Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Thermal Properties
2.3. Optical and Electrochemical Properties
2.4. Quantum Mechanical Calculations
2.5. Crystallographic Characterization
2.6. Thin-Film Transistor Characterization
3. Materials and Methods
3.1. Diels-Alder Reaction of 3,3’,4,4’-Tetrahydro-1,1’-binaphthalene (3) with 1,4-Benzoquinone (4)
3.2. OTFTs Fabrication and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Liao, C.-Y.; Chen, Y.; Lee, C.-C.; Wang, G.; Teng, N.-W.; Lee, C.-H.; Li, W.-L.; Chen, Y.-K.; Li, C.-H.; Ho, H.-L.; et al. Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule 2020, 4, 189–206. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef] [PubMed]
- PV Magazine. An Organic Solar Cell with 25% Efficiency. 2020. Available online: https://www.pv-magazine.com/2020/03/24/an-organic-solar-cell-with-25-efficiency/ (accessed on 29 December 2021).
- Acharya, R.; Peng, B.; Chan, P.K.L.; Schmitz, G.; Klauk, H. Achieving ultralow turn-on voltages in organic thin-film transistors: Investigating fluoroalkylphosphonic acid self-assembled monolayer hybrid dielectrics. ACS Appl. Mater. Interfaces 2019, 11, 27104–27111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs. Proc. Natl. Acad. Sci. USA 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, A.; Bäuerle, P. Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew. Chem. Int. Ed. 2012, 51, 2020–2067. [Google Scholar] [CrossRef] [PubMed]
- Pankow, R.M.; Thompson, B.C. The development of conjugated polymers as the cornerstone of Organic electronics. Polymer 2020, 207, 122874. [Google Scholar] [CrossRef]
- Sun, H.; Guo, X.; Facchetti, A. High-performance n-type polymer semiconductors: Applications, recent development, and challenges. Chem 2020, 6, 1310–1326. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y. Narrowing the band gap: The key to high-performance organic photovoltaics. Acc. Chem. Res. 2020, 53, 1218–1228. [Google Scholar] [CrossRef]
- Facchetti, A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mater. 2011, 23, 733–758. [Google Scholar] [CrossRef]
- Seri, M.; Marrocchi, A. The carbon-carbon triple bond as a tool to design organic semiconductors for photovoltaic applications: An assessment of prospects and challenges. J. Mater. Chem C 2021, 9, 16164–16186. [Google Scholar] [CrossRef]
- Seri, M.; Marrocchi, A.; Bagnis, D.; Ponce, R.; Taticchi, A.; Marks, T.J.; Facchetti, A. Molecular shape-controlled photovoltaic performance probed via soluble pi-conjugated arylacetylenic semiconductors. Adv. Mater. 2011, 23, 3827–3831. [Google Scholar] [PubMed]
- Bagnis, D.; Beverina, L.; Huang, H.; Silvestri, F.; Yao, Y.; Yan, H.; Pagani, G.A.; Marks, T.J.; Facchetti, A. Marked alkyl-vs alkenyl-substitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency. J. Am. Chem. Soc. 2010, 132, 4074–4075. [Google Scholar] [CrossRef]
