Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Essential Oil
2.2. Antimicrobial Activity
2.3. Antioxidant Activity of PCEO
2.4. Anti-Inflammatory Activity
2.5. PASS and ADME Prediction
2.6. Molecular Docking Studies
3. Materials and Methods
3.1. Extraction of Essential Oil
3.2. Gas Chromatography-Mass Spectrometry
3.3. Antimicrobial Activity
3.4. Antioxidant Activity
3.5. Anti-Inflammatory Activity
3.6. In Silico PASS and ADME Prediction
3.7. Molecular Docking Prediction
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Elshafie, H.S.; Camele, I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. BioMed Res. Int. 2017, 2017, 9268468. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 2013, 33, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Farouk, A.; Ali, H.; Al-Khalifa, A.R.; Mohsen, M.; Fikry, R. Aroma volatile compounds of parsley cultivated in the Kingdom of Saudi Arabia and Egypt extracted by hydrodistillation and headspace solid-phase microextraction. Int. J. Food Prop. 2017, 20, S2868–S2877. [Google Scholar] [CrossRef]
- Craft, J.D.; Setzer, W.N. The volatile components of parsley, Petroselinum crispum (Mill.) Fuss. Am. J. Essent. Oils Nat. Prod. 2017, 5, 27–33. [Google Scholar]
- Stefano, V.D.; Pitonzo, R.; Schillaci, D. Antimicrobial and antiproliferative activity of Athamanta sicula L. (Apiaceae). Pharmacogn. Mag. 2011, 7, 31–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Park, W. Anti-inflammatory effect of Myristicin on RAW 264.7 macrophages stimulated with polyinosinic polycytidylic acid. Molecules 2011, 16, 7132–7142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aćimović, M.G. Nutraceutical Potential of Apiaceae. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. Int. J. Mol. Sci. 2021, 22, 2380. [Google Scholar] [CrossRef]
- Popović, M.; Kaurinović, B.; Jakovljević, V.; Mimica-Dukic, N.; Bursać, M. Effect of parsley (Petroselinum crispum (Mill.) Nym. ex A.W. Hill, Apiaceae) extracts on some biochemical parameters of oxidative stress in mice treated with CCl4. Phytother. Res. 2007, 21, 717–723. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Mohamady, M.A.; Fernández-López, J.; Abd ElRazik, K.A.; Omer, E.A.; Pérez-Alvarez, J.A.; Sendra, E. In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 2011, 22, 1715–1722. [Google Scholar] [CrossRef]
- Chaves, D.S.; Frattani, F.S.; Assafim, M.; de Almeida, A.P.; de Zingali, R.B.; Costa, S.S. Phenolic chemical composition of Petroselinum crispum extract and its effect on haemostasis. Nat. Prod. Commun. 2011, 6, 961–964. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, M.; Uemura, T.; Shimoda, H.; Kishi, A.; Kawahara, Y.; Matsuda, H. Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial part of Petroselinum crispum MIll. (Parsley) and structures of 6″-acetylapiin and a new monoterpene glycoside, petroside. Chem. Pharm. Bull. 2000, 48, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Utegenova, G.A.; Pallister, K.B.; Kushnarenko, S.V.; Özek, G.; Özek, T.; Abidkulova, K.T.; Kirpotina, L.N.; Schepetkin, I.A.; Quinn, M.T.; Voyich, J.M. Chemical Composition and Antibacterial Activity of Essential Oils from Ferula L. Species against Methicillin-Resistant Staphylococcus aureus. Molecules 