Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products
Abstract
:1. Introduction
2. Methods
3. Chemometrics
4. Methods for Authentication of Herbal Medicines Using Metabolite Fingerprinting
4.1. Chemical Fingerprinting Using HPLC
4.2. Fingerprinting Using LC–MS/MS
4.3. Metabolite Fingerprinting Using 1H-NMR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Yu, Z. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review. J. Pharm. Anal. 2015, 5, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indrayanto, G. Recent Development of Quality Control Methods for Herbal Derived Drug Preparations. Nat. Prod. Commun. 2018, 13, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A.; Rawar, E.A.; Sudevi, S.; Nurrulhidayah, A.F.; Windarsih, A. The use of chemometrics in combination with molecular spectroscopic and chromatographic methods for authentication of Curcuma species: A review. Food Res. 2020, 4, 1850–1858. [Google Scholar] [CrossRef]
- Toniolo, C.; Nicoletti, M.; Maggi, F.; Venditti, A. HPTLC determination of chemical composition variability in raw materials used in botanicals. Nat. Prod. Res. 2014, 28, 119–126. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Yao, C.-L.; Guo, D.-A. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J. Pharm. Biomed. Anal. 2020, 185, 113215. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Pérez-Míguez, R.; Montero, L.; Herrero, M. Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. TrAC Trends Anal. Chem. 2017, 96, 62–78. [Google Scholar] [CrossRef]
- Purwakusumah, E.D.; Rafi, M.; Safitri, U.D.; Nurcholis, W.; Adzkiya, M.A.Z. Identification and Authentication of Jahe Merah Using Combination of FTIR Spectrocopy and Chemometrics. J. Agritech. 2014, 34, 82–87. [Google Scholar]
- Kumar, S.P.; Ketkar, P.; Nayak, S.; Roy, S. Application of DNA fingerprinting tools for authentication of ayurvedic herbal medicines-A review. J. Sci. Innov. Res. JSIR 2014, 3, 606–612. [Google Scholar]
- Ivanova, N.V.; Kuzmina, M.L.; Braukmann, T.W.A.; Borisenko, A.V.; Zakharov, E.V. Authentication of Herbal Supplements Using Next-Generation Sequencing. PLoS ONE 2016, 11, e0156426-1. [Google Scholar] [CrossRef]
- Nicoletti, M. HPTLC fingerprint: A modern approach for the analytical determination of botanicals. Rev. Bras. de Farm. 2011, 21, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Mansur, S.; Abdulla, R.; Ayupbec, A.; Aisa, H.A. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD. Molecules 2016, 21, 1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, C.-S.; Shin, H.-K. Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Quantification of Eleven Phytochemical Constituents in Traditional Korean Medicine, Sogunjung Decoction. Processes 2021, 9, 153. [Google Scholar] [CrossRef]
- Rohman, A.; Windarsih, A.; Hossain, M.A.M.; Johan, M.R.; Ali, M.E.; Fadzilah, N.A. Application of near- and mid-infrared spectroscopy combined with chemometrics for discrimination and authentication of herbal products: A review. J. Appl. Pharm. Sci. 2019, 9, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Sima, I.A.; Andrási, M.; Sârbu, C. Chemometric Assessment of Chromatographic Methods for Herbal Medicines Authentication and Fingerprinting. J. Chromatogr. Sci. 2017, 56, 49–55. [Google Scholar] [CrossRef]
- Abubakar, B.M.; Salleh, F.M.; Omar, M.S.S.; Wagiran, A. Review: DNA Barcoding and Chromatography Fingerprints for the Authentication of Botanicals in Herbal Medicinal Products. Evid. -Based Complement. Altern. Med. 2017, 2017, 1352948. [Google Scholar] [CrossRef]
- Joos, S.; Glassen, K.; Musselmann, B. Herbal Medicine in Primary Healthcare in Germany: The Patient's Perspective. Evidence-Based Complement. Altern. Med. 2012, 2012, 294638. [Google Scholar] [CrossRef] [Green Version]
- Kunle, O.F.; Egharevba, H.O.; Ahmadu, P.O. Standardization of herbal medicines-A review. Int. J. Biodivers. Conserv. 2012, 4, 101–112. [Google Scholar] [CrossRef]
- Heinrich, M. Quality and safety of herbal medical products: Regulation and the need for quality assurance along the value chains. Br. J. Clin. Pharmacol. 2015, 80, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Barnes, J. Quality, efficacy and safety of complementary medicines: Fashions, facts and the future. Part I. Regulation and quality. Br. J. Clin. Pharmacol. 2003, 55, 226–233. [Google Scholar] [CrossRef]
- Bodeker, G.; Ong, C.-K.; Grundy, C.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; WHO Centre for Health Development: Kobe, Japan.