- Broggi, A.; Tomasi, I.; Bianchi, L.; Marrocchi, A.; Vaccaro, L. Small molecular aryl acetylenes: Chemically tailoring high-efficiency organic semiconductors for solar cells and field-effect transistors. ChemPlusChem 2014, 79, 486–507. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Chen, C.F. Helicenes: Synthesis and applications. Chem. Rev. 2012, 112, 1463–1535. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.H. The Helicenes. Angew. Chem. Int. Ed. Engl. 1974, 13, 649–660. [Google Scholar] [CrossRef]
- Laarhoven, W.H.; Prinsen, W.J.C. Carbohelicenes and Heterohelicenes. Top. Curr. Chem. 1984, 125, 63–130. [Google Scholar]
- Meurer, K.P.; Vögtle, F. Helical Molecules in Organic Chemistry. Top. Curr. Chem. 1985, 127, 1–76. [Google Scholar]
- Mori, T. Chiroptical Properties of Symmetric Double, Triple, and Multiple Helicenes. Chem. Rev. 2021, 121, 2373–2412. [Google Scholar] [CrossRef]
- Grimme, S.; Harren, J.; Sobanski, A.; Vögtle, F. Structure/Chiroptics Relationships of Planar Chiral and Helical Molecules. Eur. J. Org. Chem. 1998, 1998, 1491–1509. [Google Scholar] [CrossRef]
- Groen, M.B.; Wynberg, H. Optical Properties of Some Heterohelicenes. Absolute Configuration. J. Am. Chem. Soc. 1971, 93, 2968–2974. [Google Scholar] [CrossRef]
- Verbiest, T.; Elshocht, S.V.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T.J.; Persoons, A. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 1998, 282, 913–915. [Google Scholar] [CrossRef] [PubMed]
- Nuckolls, C.; Katz, T.J.; Castellanos, L. Aggregation of conjugated helical molecules. J. Am. Chem. Soc. 1996, 118, 3767–3768. [Google Scholar] [CrossRef]
- Rybáček, J.; Stará, I.G.; Starý, I.; Rahe, P.; Nimmrich, M.; Kühnle, A. Racemic and Optically Pure Heptahelicene-2-carboxylic Acid: Its Synthesis and Self-Assembly into Nanowire-Like Aggregates. Eur. J. Org. Chem. 2011, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Katz, T.J. Syntheses of Functionalized and Aggregating Helical Conjugated Molecules. Angew. Chem. Int. Ed. 2000, 39, 1921–1923. [Google Scholar] [CrossRef]
- Lewis, F.D.; Liu, X.; Wu, Y.; Zuo, X. DNA-Mediated Exciton Coupling and Electron Transfer between Donor and Acceptor Stilbenes Separated by a Variable Number of Base Pairs. J. Am. Chem. Soc. 2003, 125, 12729. [Google Scholar] [CrossRef]
- Kim, C.; Marks, T.J.; Facchetti, A.; Schiavo, M.; Bossi, A.; Maiorana, S.; Licandro, E.; Todescato, F.; Toffanin, S.; Muccini, M.; et al. Synthesis, characterization, and transistor response of tetrathia-[7]-helicene precursors and derivatives. Org. Electron. 2009, 10, 1511–1520. [Google Scholar] [CrossRef]
- Fujikawa, T.; Mitoma, N.; Wakamiya, A.; Saeki, A.; Segawa, Y.; Itami, K. Synthesis, properties, and crystal structures of π-extended double [6]helicenes: Contorted multi-dimensional stacking lattice. Org. Biomol. Chem. 2017, 15, 4697–4703. [Google Scholar] [CrossRef]
- Moriguchi, T.; Higashi, M.; Yakeya, D.; Jalli, V.; Tsuge, A.; Okauchi, T.; Nagamatsu, S.; Takashima, W. Synthesis, characterization and air stable semiconductor properties of thiophene-condensed pyrene derivatives, J. Mol. Struct. 2017, 1127, 413–418. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Wu, C.F.; Chen, Y.-T.; Fang, C.-T.; Wang, C.-S.; Li, C.-H.; Chen, L.-Y.; Cheng, M.-J.; Chueh, C.-C.; Chou, P.-T.; et al. 5,14-Diaryldiindeno[2,1-f:1′,2′-j]picene: A New Stable [7] Helicene with a Partial Biradical Character. J. Am. Chem. Soc. 2018, 140, 14357–14366. [Google Scholar] [CrossRef]