2018, 23, 1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, Z.; Taheri, P.; Samadi, N. Chemical composition and antibacterial activity of the essential oils from flowers, leaf, and stems of Ferula cupularis growing wild in Iran. Pharm. Biol. 2015, 53, 483–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The Anticancer, Antioxidant, and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Chehregani, A.; Mohsenzadeh, F.; Mirazi, N.; Hajisadeghian, S.; Baghali, Z. Chemical composition and antibacterial activity of essential oils of Tripleurospermum disciforme in three developmental stages. Pharm. Biol. 2010, 48, 1280–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Howiriny, T.; Al-Sohaibani, M.; El-Tahir, K.; Rafatullah, S. Prevention of experimentally induced gastric ulcers in rats by an ethanolic extract of “Parsley” Petroselinum crispum. Am. J. Chin. Med. 2003, 31, 699–711. [Google Scholar] [CrossRef]
- Bolkent, S.; Yanardag, R.; Ozsoy-Sacan, O.; Karabulut-Bulan, O. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: A morphological and biochemical study. Phytother. Res. 2004, 18, 996–999. [Google Scholar] [CrossRef]
- Vora, S.R.; Patil, R.B.; Pillai, M.M. Protective effects of Petroselinum crispum (Mill) Nyman ex A. W. Hill leaf extract against D-galactose-induced oxidative stress in mouse brain. Indian J. Exp. Biol. 2009, 47, 338–342. [Google Scholar]
- Zhang, H.; Chen, F.; Wang, X.; Yao, H.Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res. Int. 2006, 39, 833–839. [Google Scholar] [CrossRef]
- Aziz, E.E.; Sabry, R.M.; Ahmed, S.S. Plant Growth and Essential Oil Production of Sage (Salvia officinalis L.) and Curly-Leafed Parsley (Petroselinum crispum ssp. crispum L.) Cultivated under Salt Stress Conditions. World Appl. Sci. J. 2013, 28, 785–796. [Google Scholar]
- Sabry, R.; Kandil, M.; Ahmed, S. Comparative Study of Some Parsley Cultivars Grown in Egypt for Some Potent Compounds. J. Appl. Sci. Res. 2013, 9, 6419–6424. [Google Scholar]
- Alqarni, M.H.; Foudah, A.I.; Alam, A.; Salkini, M.A.; Elmakki, O.A.O.; Yusufoglu, H.S. Contribution to the quality control and in vitro antioxidant activity of leaves of Petroselinum crispum and Coriandrum sativum cultivated in Saudi Arabia. Int. J. Pharm. Sci. Res. 2019, 10, 4158–4166. [Google Scholar]
- Petropoulos, S.A.; Daferera, D.; Akoumianakis, C.A.; Passam, H.C.; Polissiou, M.G. The effect of so wing date and growth stage on the essential oil composition of three types of parsley (Petroselinum crispum). J. Sci. Food Agric. 2004, 84, 1606–1610. [Google Scholar] [CrossRef]
- Mangkoltriluk, W.; Srzednicki, G.; Craske, J. Preservation of flavour components in parsley (Petroselinum crispum) by heat pump and cabinet drying. Pol. J. Food Nutr. Sci. 2005, 14, 63–66. [Google Scholar]
- López, M.G.; Sánchez-Mendoza, I.R.; Ochoa-Alejo, N. Comparative study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (Mill) Nym ex Hill). J. Agric. Food Chem. 1999, 41, 3292–3296. [Google Scholar] [CrossRef]
