Photophysical Characteristics of Multicolor Emitting MDMO-PPV–DMP/ZnO Hybrid Nanocomposites
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yang, S.-H.; Nguyen, T.; Le Rendu, P.; Hsu, C.-S. Optical and electrical properties of PPV/SiO2 and PPV/TiO2 composite materials. Compos. Part A Appl. Sci. 2005, 36, 509–513. [Google Scholar] [CrossRef]
- Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516–1519. [Google Scholar] [CrossRef] [PubMed]
- Briseno, A.L.; Mannsfeld, S.C.; Ling, M.M.; Liu, S.; Tseng, R.J.; Reese, C.; Roberts, M.E.; Yang, Y.; Wudl, F.; Bao, Z. Patterning organic single-crystal transistor arrays. Nature 2006, 444, 913–917. [Google Scholar] [CrossRef]
- Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E.C.-W.; Ho, P.K.-H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.; Mackay, K.; Friend, R.; Burnsf, P. Light-emitting diodes based on conjugated polymers. Nature 1990, 6293, 539–541. [Google Scholar]
- Cui, Y.; Duan, X.; Hu, J.; Lieber, C.M.J. Doping and electrical transport in silicon nanowires. Phys. Chem. B 2000, 104, 5213–5216. [Google Scholar] [CrossRef]
- Liu, J.; Qu, S.; Zeng, X.; Xu, Y.; Gou, X.; Wang, Z.; Zhou, H.; Wang, Z. Fabrication of ZnO and its enhancement of charge injection and transport in hybrid organic/inorganic light emitting devices. Appl. Surf. Sci. 2007, 253, 7506–7509. [Google Scholar] [CrossRef]
- Quan, S.; Teng, F.; Xu, Z.; Wang, D.; Yang, S.; Hou, Y.; Wang, Y. Effect of inorganic nanolayers on electron injection in polymer light-emitting diodes. Phys. Lett. A 2006, 352, 434–437. [Google Scholar] [CrossRef]
- Baraton, M.-I.; Merhari, L.; Wang, J.; Gonsalves, K.E. Investigation of the/PPV nanocomposite for gas sensing applications. Nanotechnology 1998, 9, 356. [Google Scholar] [CrossRef]
- Yang, S.-H.; Nguyen, T.; Le Rendu, P.; Hsu, C.-S. Optical and electrical investigations of poly (p-phenylene vinylene)/silicon oxide and poly (p-phenylene vinylene)/titanium oxide nanocomposites. Thin Solid Film. 2005, 471, 230–235. [Google Scholar] [CrossRef]
- Shankar, J.S.; Ashok Kumar, S.; Periyasamy, B.K.; Nayak, S.K. Studies on optical characteristics of multicolor emitting MEH-PPV/ZnO hybrid nanocomposite. Polym. Plast. Technol. Mater. 2019, 58, 148–157. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 2011, 45, 1977–1983. [Google Scholar] [CrossRef]
- Madhugiri, S.; Dalton, A.; Gutierrez, J.; Ferraris, J.P.; Balkus, K.J.J. Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. Am. Chem. Soc. 2003, 125, 14531–14538. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guan, H.; Yu, N.; Xu, Q.; Imae, I.; Wei, J.J. Conjugated Polymer Poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene) modification on carbon nanotubes with assistance of supercritical carbon dioxide: Chemical interaction, solubility, and light emission. Phys. Chem. C 2010, 114, 10119–10125. [Google Scholar] [CrossRef]
- Juhari, N.; Majid, W.H.A.; Ibrahim, Z.A. Structural and optical studies of MEH-PPV using two different solvents prepared by spin coating technique. Solid State Sci. Technol 2007, 15, 141–146. [Google Scholar]
- Sachdeva, H.; Saroj, R. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for four-component one-pot green synthesis of pyranopyrazole derivatives in water. Sci. World J. 2013, 2013, 680671. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.; Teng, F.; Xu, Z.; Qian, L.; Hou, Y.; Wang, Y.; Xu, X. Solvent and concentration effects on fluorescence emission in MEH-PPV solution. Eur. Polym. J. 2006, 42, 228–233. [Google Scholar] [CrossRef]
- Jumali, M.H.H.; Al-Asbahi, B.A.; Yap, C.C.; Salleh, M.M.; Alsalhi, M.S. Optoelectronic property enhancement of conjugated polymer in poly (9,9′-di-n-octylfluorenyl-2.7-diyl)/titania nanocomposites. Thin Solid Films 2012, 524, 257–262. [Google Scholar] [CrossRef]
- Quan, S.; Teng, F.; Xu, Z.; Zhang, T.; Qian, L.; Liu, D.; Hou, Y.; Wang, Y. Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1, 4-phenylene vinylene]. Mater. Lett. 2006, 60, 1134–1136. [Google Scholar] [CrossRef]
- Chen, G.; Wang, P.J. Alteration of the optical properties of poly 9, 9′-dioctylfluorene by TiO2 nanocrystalline. Non Cryst. Solids 2006, 352, 2536–2538. [Google Scholar] [CrossRef]
- Verma, D.; Rao, A.R.; Dutta, V. Surfactant-free CdTe nanoparticles mixed MEH-PPV hybrid solar cell deposited by spin coating technique. Sol. Energy Mater Sol. Cells 2009, 93, 1482–1487. [Google Scholar] [CrossRef]