- Shen, S.-W.; Chen, D.G.; Chen, I.-T.; Chang, K.H.; Lee, C.-W.; Fang, C.T.; Chen, Y.T.; Chuang, W.T.; Lee, Y.H.; Wu, Y.T.; et al. Delayed Charge Recombination by Open-Shell Organics: Its Application in Achieving Superb Photodetectors with Broadband (400–1160 nm) Ultrahigh Sensitivity and Stability. Adv. Opt. Mater. 2020, 8, 1902179. [Google Scholar] [CrossRef]
- Schaack, C.; Evans, A.M.; Ng, F.; Steigerwald, M.L.; Nuckolls, C. High-Performance Organic Electronic Materials by Contorting Perylene Diimides. J. Am. Chem. Soc. 2021, 144, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Xiao, C.; Feng, X.; Zhang, L.; Jiang, W.; Wang, Z. Electron-Transporting Bis (heterotetracenes) with Tunable Helical Packing. Angew. Chem. Int. Ed. 2018, 57, 10933. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, L.; Shan, B.; Liu, Z.; Miao, Q. Twisted Polycyclic Arenes from Tetranaphthyldiphenylbenzenes by Controlling the Scholl Reaction with Substituents. Chem. Eur. J. 2016, 22, 18620. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Correa da Costa, R.; Fuchter, M.J.; Campbell, A.J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 2013, 7, 634–638. [Google Scholar] [CrossRef]
- Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.-J.; Oh, J.H.; Lin, J. π-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 2021, 12, 142. [Google Scholar] [CrossRef]
- Oda, S.; Kawakami, B.; Yamasaki, Y.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Nakatsuka, S.; Hatakeyama, T. One-Shot Synthesis of Expanded Heterohelicene Exhibiting Narrowband Thermally Activated Delayed Fluorescence. J. Am. Chem. Soc. 2021. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, G.; Shen, B.; Yang, Y.; Yan, L.; Yang, F.; Liu, J.; Liao, X.; Yu, P.; Bin, Z.; et al. Insight into Regioselective Control in Aerobic Oxidative C-H/C-H Coupling for C3-Arylation of Benzothiophenes: Toward Structurally Nontraditional OLED Materials. J. Am. Chem. Soc. 2021, 143, 21066–21076. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.-F.; Zhang, D.-W.; Zhang, D.; Hu, Z.-Q.; Duan, L.; Chen, C.-F. Thermally activated delayed fluorescence material-sensitized helicene enantiomer-based OLEDs: A new strategy for improving the efficiency of circularly polarized electroluminescence. Sci. China Chem. 2021, 64, 899–908. [Google Scholar] [CrossRef]
- Dhbaibi, K.; Abella, L.; Meunier-Della-Gatta, S.; Roisnel, T.; Vanhuyne, N.; Jamoussi, B.; Pieters, G.; Racine, B.; Quesnel, E.; Autschbach, J.; et al. Achieving high circularly polarized luminescence with push-pull helicenic systems: From rationalized design to top-emission CP-OLED applications. Chem. Sci. 2021, 12, 5522–5533. [Google Scholar] [CrossRef]
- Ikari, Y.; Kaihara, T.; Goto, S.; Bovenkerk, M.; Grenz, D.C.; Esser, B.; Ferreira, M.; Stachelek, P.; Data, P.; Yoshida, T.; et al. Peripherally Donor-Installed 7,8-Diaza[5]helicenes as a Platform for Helical Luminophores. Synthesis 2021, 53, 1584–1596. [Google Scholar]