- Lechtenberg, M.; Zumdick, S.; Gerhards, C.; Schmidt, T.J.; Hensel, A. Evaluation of analytical markers characterising different drying methods of parsley leaves (Petroselinum crispum L.). Pharmazie 2007, 62, 949–954. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Bursac, M.; Popovic, M.; Mitic, R.; Kaurinovic, B.; Jakovljevic, V. Effects of Parsley (Petroselinum crispum.) and Celery (Apium graveolens.) Extracts on Induction and Sleeping Time in Mice. Pharm. Biol. 2005, 43, 780–783. [Google Scholar] [CrossRef]
- Es-safi, I.; Mechchate, H.; Amaghnouje, A.; Kamaly, O.M.A.; Jawhari, F.Z.; Imtara, H.; Grafov, A.; Bousta, D. The Potential of Parsley Polyphenols and Their Antioxidant Capacity to Help in the Treatment of Depression and Anxiety: An In Vivo Subacute Study. Molecules 2021, 26, 2009. [Google Scholar] [CrossRef] [PubMed]
- Linde, G.A.; Gazim, Z.C.; Cardoso, B.K.; Jorge, L.F.; Tešević, V.; Glamoćlija, J.; Soković, M.; Colauto, N.B. Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet. Mol. Res. 2016, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Setty, J.V.; Srinivasan, I.; Sathiesh, R.T.; Kale, M.; Shetty, V.V.; Venkatesh, S. In vitro evaluation of antimicrobial effect of Myristica fragrans on common endodontic pathogens. J. Indian Soc. Pedod. Prev. Dent. 2020, 38, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Matulyte, I.; Jekabsone, A.; Jankauskaite, L.; Zavistanaviciute, P.; Sakiene, V.; Bartkiene, E.; Ruzauskas, M.; Kopustinskiene, D.M.; Santini, A.; Bernatoniene, J. The Essential Oil and Hydrolats from Myristica fragrans Seeds with Magnesium Aluminometasilicate as Excipient: Antioxidant, Antibacterial, and Anti-inflammatory Activity. Foods 2020, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, J.K.; Andrade, E.H.; Kato, M.J.; Carreira, L.M.; Guimarães, E.F.; Maia, J.G. Antioxidant capacity and larvicidal and antifungal activities of essential oils and extracts from Piper krukoffii. Nat. Prod. Commun. 2011, 6, 1361–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.; Prakash, O.; Pant, A.K.; Mathela, C.S. Chemical Composition and Antioxidant and Antimicrobial Activities of Alpinia nutans Rosc. J. Essent. Oil Res. 2010, 22, 85–90. [Google Scholar] [CrossRef]
- Tang, E.L.; Rajarajeswaran, J.; Fung, S.; Kanthimathi, M.S. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J. Sci. Food Agric. 2015, 95, 2763–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahar, S.; Hamdi, B.; Flamini, G.; Mehmet, O.; Duru, M.E.; Bruno, M.; Maggi, F. Chemical composition, antioxidant and anticholinesterase activity of the essential oil of algerian Cachrys sicula L. Nat. Prod. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, O.; Ozdemir, I.; Tanyildizi, S.; Yildiz, S.; Oguzturk, H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health 2011, 27, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Afoulous, S.; Ferhout, H.; Raoelison, E.G.; Valentin, A.; Moukarzel, B.; Couderc, F.; Bouajila, J. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem. Toxicol. 2013, 56, 352–362. [Google Scholar] [CrossRef]
- De Cássia da Silveira, e.; Sá, R.; Andrade, L.N.; Dos Reis Barreto de Oliveira, R.; de Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 2014, 19, 1459–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ChemDraw®, J.S. A Product of PerkinElmer. Available online: https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html (accessed on 14 September 2021).