- Sensfuss, S.; Blankenburg, L.; Schache, H.; Shokhovets, S.; Erb, T.; Konkin, A.; Herasimovich, A.; Scheinert, S.; Shahid, M.; Sell, S. Thienopyrazine-based low-bandgap polymers for flexible polymer solar cells. Eur. Phys. J. Appl. Phys. 2010, 51, 33204–33209. [Google Scholar] [CrossRef] [Green Version]
- Soylu, M. GaAs heterojunction devices with MDMO-PPV thin films. Vacuum 2014, 106, 33–38. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Ho, C.-H. Temperature dependence of direct and indirect band gaps of Bi13I2S18 hexagonal rod crystals. Mater. Chem. Phys. 2018, 206, 71–75. [Google Scholar] [CrossRef]
- Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- Tommalieh, M.; Zihlif, A. Optical properties of polyimide/silica nanocomposite. Phys. B Condens. Matter. 2010, 405, 4750–4754. [Google Scholar] [CrossRef]
- Pichler, K.; Halliday, D.; Bradley, D.; Burn, P.; Friend, R.; Holmes, A.J. Optical spectroscopy of highly ordered poly (p-phenylene vinylene). Phys. Condens. Matter. 1993, 5, 7155. [Google Scholar] [CrossRef]
- Qaid, S.M.; Al-Asbahi, B.; Ghaithan, H.M.; AlSalhi, M.J. Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films. Colloid Interface Sci. 2020, 563, 426–434. [Google Scholar] [CrossRef]
- Zou, J.; Le Rendu, P.; Musa, I.; Yang, S.-H.; Dan, Y.; That, C.T.; Nguyen, T. Investigation of the optical properties of polyfluorene/ZnO nanocomposites. Thin Solid Films 2011, 519, 3997–4003. [Google Scholar] [CrossRef]
- Lee, T.W.; Park, O.O.; Yoon, J.; Kim, J.J. Polymer-layered silicate nanocomposite light-emitting devices. Adv. Mater. 2001, 13, 211–213. [Google Scholar] [CrossRef]
- Yang, S.-H.; Le Rendu, P.; Nguyen, T.P.; Hsu, C.-S. Fabrication of MEH-PPV/SiO2 and MEH-PPV/TiO2 nanocomposites with enhanced luminescent stabilities. Rev. Adv. Mater. Sci. 2007, 15, 144–149. [Google Scholar]
- He, G.; Li, Y.; Liu, J.; Yang, Y. Enhanced electroluminescence using polystyrene as a matrix. Appl. Phys. Lett. 2002, 80, 4247–4249. [Google Scholar] [CrossRef] [Green Version]
- Judd, D.B.; MacAdam, D.L.; Wyszecki, G.; Budde, H.; Condit, H.; Henderson, S.; Simonds, J.J. Spectral distribution of typical daylight as a function of correlated color temperature. Opt. Soc. Am. 1964, 54, 1031–1040. [Google Scholar] [CrossRef]
- Carmona-Téllez, S.; Falcony, C.; Aguilar-Frutis, M.; Alarcon-Flores, G.; García-Hipólito, M.; Martínez-Martínez, R. White light emitting transparent double layer stack of Al2O3: Eu3+, Tb3+, and Ce3+ films deposited by spray pyrolysis. ECS J. Solid State Sci. Technol. 2013, 2, R111–R115. [Google Scholar] [CrossRef]
Specimen | Egd (eV) | Egi (eV) | Eu (eV) | |
---|---|---|---|---|
Pristine MDMO-PPV–DMP | 2.18 | 2.06 | 0.0418 | 0.6143 |
5MZNC | 2.14 | 2.05 | 0.0888 | 0.2892 |
10MZNC | 2.16 | 2.01 | 0.0950 | 0.2705 |
20MZNC | 2.14 | 2.03 | 0.1029 | 0.2496 |
30MZNC | 2.11 | 2.04 | 0.1303 | 0.1971 |
40MZNC | 2.03 | 1.89 | 0.2238 | 0.1147 |
50MZNC | - | - | 0.2012 | 0.1277 |
Specimen | X | Y | Color |
---|---|---|---|
Pristine MDMO-PPV-DMP | 0.4238 | 0.4446 | Greenish yellow |
5MZNC | 0.4167 | 0.4283 | Greenish yellow |
10MZNC | 0.4221 | 0.4316 | Greenish yellow |
20MZNC | 0.4126 | 0.3980 | white |
30MZNC | 0.4083 | 0.3501 | white |
40MZNC | 0.4838 | 0.3700 | Orange pink |
50MZNC | 0.4165 | 0.3724 | white |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Asbahi, B.A.; Alanezi, A.A.; AlSalhi, M.S. Photophysical Characteristics of Multicolor Emitting MDMO-PPV–DMP/ZnO Hybrid Nanocomposites. Molecules 2022, 27, 843. https://doi.org/10.3390/molecules27030843
Al-Asbahi BA, Alanezi AA, AlSalhi MS. Photophysical Characteristics of Multicolor Emitting MDMO-PPV–DMP/ZnO Hybrid Nanocomposites. Molecules. 2022; 27(3):843. https://doi.org/10.3390/molecules27030843
Chicago/Turabian StyleAl-Asbahi, Bandar Ali, Arwa Alhamedi Alanezi, and Mohamad S. AlSalhi. 2022. "Photophysical Characteristics of Multicolor Emitting MDMO-PPV–DMP/ZnO Hybrid Nanocomposites" Molecules 27, no. 3: 843. https://doi.org/10.3390/molecules27030843
APA StyleAl-Asbahi, B. A., Alanezi, A. A., & AlSalhi, M. S. (2022). Photophysical Characteristics of Multicolor Emitting MDMO-PPV–DMP/ZnO Hybrid Nanocomposites. Molecules, 27(3), 843. https://doi.org/10.3390/molecules27030843