- Yan, Z.-P.; Luo, X.-F.; Liao, K.; Zheng, Y.-X.; Zuo, J.-L. Rational design of the platinahelicene enantiomers for deep-red circularly polarized organic light-emitting diodes. Front. Chem. 2020, 8, 501. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ding, J.; Han, X.; Geng, T.; Zhou, X.; Hu, C.; Wang, Y.; Xiao, G.; Zou, B.; Hou, H. Tuning the optical properties of N-aryl benzothiadiazole via Cu(II)-catalyzed intramolecular C-H amination: The impact of the molecular structure on aggregation and solid state luminescence. Org. Chem. Front. 2020, 7, 3853–3861. [Google Scholar] [CrossRef]
- Wan, L.; Wade, J.; Shi, X.; Xu, S.; Fuchter, M.J.; Campbell, A.J. Highly Efficient Inverted Circularly Polarized Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020, 12, 39471–39478. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-P.; Luo, X.-F.; Liu, W.-Q.; Wu, Z.-G.; Liang, X.; Liao, K.; Wang, Y.; Zheng, Y.-X.; Zhou, L.; Zuo, J.-L.; et al. Configurationally Stable Platinahelicene Enantiomers for Efficient Circularly Polarized Phosphorescent Organic Light-Emitting Diodes. Chem. Eur. J. 2019, 25, 5672–5676. [Google Scholar] [CrossRef]
- Yavari, K.; Delaunay, W.; De Rycke, N.; Reynaldo, T.; Aillard, P.; Srebro-Hooper, M.; Chang, V.Y.; Muller, G.; Tondelier, D.; Geffroy, B.; et al. Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chem. Eur. J. 2019, 25, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimash, A.; Pander, P.; Klooster, W.T.; Coles, S.J.; Data, P.; Dias, F.B.; Skabara, P.J. Intermolecular interactions in molecular crystals and their effect on thermally activated delayed fluorescence of helicene-based emitters. J. Mater. Chem. C 2018, 6, 10557–10568. [Google Scholar] [CrossRef] [Green Version]
- Jhulki, S.; Mishra, A.K.; Chow, T.J.; Moorthy, J.N. Carbo[5]helicene versus planar phenanthrene as a scaffold for organic materials in OLEDs: The electroluminescence of anthracene-functionalized emissive materials. New J. Chem. 2017, 41, 14730–14737. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, B.; Liu, Z.; Duan, L.; Dong, G.; Feng, Y.; Luo, X.; Cui, D. Synthesis and properties of thiophene-substituted diaza[7]helicene for application as a blue emitter in organic light-emitting diodes. Tetrahedron Lett. 2017, 58, 531–535. [Google Scholar] [CrossRef]
- Sahasithiwat, S.; Sooksimuang, T.; Kangkaew, L.; Panchan, W. 3,12-Dimethoxy-5,6,9,10-tetrahydro-7,8-dicyano-[5]helicene as a new emitter for blue and white organic light-emitting diodes. Dyes Pigm. 2017, 136, 754–760. [Google Scholar] [CrossRef]
- Brandt, J.R.; Wang, X.; Yang, Y.; Campbell, A.J.; Fuchter, M.J. Circularly Polarized Phosphorescent Electroluminescence with a High Dissymmetry Factor from PHOLEDs Based on a Platinahelicene. J. Am. Chem. Soc. 2016, 138, 9743–9746. [Google Scholar] [CrossRef] [Green Version]
