] [CrossRef]
- El-Kashef, H.; Badr, G.; Abo El-Maali, N.; Sayed, D.; Melnyk, P.; Lebegue, N.; Abd El-Khalek, R. Synthesis of a Novel Series of (Z)-3,5-Disubstituted Thiazolidine-2,4-Diones as Promising Anti-Breast Cancer Agents. Bioorg. Chem. 2020, 96, 103569. [Google Scholar] [CrossRef]
- El-Adl, K.; Sakr, H.; Nasser, M.; Alswah, M.; Shoman, F.M.A. 5-(4-Methoxybenzylidene)Thiazolidine-2,4-Dione-Derived VEGFR-2 Inhibitors: Design, Synthesis, Molecular Docking, and Anticancer Evaluations. Arch. Pharm. 2020, 353, e2000079. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and Function. Cell Death Differ. 2016, 23, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Reyes, A.J. Formal Comparison of the Antihypertensive Effects of Torasemide and Other Diuretics by the Montevideo Mathematical Model. Arzneimittelforschung 1988, 38, 194–199. [Google Scholar]
- Mallikarjuna, B.G.; Manjappara, U.V. Obestatin and Rosiglitazone Differentially Modulate Lipid Metabolism through Peroxisome Proliferator-Activated Receptor-γ (PPARγ) in Pre-Adipose and Mature 3T3-L1 Cells. Cell Biochem. Biophys. 2021, 79, 73–85. [Google Scholar] [CrossRef]
- Wolffenbuttel, B.H.R.; Sels, J.P.; Huijberts, M.S.P. Rosiglitazone. Expert Opin. Pharmacother. 2001, 2, 467–478. [Google Scholar] [CrossRef]
- Saito, M.; Fujita, Y.; Kuribayashi, N.; Uchida, D.; Komiyama, Y.; Fukumoto, C.; Hasegawa, T.; Kawamata, H. Troglitazone, a Selective Ligand for PPARγ, Induces Cell-Cycle Arrest in Human Oral SCC Cells. Anticancer Res. 2020, 40, 1247–1254. [Google Scholar] [CrossRef]
- Cheng-Lai, A.; Levine, A. Rosiglitazone: An Agent from the Thiazolidinedione Class for the Treatment of Type 2 Diabetes. Heart Dis. 2000, 2, 326–333. [Google Scholar] [PubMed]
- Fischer, W.; Bodewei, R.; Satzinger, G. Anticonvulsant and Sodium Channel Blocking Effects of Ralitoline in Different Screening Models. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992, 346, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; von Hodenberg, A.; Nolting, B.; Fassbender, C.-P.; Taylor, C. Ralitoline: A Reevaluation of Anticonvulsant Profile and Determination of “Active” Plasma Concentrations in Comparison with Prototype Antiepileptic Drugs in Mice. Epilepsia 1991, 32, 560–568. [Google Scholar] [CrossRef]
- Hassan, R.M.; Abd-Allah, W.H.; Salman, A.M.; El-Azzouny, A.A.-S.; Aboul-Enein, M.N. Design, Synthesis and Anticancer Evaluation of Novel 1,3-Benzodioxoles and 1,4-Benzodioxines. Eur. J. Pharm. Sci. 2019, 139, 105045. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, S.; Moliterni, A.; Corriero, N.; Cuocci, C.; Toubal, K.; Chouaih, A.; Djafri, A.; Hamzaoui, F. 2-Thioxo- 3N-(2-Methoxyphenyl) −5 [4′-Methyl -3′N -(2′-Methoxyphenyl) Thiazol-2′(3′H)-Ylidene] Thiazolidin-4-One: Synthesis, Characterization, X-Ray Single Crystal Structure Investigation and Quantum Chemical Calculations. J. Mol. Struct. 2019, 1177, 186–192. [Google Scholar] [CrossRef]
- Revelant, G.; Huber-Villaume, S.; Dunand, S.; Kirsch, G.; Schohn, H.; Hesse, S. Synthesis and Biological Evaluation of Novel 2-Heteroarylimino-1,3-Thiazolidin-4-Ones as Potential Anti-Tumor Agents. Eur. J. Med. Chem. 2015, 94, 102–112. [Google Scholar] [CrossRef]
- Santeusanio, S.; Majer, R.; Perrulli, F.R.; De Crescentini, L.; Favi, G.; Giorgi, G.; Mantellini, F. Divergent Approach to Thiazolylidene Derivatives: A Perspective on the Synthesis of a Heterocyclic Skeleton from β-Amidothioamides Reactivity. J. Org. Chem. 2017, 82, 9773–9778. [Google Scholar] [CrossRef]
- da Silva, D.S.; da Silva, C.E.H.; Soares, M.S.P.; Azambuja, J.H.; de Carvalho, T.R.; Zimmer, G.C.; Frizzo, C.P.; Braganhol, E.; Spanevello, R.M.; Cunico, W. Thiazolidin-4-Ones from 4-(Methylthio)Benzaldehyde and 4-(Methylsulfonyl)Benzaldehyde: Synthesis, Antiglioma Activity and Cytotoxicity. Eur. J. Med. Chem. 2016, 124, 574–582. [Google Scholar] [CrossRef]
- Subhedar, D.D.; Shaikh, M.H.; Arkile, M.A.; Yeware, A.; Sarkar, D.; Shingate, B.B. Facile Synthesis of 1,3-Thiazolidin-4-Ones as Antitubercular Agents. Bioorg. Med. Chem. Lett. 2016, 26, 1704–1708. [Google Scholar] [CrossRef]
- Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2 Supported Ionic Liquid as an Efficient Catalyst for the Synthesis of 1,3-Thiazolidin-4-Ones under Solvent-Free Conditions. J. Mol. Catal. A Chem. 2015, 398, 58–64. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.M.; Daneshfar, F. Ionic Liquid Immobilized on FeNi3 as Catalysts for Efficient, Green, and One-Pot Synthesis of 1,3-Thiazolidin-4-One. J. Mol. Liq. 2014, 199, 440–444. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Nazemzadeh, S.H.; Shahbazi-Alavi, H. Nano-CdZr4(PO4)6 as a Reusable and Robust Catalyst for the Synthesis of Bis-Thiazolidinones by a Multicomponent Reaction of Aldehydes, Ethylenediamine and Thioglycolic Acid. J. Sulfur Chem. 2017, 38, 195–205. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. CoFe2O4@SiO2/PrNH2 Nanoparticles as Highly Efficient and Magnetically Recoverable Catalyst for the Synthesis of 1,3-Thiazolidin-4-Ones. J. Sulfur Chem. 2016, 37, 601–612. [Google Scholar] [CrossRef]
- Thakare, M.P.; Kumar, P.; Kumar, N.; Pandey, S.K. Silica Gel Promoted Environment-Friendly Synthesis of 2,3-Disubstituted 4-Thiazolidinones. Tetrahedron Lett. 2014, 55, 2463–2466. [Google Scholar] [CrossRef]
- Singh, R.P.; Gout, D.; Lovely, C.J. Tandem Thioacylation-Intramolecular Hydrosulfenylation of Propargyl Amines—Rapid Access to 2-Aminothiazolidines. Eur. J. Org. Chem. 2019, 8, 1726–1740. [Google Scholar] [CrossRef]
- Jiang, Z.; Lu, P.; Wang, Y. Three-Component Reaction of Propargyl Amines, Sulfonyl Azides, and Alkynes: One-Pot Synthesis of Tetrasubstituted Imidazoles. Org. Lett. 2012, 14, 6266–6269. [Google Scholar] [CrossRef]
- Mo, J.-N.; Su, J.; Zhao, J. The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargylamines. Molecules 2019, 24, 1216. [Google Scholar] [CrossRef] [Green Version]
- Gommermann, N.; Knochel, P. Practical Highly Enantioselective Synthesis of Propargylamines through a Copper-Catalyzed One-Pot Three-Component Condensation Reaction. Chem.—A Eur. J. 2006, 12, 4380–4392. [Google Scholar] [CrossRef]
- Olivi, N.; Spruyt, P.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tandem Amine Propargylation-Sonogashira Reactions: New Three-Component Coupling Leading to Functionalized Substituted Propargylic Amines. Tetrahedron Lett. 2004, 45, 2607–2610. [Google Scholar] [CrossRef]
Compound | Ar | Yield (%) | IC50 (µM ± SMD) | |
---|---|---|---|---|
1 | 5a | C6H5 | 60 | 0.50 ± 0.21 |
2 | 5b | 4-BrC6H4 | 61 | 0.62 ± 0.24 |
3 | 5c | 4-ClC6H4 | 61 | 0.27 ± 0.14 |
4 | 5d | 4-FC6H4 | 45 | 0.50 ± 0.23 |
5 | 5e | 4-NO2C6H4 | 95 | 1.15 ± 0.18 |
6 | 5f | 4-CF3C6H4 | 58 | 16.32 ± 1.24 |
7 | 5g | 4-MeC6H4 | 20 | ND † |
8 | 5h | 4-Me-3-ClC6H3 | 46 | 1.82 ± 0.17 |
9 | 5i | 4-OMeC6H4 | 63 | 1.75 ± 0.16 |
10 | 5j | 4-tBuC6H4 | 95 | 12.61 ± 3.71 |
11 | 5k | 4-OMe-2-NO2C6H3 | 63 | 1.38 ± 0.13 |
12 | 5l | 4-Br-2-CF3C6H3 | 57 | 15.64 ± 3.6 |
13 | Cisplatin | - | - | 4.14 ± 1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, M.N.; Patel, A.; Iskander, A.; Chini, A.; Gout, D.; Mandal, S.S.; Lovely, C.J. One-Pot Synthesis of Novel 2-Imino-5-Arylidine-Thiazolidine Analogues and Evaluation of Their Anti-Proliferative Activity against MCF7 Breast Cancer Cell Line. Molecules 2022, 27, 841. https://doi.org/10.3390/molecules27030841
Aziz MN, Patel A, Iskander A, Chini A, Gout D, Mandal SS, Lovely CJ. One-Pot Synthesis of Novel 2-Imino-5-Arylidine-Thiazolidine Analogues and Evaluation of Their Anti-Proliferative Activity against MCF7 Breast Cancer Cell Line. Molecules. 2022; 27(3):841. https://doi.org/10.3390/molecules27030841
Chicago/Turabian StyleAziz, Marian N., Arzoo Patel, Amany Iskander, Avisankar Chini, Delphine Gout, Subhrangsu S. Mandal, and Carl J. Lovely. 2022. "One-Pot Synthesis of Novel 2-Imino-5-Arylidine-Thiazolidine Analogues and Evaluation of Their Anti-Proliferative Activity against MCF7 Breast Cancer Cell Line" Molecules 27, no. 3: 841. https://doi.org/10.3390/molecules27030841
APA StyleAziz, M. N., Patel, A., Iskander, A., Chini, A., Gout, D., Mandal, S. S., & Lovely, C. J. (2022). One-Pot Synthesis of Novel 2-Imino-5-Arylidine-Thiazolidine Analogues and Evaluation of Their Anti-Proliferative Activity against MCF7 Breast Cancer Cell Line. Molecules, 27(3), 841. https://doi.org/10.3390/molecules27030841