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate the pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojarska, J.; Remko, M.; Breza, M.; Madura, I.D.; Kaczmarek, K.; Zabrocki, J.; Wolf, W.M. A Supramolecular Approach to Structure-Based Design with A Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies. Molecules 2020, 25, 1135. [Google Scholar] [CrossRef] [Green Version]
- Sychev, D.A.; Ashraf, G.M.; Svistunov, A.A.; Maksimov, M.L.; Tarasov, V.V.; Chubarev, V.N.; Otdelenov, V.A.; Denisenko, N.P.; Barreto, G.E.; Aliev, G. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interactions in vivo. Drug Des. Dev. Ther. 2018, 12, 1147–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, J.; Zuzarte, M.; Gonçalves, M.J.; Lopes, M.C.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxicol. 2013, 62, 349–354. [Google Scholar] [CrossRef]
- Wright, M.H.; Heal, W.P.; Mann, D.J.; Tate, E.W. Protein myristoylation in health and disease. J. Chem. Biol. 2010, 3, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Lepesheva, G.I.; Waterman, M.R. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta. 2007, 1770, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018, 103, 923–938. [Google Scholar] [CrossRef]
- Sun, J.; Lv, P.C.; Zhu, H.L. Tyrosyl-tRNA synthetase inhibitors: A patent review. Expert Opin. Ther. Pat. 2017, 27, 557–564. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Di Petrillo, A.; González-Paramás, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement. Altern. Med. 2016, 16, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barelier, S.; Linard, D.; Pons, J.; Clippe, A.; Knoops, B.; Lancelin, J.M.; Krimm, I. Discovery of Fragment Molecules That Bind the Human Peroxiredoxin 5 Active Site. PLoS ONE 2010, 5, e9744. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.H.; Foudah, A.I.; Alam, A.; Salkini, M.A.; Alam, P.; Yusufoglu, H.S. Novel HPTLC-densitometric method for concurrent quantification of linalool and thymol in essential oils. Arab. J. Chem. 2021, 14, 102916. [Google Scholar] [CrossRef]
- Vandendool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed Gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Demo, M.; Oliva, M.M.; López, M.L.; Zunino, M.P.; Zygadlo, J.A. Antimicrobial Activity of Essential Oils Obtained from Aromatic Plants of Argentina. Pharm. Biol. 2005, 43, 129–134. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Ibnouf, A.E.O.; Yusufoglu, H.S. Evaluation of the composition and in vitro antimicrobial, antioxidant, and anti-inflammatory activities of Cilantro (Coriandrum sativum L. leaves) cultivated in Saudi Arabia (Al-Kharj). Saudi J. Biol. Sci. 2021, 28, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Singh, V. Composition and pharmacological activity of essential oils from two imported Amomum subulatum fruit samples. J. Taibah Univ. Med. Sci. 2021, 16, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. In Vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines 2018, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Talha, J.; Pravej, A. In vitro antioxidant and anti-inflammatory activities of green cardamom essential oil and in silico molecular docking of its major bioactives. J. Taibah. Univ. Sci. 2021, 15, 757–768. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Lee, J.; Jo, S.; Brooks, C.L.; Lee, H.S.; Im, W. CHARMM-GUI Ligand Reader and Modeler for CHARMM Force Field Generation of Small Molecules. J. Comput. Chem. 2017, 38, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Lemkul, J.A. Pairwise Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins. Prog. Mol. Biol. Transl. Sci. 2020, 170, 1–71. [Google Scholar] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogabe, S.; Masubuchi, M.; Sakata, K.; Fukami, T.A.; Morikami, K.; Shiratori, Y.; Ebiike, H.; Kawasaki, K.; Aoki, Y.; Shimma, N.; et al. Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors. Chem. Biol. 2002, 9, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Hargrove, T.Y.; Wawrzak, Z.; Liu, J.; Waterman, M.R.; Nes, W.D.; Lepesheva, G.I. Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol. J. Lipid Res. 2012, 53, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdgate, G.A.; Tunnicliffe, A.; Ward, W.H.; Weston, S.A.; Rosenbrock, G.; Barth, P.T.; Taylor, I.W.; Pauptit, R.A.; Timms, D. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: A thermodynamic and crystallographic study. Biochemistry 1997, 36, 9663–9673. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Janson, C.A.; Smith, W.W.; Green, S.M.; McDevitt, P.; Johanson, K.; Carter, P.; Hibbs, M.; Lewis, C.; Chalker, A.; et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 2001, 10, 2008–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: Cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry 2010, 49, 7069–7079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J.; et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate has a shorter and favorable human half-life. Bioorg. Med. Chem. Lett. 2010, 20, 7159–7163. [Google Scholar] [CrossRef] [PubMed]
- Foudah, A.I.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Alam, P.; Alkholifi, F.K.; Yusufoglu, H.S. Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia. Molecules 2021, 26, 7372. [Google Scholar] [CrossRef] [PubMed]
- Declercq, J.P.; Evrard, C.; Clippe, A.; Stricht, D.V.; Bernard, A.; Knoops, B. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J. Mol. Biol. 2001, 311, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, K.M.K.; Salman, A.; Al-Khodairy Salman, F.; Al-Marshad Feras, M.; Alshahrani Abdulrahman, M.; Arif Jamal, M. Computational Exploration of Dibenzo [a,l] Pyrene Interaction with DNA and Its Bases: Possible Implications to Human Health. Biointerface Res. Appl. Chem. 2020, 11, 11272–11283. [Google Scholar]
Numbers | Metabolites | LRI (Exp.) | LRI (Lit.) | Area % |
---|---|---|---|---|
1. | β-Myrcene (1) | 971 | 969 | 5.98 |
2. | α-Phellandrene | 1001 | 1004 | 0.44 |
3. | cis-3-Hexenyl Acetate | 1008 | 1009 | 0.36 |
4. | 1,5,5-Trimethyl-6-methylene-cyclohexene | 1338 | 1338 | 0.14 |
5. | β-Cymene | 1020 | 1021 | 0.30 |
6. | Sabinene (2) | 975 | 977 | 9.29 |
7. | γ-Terpinene | 1059 | 1062 | 0.12 |
8. | Benzene, (2-methyl-1-propenyl) (3) | 1072 | 1067 | 5.32 |
9. | Linalool | 1100 | 1104 | 0.60 |
10. | p-Mentha-1,5,8-triene (4) | 1112 | 1112 | 4.15 |
11. | 4-Isopropyl-1-methyl-2-cyclohexen-1-ol | 1140 | 1144 | 0.20 |
12. | trans-Borneol | 1167 | 1165 | 0.13 |