- Hirai, H.; Nakajima, K.; Nakatsuka, S.; Shiren, K.; Ni, J.; Nomura, S.; Ikuta, T.; Hatakeyama, T. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes. Angew. Chem. Int. Ed. 2015, 54, 13581–13585. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Liu, Z.; Duan, L.; Dong, G.; Qiu, Y.; Zhang, B.; Cui, D.; Tao, X.; Cheng, N.; Liu, Y. Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza[6]helicene. RSC Adv. 2015, 5, 75–84. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Z.; Dong, G.; Duan, L.; Qiu, Y.; Jia, J.; Guo, W.; Zhao, D.; Cui, D.; Tao, X. Synthesis, Structure, Properties, and Application of a Carbazole-Based Diaza [7] helicene in a Deep-Blue-Emitting OLED. Chem. Eur. J. 2012, 18, 8092–8099. [Google Scholar] [CrossRef]
- Sahasithiwat, S.; Mophuang, T.; Menbangpung, L.; Kamtonwong, S.; Sooksimuang, T. 3,12-Dimethoxy-7,8-dicyano-[5] helicene as a novel emissive material for organic light-emitting diode. Synth. Met. 2010, 160, 1148–1152. [Google Scholar] [CrossRef]
- Chen, J.P. [5]-Helicene and dibenzofluorene materials for use in organic light-emitting devices. Patent Application Number PCT/US2002/039350, 10 December 2002. [Google Scholar]
- Ma, Z.; Winands, T.; Liang, N.; Meng, D.; Jiang, W.; Doltsinis, N.L.; Wang, Z. A C2-symmetric triple [5]helicene based on N-annulated triperylene hexaimide for chiroptical electronics. Sci. China Chem. 2020, 63, 208–214. [Google Scholar] [CrossRef]
- Josse, P.; Favereau, L.; Shen, C.; Dabos-Seignon, S.; Blanchard, P.; Cabanetos, C.; Crassous, J. Enantiopure versus Racemic Naphthalimide End-Capped Helicenic Non-fullerene Electron Acceptors: Impact on Organic Photovoltaics Performance. Chem. Eur. J. 2017, 23, 6277–6281. [Google Scholar] [CrossRef] [Green Version]
- Lewinska, G.; Danel, K.S.; Sanetra, J. The bulk heterojunction cells based on new helicenes—Preparation, implementation and surface examination. Sol. Energy 2016, 135, 848–853. [Google Scholar] [CrossRef]
- Dova, D.; Cauteruccio, S.; Manfredi, N.; Prager, S.; Dreuw, A.; Arnaboldi, S.; Mussini, P.R.; Licandro, E.; Abbotto, A. An unconventional helical push-pull system for solar cells. Dye. Pigm. 2019, 161, 382–388. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, Y.; Fang, L.; Li, T.; Xie, X.; Zhang, J.; Wang, P. A Helical Polycycle Molecular Semiconductor for Durable and Efficient Perovskite Solar Cells. ACS Mater. Lett. 2022, 4, 11–20. [Google Scholar] [CrossRef]
- Tang, Z.; Li, T.; Cao, Y.; Zhang, Y.; He, L.; Zheng, A.; Lei, M. Chrysene-Based Azahelicene π-Linker of D-π-D-Type Hole-Transporting Materials for Perovskite Solar Cells. ChemSusChem 2021, 14, 4923–4928. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, A.; Xie, X.; Zhang, J.; He, L.; Wang, P. A Pyrrole-Bridged Bis(oxa [5] helicene)-Based Molecular Semiconductor for Efficient and Durable Perovskite Solar Cells: Microscopic Insights. ACS Mater. Lett. 2021, 3, 947–955. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Abate, S.Y.; Wang, C.-I.; Wen, Y.-S.; Chen, C.-I.; Hsu, C.-P.; Chueh, C.-C.; Tao, Y.-T.; Sun, S.-S. Low-Cost Hole-Transporting Materials Based on Carbohelicene for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 20051–20059. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Xie, X.; Ren, Y.; Zhang, B.; He, L.; Zhang, J.; Wang, L.-D.; Wang, P. A Helicene-Based Molecular Semiconductor Enables 85 °C Stable Perovskite Solar Cells. ACS Energy Lett. 2021, 6, 1764–1772. [Google Scholar] [CrossRef]
- Zheng, A.; Xie, X.; Wang, Y.; Xu, N.; Zhang, J.; Yuan, Y.; Wang, P. A Triple Axial Chirality, Racemic Molecular Semiconductor Based on Thiahelicene and Ethylenedioxythiophene for Perovskite Solar Cells: Microscopic Insights on Performance Enhancement. Adv. Funct. Mater. 2021, 31, 2009854. [Google Scholar] [CrossRef]
- Wang, J.; Shi, H.; Xu, N.; Zhang, J.; Yuan, Y.; Lei, M.; Wang, L.; Wang, P. Aza [5] helicene Rivals N-Annulated Perylene as π-Linker of D-π-D Typed Hole-Transporters for Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 2002114. [Google Scholar] [CrossRef]
- Xu, N.; Zheng, A.; Wei, Y.; Yuan, Y.; Zhang, J.; Lei, M.; Wang, P. D-p-D molecular semiconductors for perovskite solar cells: The superior role of helical versus planar p-linkers. Chem. Sci. 2020, 11, 3418–3426. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Wang, J.; Xie, X.; Zhang, J.; Wang, P. Double-Helicene-Based Hole-Transporter for Perovskite Solar Cells with 22% Efficiency and Operation Durability. ACS Energy Lett. 2019, 4, 2683–2688. [Google Scholar] [CrossRef]
- Xu, N.; Li, Y.; Ricciarelli, D.; Wang, J.; Mosconi, E.; Yuan, Y.; De Angelis, F.; Zakeeruddin, S.M.; Gratzel, M.; Wang, P. An Oxa[5]helicene-Based Racemic Semiconducting Glassy Film for Photothermally Stable Perovskite Solar Cells. iScience 2019, 15, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-C.; Chen, C.-I.; Fang, C.-T.; Huang, P.-Y.; Wu, Y.-T.; Chueh, C.-C. Improving Performance of Perovskite Solar Cells Using [7]Helicenes with Stable Partial Biradical Characters as the Hole-Extraction Layers. Adv. Funct. Mater. 2019, 29, 1808625. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Abate, S.Y.; Lai, K.-W.; Chu, C.-W.; Lin, Y.-D.; Tao, Y.-T.; Sun, S.-S. New Helicene-Type Hole-Transporting Molecules for High-Performance and Durable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 41439–41449. [Google Scholar] [CrossRef]
- Minuti, L.; Taticchi, A.; Marrocchi, A.; Gacs-Baitz, E. Diels-Alder reaction of 3,3’,4,4’-tetrahydro-1,1’-binaphthalene. One pot synthesis of a pentahelicenebenzoquinone. Tetrahedron 1997, 53, 6873–6878. [Google Scholar] [CrossRef]
- Fringuelli, F.; Taticchi, A. Diels Alder reaction. In Selected Practical Methods; John Wiley and Sons: New York, NY, USA, 2002. [Google Scholar]
- Willmore, N.D.; Liu, L.; Katz, T.J. A Diels–Alder Route to [5]- and [6]-Helicenes. Angew. Chem. Int. Ed. 1992, 31, 1093–1095. [Google Scholar] [CrossRef]
- Katz, T.J.; Liu, L.; Willmore, N.D.; Fox, J.M.; Rheingold, A.L.; Shi, S.; Nuckolls, C.; Rickman, B.H. An Efficient Synthesis of Functionalized Helicenes. J. Am. Chem. Soc. 1997, 119, 10054–10063. [Google Scholar] [CrossRef]
- Carreño, M.C.; Hernández-Sánchez, R.; Mahugo, J.; Urbano, A. Enantioselective Approach to Both Enantiomers of Helical Bisquinones. J. Org. Chem. 1999, 64, 1387–1390. [Google Scholar] [CrossRef]