13. | Menthol | 1168 | 1169 | 0.34 |
14. | 2-Acetyltoluene | 1172 | 1171 | 0.55 |
15. | Kryptone | 1186 | 1187 | 0.32 |
16. | α-Terpineol | 1185 | 1187 | 0.16 |
17. | L-Perillaldehyde | 1281 | 1285 | 0.21 |
18. | Methyl-p-tolylcarbinol | 1090 | 1098 | 0.27 |
19. | 1-Methyl-4-(1-methylpropyl)-benzene | 1097 | 1100 | 0.48 |
20. | 4,7-Dimethylbenzofuran | 1224 | 1220 | 0.12 |
21. | Pulegone | 1243 | 1244 | 0.27 |
22. | 2,3,5,6-Tetramethylphenol | 1312 | 1319 | 0.78 |
23. | 5-Decen-1-ol, (Z)- | 1201 | - | 0.55 |
24. | 1-Decanol | 1273 | 1272 | 0.19 |
25. | Carvacrol | 1299 | 1298 | 0.73 |
26. | 2,6,8-Trimethylbicyclo[4.2.0]oct-2-ene-1,8-diol | 1303 | - | 0.35 |
27. | Copaene | 1372 | 1376 | 0.20 |
28. | β-Damascenone | 1385 | 1384 | 0.32 |
29. | β-Bourbonene | 1386 | 1384 | 0.30 |
30. | β-Elemene | 1392 | 1394 | 0.63 |
31. | 4-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-butanone | 1425 | 1424 | 0.16 |
32. | β-Caryophyllene (5) | 1426 | 1428 | 3.96 |
33. | γ-Elemene | 1435 | 1432 | 0.89 |
34. | β-Farnesene (6) | 1458 | 1459 | 2.76 |
35. | (+)-epi-Bicyclosesquiphellandrene | 1499 | 1498 | 0.20 |
36. | γ-Muurolene | 1481 | 1485 | 0.18 |
37. | β-Copaen-4α-ol | 1579 | 1570 | 1.51 |
38. | β-Ionone | 1486 | 1488 | 0.15 |
39. | β-Selinene | 1488 | 1489 | 0.22 |
40. | α-Cedrene | 1409 | 1409 | 0.37 |
41. | α-Muurolene | 1492 | 1497 | 0.29 |
42. | β-Bisabolene | 1509 | 1506 | 0.3 |
43. | γ-Cadinene | 1513 | 1511 | 1.19 |
44. | Myristicin (7) | 1523 | 1519 | 41.45 |
45. | α-Cadinene | 1546 | 1544 | 0.17 |
46. | Benzene,1,2,3-trimethoxy-5-(2-propenyl)- | 1556 | 1559 | 0.16 |
47. | Germacrene B | 1558 | 1561 | 0.49 |
48. | Copaen-15-ol | 1572 | 1574 | 0.19 |
49. | Caryophyllene oxide | 1583 | 1578 | 0.41 |
50. | α-Amorphene | 1490 | 1494 | 0.33 |
51. | Caryophylla-4(12),8(13)-dien-5β-ol | 1640 | 1644 | 0.11 |
52. | T-Cadinol | 1642 | 1644 | 1.39 |
53. | butylphthalide | 1656 | 1658 | 0.12 |
54. | α-Cadinol | 1658 | 1660 | 0.11 |
55. | Isoaromadendrene epoxide | 1577 | 1579 | 0.25 |
56. | Ledene oxide-(II) | 1680 | 1682 | 0.19 |
57. | Apiol | 1691 | 1696 | 1.03 |
58. | Senkyunolide | 1729 | 1729 | 0.12 |
59. | trans-Sedanolide | 1737 | 1735 | 0.69 |
60. | (E)-Ligustilide | 1807 | 1809 | 0.21 |
61. | 4,8-Epithioazulene | 1743 | 1744 | 0.26 |
62. | Phytol | 2117 | 2119 | 1.58 |
Total % Area | 95.24% |
Microorganisms | Zone of Inhibition (mm) | MIC (mg/mL) | ||
---|---|---|---|---|
5 mg/mL | 10 mg/mL | 20 mg/mL | ||
S. aureus | 9.7 ± 0.14 | 13.7 ± 0.08 | 17.86 ± 0.09 | 2.5 |
B. subtilis | 8.63 ± 0.12 | 12.73 ± 0.05 | 15.73 ± 0.04 | 2.5 |
E. coli | NI | 7.33 ± 0.09 | 8.67 ± 0.12 | <5 |
K. pneumonia | NI | 9.3 ± 0.08 | 9.43 ± 0.09 | <5 |
C. albicans | 11.63 ± 0.12 | 15.73 ± 0.04 | 19.4 ± 0.08 | 1.25 |
Conc. (mg/mL) | DPPH Assay, % Inhibition | Ferric Chloride Assay, Absorbance | ||
---|---|---|---|---|
Ascorbic Acid | PCEO | Ascorbic Acid | PCEO | |
0.25 | 95.09 ± 0.56 | 3.72 ± 0.05 | 1.104 ± 0.02 | 0.086 ± 0.02 |
0.5 | 95.48 ± 0.11 | 8.4 ± 0.07 | 1.557 ± 0.03 | 0.117 ± 0.01 |
1 | 96.93 ± 0.23 | 28.62 ± 0.13 | 1.673 ± 0.08 | 0.180 ± 0.003 |
2.5 | 98.09 ± 0.36 | 49.85 ± 0.18 | 1.837 ± 0.05 | 0.300 ± 0.01 |
5 | 98.53 ± 0.44 | 68.42 ± 0.27 | 1.901 ± 0.03 | 0.517 ± 0.01 |
Prediction | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