- Minuti, L.; Taticchi, A.; Marrocchi, A.; Gacs-Baitz, E. A new short route to hexahelicenes. Synth. Commun. 1998, 28, 2181–2190. [Google Scholar] [CrossRef]
- Minuti, L.; Taticchi, A.; Marrocchi, A.; Gacs-Baitz, E.; Galeazzi, R. An efficient synthetic approach to substituted penta- and hexahelicenes. Eur. J. Org. Chem. 1999, 11, 3155–3163. [Google Scholar] [CrossRef]
- Marrocchi, A.; Minuti, L.; Taticchi, A.; Dix, I.; Hopf, H.; Jones, P.G.; Gacs-Baitz, E. The preparation of helical cyclophanes containing five-membered rings. Eur. J. Org. Chem. 2001, 22, 4259–4268. [Google Scholar] [CrossRef]
- Minuti, L.; Taticchi, A.; Lanari, D.; Marrocchi, A.; Gacs-Baitz, E. Synthesis of enantiopure helical cyclophanes containing five-membered heterocyclic rings. Tetrahedron Asymm. 2003, 14, 2775–2779. [Google Scholar] [CrossRef]
- Minuti, L.; Taticchi, A.; Marrocchi, A.; Lanari, D.; Tesei, I.; Gacs-Baitz, E. Synthesis of helical [2.2]paracyclophanes containing carbocyclic and heterocyclic five-membered rings. Tetrahedron 2004, 60, 11759–11764. [Google Scholar]
- Minuti, L.; Taticchi, A.; Marrocchi, A.; Gacs-Baitz, E. Synthesis of helicenophanes containing two carbocyclic five-membered rings. Polycycl. Aromat. Compd. 2005, 25, 13–22. [Google Scholar] [CrossRef]
- Minuti, L.; Taticchi, A.; Gacs-Baitz, E.; Marrocchi, A. High pressure Diels-Alder reaction of 2-vinyl-3,4-dihydronaphthalene. Synthesis of ciclopenta[c]- and indeno[c]-phenanthrenones. Tetrahedron 1995, 51, 8953–8958. [Google Scholar] [CrossRef]
- Yoon, M.-H.; Facchetti, A.; Stern, C.E.; Marks, T.J. Fluorocarbon-Modified Organic Semiconductors: Molecular Architecture, Electronic, and Crystal Structure Tuning of Arene- versus Fluoroarene-Thiophene Oligomer Thin-Film Properties. J. Am. Chem. Soc. 2006, 128, 5792–5801. [Google Scholar] [CrossRef] [PubMed]
- Facchetti, A.; Mushrush, M.; Yoon, M.-H.; Hutchison, G.R.; Ratner, M.A.; Marks, T.J. Building Blocks for n-Type Molecular and Polymeric Electronics. Perfluoroalkyl- versus Alkyl-Functionalized Oligothiophenes (nT; n = 2−6). Systematics of Thin Film Microstructure, Semiconductor Performance, and Modeling of Majority Charge Injection in Field-Effect Transistors. J. Am. Chem. Soc. 2004, 126, 13859–13874. [Google Scholar] [PubMed]
- Chen, L.X.; Shaw, G.B.; Tiede, D.M.; Zuo, X.; Zapol, P.; Redfern, P.C.; Curtiss, L.A.; Sooksimuang, T.; Mandal, B.K. Excited State Dynamics and Structures of Functionalized Phthalocyanines. 1. Self-Regulated Assembly of Zinc Helicenocyanine. J. Phys. Chem. B 2005, 109, 16598–16609. [Google Scholar] [CrossRef]
- Letizia, J.A.; Cronin, S.; Ponce Ortiz, R.; Facchetti, A.; Ratner, M.A.; Marks, T.J. Phenacyl–Thiophene and Quinone Semiconductors Designed for SolutionProcessability and Air-Stability in High Mobility n-Channel Field-Effect Transistors. Chem. Eur. J. 2010, 16, 1911–1928. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, H.S.; Kim, J.-D.; Breiby, D.W.; Kim, E.; Park, Y.D.; Ryu, D.Y.; Lee, D.Y.; Cho, J.H. A polymer brush organic interlayer improves the overlying pentacene nanostructure and organic field-effect transistor performance. J. Mater. Chem. 2011, 21, 15580–15586. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Skaisgiris, R.; Serevičius, T.; Dodonova, J.; Banevičius, D.; Kazlauskas, K.; Tumkevičius, S.; Juršėnas, S. Tuning of HOMO-LUMO localization for achieving thermally activated delayed fluorescence. J. Lumin. 2022, 241, 118473. [Google Scholar] [CrossRef]
m.p (°C) | E1/2-ox (V) | E1/2-red (V) | λmax-sol (nm) a | ε (Lmol−1cm−1) | Egsol (eV) a | λmax-film (nm) b | Egfilm (eV) b | LUMO (eV) c | HOMO (eV) d |
---|---|---|---|---|---|---|---|---|---|
246 | - | −1.67 | 486 | 8.33 · 103 | 2.11 | 490 | 2.01 | −3.14 | −5.25 |
Parameter | Data |
---|---|
Empirical Formula | C26H14O2 |
Formula weight | 358.37 |
Temperature/°C | −173.16 |
Crystal system | Orthorhombic |
Space group | Pbca (no. 61) |
a /Å, b/Å, c/Å | 12.1651 (3), 7.4140 (2), 36.6996 (7) |
α/°, β/°, γ/° | 90, 90, 90 |
Volume / Å3 | 3310.01 (14) |
Z | 8 |
ρcalc/mg mm−3 | 1.438 |
μ(MoKα)/mm−1 | 0.090 |
F (000) | 1488 |
Crystal size/mm3 | 0.24 × 0.15 × 0.069 |
2Θ range for data collection | 5.562 to 56.558° |
Index ranges | −15 ≤ h ≤ 16, −9 ≤ k ≤ 9, −48 ≤ l ≤ 48 |
Reflections collected | 55,869 |
Independent reflections | 4094 [R(int) = 0.1036] |
Data/restraints/parameters | 4094/0/253 |
Goodness-of-fit on F2 | 1.035 |
Final R indexes [I > 2σ (I)] | R1 = 0.0459, wR2 = 0.1030 |
Final R indexes [all data] | R1 = 0.0698, wR2 = 0.1151 |
Largest diff. peak/hole/e Å−3 | 0.301/−0.228 |
Substrate | Solvent | TD | TA | µh | Ion/Ioff | VT |
---|---|---|---|---|---|---|
Spin-Coated (SC) | ||||||
Bare | chlorobenzene | - | - | 1.6 × 10−5 | 1.5 × 103 | 1.5 |
Bare | dichlorobenzene | - | 150 | nw | ||
Bare | Toluene | - | 150 | nw | ||
PVP | dichlorobenzene | - | 150 | nw | ||
PVP | Toluene | - | 150 | nw | ||
PS brush | dichlorobenzene | - | 150 | nw | ||
PS brush | Toluene | - | 150 | nw | ||
Drop-casted (DC) | ||||||
Bare | chlorobenzene | 100 | 130 | 1.5 × 10−7 | 3.0 × 104 | −23 |
PVP | chlorobenzene | 100 | 130 | 5.3 × 10−5 | 6.0 × 103 | −10 |
PS brush | dichlorobenzene | 60 | 150 | 6.0 × 10−5 | 3.0 × 103 | −67 |
PS brush | chlorobenzene | 70 | - | 2.5 × 10−6 | 5.0 × 103 | −35 |
PS brush | chlorobenzene | 70 | 150 | 4.8 × 10−5 | 2.5 × 104 | −23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bracciale, M.P.; Kwon, G.; Ho, D.; Kim, C.; Santarelli, M.L.; Marrocchi, A. Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione. Molecules 2022, 27, 863. https://doi.org/10.3390/molecules27030863
Bracciale MP, Kwon G, Ho D, Kim C, Santarelli ML, Marrocchi A. Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione. Molecules. 2022; 27(3):863. https://doi.org/10.3390/molecules27030863
Chicago/Turabian StyleBracciale, Maria Paola, Guhyun Kwon, Dongil Ho, Choongik Kim, Maria Laura Santarelli, and Assunta Marrocchi. 2022. "Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione" Molecules 27, no. 3: 863. https://doi.org/10.3390/molecules27030863
APA StyleBracciale, M. P., Kwon, G., Ho, D., Kim, C., Santarelli, M. L., & Marrocchi, A. (2022). Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione. Molecules, 27(3), 863. https://doi.org/10.3390/molecules27030863