PASS Prediction (Pa/Pi) | |||||||
Anti-inflammatory | 0.297 /0.073 | 0.853 /0.005 | 0.357 /0.119 | 0.282 /0.178 | 0.437 /0.023 | 0.326 /0.139 | 0.382 /0.105 |
Antioxidant | 0.470 /0.008 | - | 0.353 /0.016 | 0.144 /0.110 | 0.174 /0.075 | 0.497 /0.007 | 0.360 /0.016 |
Anti-fungal | 0.584/0.020 | 0.340 /0.066 | 0.399 /0.050 | 0.517 /0.013 | 0.582 /0.020 | 0.607 /0.018 | 0.256 /0.103 |
Antibacterial | 0.398 /0.030 | 0.201 /0.117 | 0.293 /0.063 | 0.431 /0.024 | 0.437 /0.023 | 0.415 /0.027 | 0.217 /0.103 |
ADME Prediction | |||||||
Physiochemical Properties | |||||||
TPSA (Å): | 0.00 Ų | 0.00 Ų | 0.00 Ų | 0.00 Ų | 0.00 Ų | 0.00 Ų | 27.69 Ų |
Molar refractivity | 48.76 | 45.22 | 46.15 | 46.65 | 68.78 | 72.32 | 53.10 |
Drug Likeness Prediction | |||||||
Bioactivity Score | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Synthetic accessibility | 2.85 | 2.87 | 1.47 | 4.10 | 4.51 | 3.42 | 2.40 |
Absorption Parameters Prediction | |||||||
Consensus Log S | −3.88 | −2.76 | −3.50 | −2.99 | −4.10 | −5.81 | −3.18 |
Consensus Log Po/w: | 3.43 | 3.25 | 3.33 | 2.94 | 4.24 | 4.97 | 2.49 |
Solubility Class | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble |
Distribution Parameters Prediction | |||||||
Log Kp (cm/s) | −4.17 | −4.94 | −4.40 | −4.77 | −4.44 | −3.27 | −5.39 |
GI absorption | Low | Low | Low | Low | Low | Low | High |
BBB permeant | Y | Y | Y | Y | No | No | Y |
Metabolism Parameters Prediction | |||||||
P-glycoprotein substrate | No | No | No | No | No | No | No |
CYP1A2, CYP2C19, CYP2C9 CYP2D6 and CYP3A4 inhibitors | No | No | No | No (accept) | No (Accept CYP2C19 and CYP2C9 inhibitors) | No (Accept CYP2C9 inhibitor) | No (accept CYP1A2 inhibitor) |
Targets Proteins (PDB) | ΔG | Ki | H-Bonds | Residues H-Bonding |
---|---|---|---|---|
N-myristoyl transferase (1IYL) | −8.50 | 327.76 | 1 | ASN354 |
Cytochrome P450 14α-demethylase (3LD6) | −8.38 | 423.76 | 1 | HIS 432 |
DNA gyrase B kinase (1AJ6) | −7.37 | 523.76 | 3 | ARG181, HIS192, HIS194 |
tyrosyl-tRNA synthetase (1JIJ) | −7.55 | 480.43 | 1 | CYS36 |
COX-1 (3N8Y) | −8.15 | 543.67 | 1 | THR181 |
COX-2 (3LN1) | −8.79 | 334.98 | 1 | ALA125 |
Tyrosinase enzyme (3NM8) | −6.93 | 765.64 | 1 | ARG162 |
Human Peroxiredoxin 5 receptor (1HD2) | −7.64 | 549.74 | 1 | GLY92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foudah, A.I.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Ross, S.A.; Yusufoglu, H.S. Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia. Molecules 2022, 27, 934. https://doi.org/10.3390/molecules27030934
Foudah AI, Alqarni MH, Alam A, Salkini MA, Ross SA, Yusufoglu HS. Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia. Molecules. 2022; 27(3):934. https://doi.org/10.3390/molecules27030934
Chicago/Turabian StyleFoudah, Ahmed I., Mohammad H. Alqarni, Aftab Alam, Mohammad Ayman Salkini, Samir A. Ross, and Hasan S. Yusufoglu. 2022. "Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia" Molecules 27, no. 3: 934. https://doi.org/10.3390/molecules27030934
APA StyleFoudah, A. I., Alqarni, M. H., Alam, A., Salkini, M. A., Ross, S. A., & Yusufoglu, H. S. (2022). Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia. Molecules, 27(3), 934. https://doi.org/10.3390/molecules27030934