- Georgiev, C.; Damianov, D.; Iliev, I.; Todorov, T.; Boshnakova, T. Mutsinozni kartsinomi na g’rdata s nevroendokrinna diferentsiatsiia. Khirurgiia 1999, 55, 22–24. [Google Scholar]
- Liang, Y.-Z.; Xie, P.; Chan, K. Quality control of herbal medicines. J. Chromatogr. B 2004, 812, 53–70. [Google Scholar] [CrossRef]
- Ananto, D.; Yusditia, L.; Wahyu, L. Analysis of BKO (chemical drugs) Content (Antalgin and Dexamethasone) in Herbal Medicine Using Iodimetry Titration and HPLC Method. Elkawnie J. Islamic Sci. Technol. 2020, 6, 57–66. [Google Scholar]
- Jordan, S.A.; Cunningham, D.G.; Marles, R.J. Assessment of herbal medicinal products: Challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol. Appl. Pharmacol. 2010, 243, 198–216. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Pang, X.; Liao, B.; Yao, H.; Song, J.; Chen, S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci. Rep. 2016, 6, 18723. [Google Scholar] [CrossRef]
- Kulkarni, K.M.; Patil, L.S.; Khanvilkar, V.V.; Kadam, V.J. Fingerprinting Techniques in Herbal Standardization. Indo Am. J. Pharm. Res. 2014, 4, 1049–1062. [Google Scholar]
- Gad, H.A.; El-Ahmady, S.; Abou-Shoer, M.I.; Al-Azizi, M.M. Application of Chemometrics in Authentication of Herbal Medicines: A Review. Phytochem. Anal. 2012, 24, 1–24. [Google Scholar] [CrossRef]
- Bianco, A.; Venditti, A.; Foddai, S.; Toniolo, C.; Nicoletti, M. A new problem. Contamination of botanicals by phthalates. Rapid detection tests. Nat. Prod. Res. 2013, 28, 134–137. [Google Scholar] [CrossRef]
- Rohman, A.; Nugroho, A.; Lukitaningsih, E. Sudjadi Application of Vibrational Spectroscopy in Combination with Chemometrics Techniques for Authentication of Herbal Medicine. Appl. Spectrosc. Rev. 2014, 49, 603–613. [Google Scholar] [CrossRef]
- Nikam, P.H.; Kareparamban, J.; Jadhav, A.; Kadam, V.; Jadhav, A. Future Trends in Standardization of Herbal Drugs. J. Appl. Pharm. Sci. 2012, 2, 38–44. [Google Scholar] [CrossRef]
- Gao, W.; Yang, H.; Qi, L.-W.; Liu, E.-H.; Ren, M.-T.; Yan, Y.-T.; Chen, J.; Li, P. Unbiased metabolite profiling by liquid chromatography–quadrupole time-of-flight mass spectrometry and multivariate data analysis for herbal authentication: Classification of seven Lonicera species flower buds. J. Chromatogr. A 2012, 1245, 109–116. [Google Scholar] [CrossRef]
- Rohman, A.; Putri, A.R. The Chemometrics Techniques in Combination with Instrumental Analytical Methods Applied in Halal Authentication Analysis. Indones. J. Chem. 2019, 19, 262. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Z.; Su, R.; Ruan, G.; Du, F.; Li, G. Current application of chemometrics in traditional Chinese herbal medicine research. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1026, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Irnawati, I.; Riswanto, F.D.O.; Riyanto, S.; Martono, S. Pemanfaatan Paket Perangkat Lunak R factoextra dan FactoMineR serta Aplikasi Analisis Komponen Utama dalam Autentikasi Beragam Jenis Minyak The use of software package of R factoextra and FactoMineR and its application in Principal componenet analysis for authentication of oils. Indones. J. Chemom. Pharm. Anal. 2021, 1, 1–10. [Google Scholar]
- Zhu, J.; Fan, X.; Cheng, Y.; Agarwal, R.; Moore, C.M.V.; Chen, S.T.; Tong, W. Chemometric Analysis for Identification of Botanical Raw Materials for Pharmaceutical Use: A Case Study Using Panax notoginseng. PLoS ONE 2014, 9, e87462. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Rutledge, D.N.; Roßmann, A.; Waiblinger, H.-U.; Mahler, M.; Ilse, M.; Kuballa, T.; Lachenmeier, D.W. Determination of rice type by1H NMR spectroscopy in combination with different chemometric tools. J. Chemom. 2014, 28, 83–92. [Google Scholar] [CrossRef]
- Chuchote, C.; Somwong, P. Similarity analysis of the chromatographic fingerprints of Thai herbal Ya-Ha-Rak remedy using HPLC. Interprof. J. Health Sci. 2019, 17, 55–63. [Google Scholar]
- Berrueta, L.A.; Salces, R.M.A.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef]
- Luo, D.H.; Shao, Y.W. Classification of Chinese Herbal Medicine Based on Improved LDA Algorithm Using Machine Olfaction. Appl. Mech. Mater. 2013, 239–240, 1532–1536. [Google Scholar] [CrossRef]
- Razmovski-Naumovski, V.; Tongkao-On, W.; Kimble, B.; Qiao, V.L.; Beilun, L.; Li, K.M.; Roufogalis, B.; Depo, Y.; Meicun, Y.; Li, G.Q. Multiple Chromatographic and Chemometric Methods for Quality Standardisation of Chinese Herbal Medicines. World Sci. Technol. 2010, 12, 99–106. [Google Scholar] [CrossRef]
- Santos, M.S.; Pereira-Filho, E.R.; Ferreira, A.G.; Boffo, E.F.; Figueira, G.M. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods. Quim. Nova 2012, 35, 2210–2217. [Google Scholar] [CrossRef] [Green Version]
- Qu, B.; Hu, Y. Non-Negative Matrix Factorization-Based SIMCA Method to Classify Traditional Chinese Medicine by HPLC Fingerprints. J. Chromatogr. Sci. 2011, 49, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Onel, H. Machine Learning Basics with the K-Nearest Neighbors Algorithm Medium. 2018. Available online: https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761 (accessed on 17 November 2021).
- Samui, P.; Kothari, D.P. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci. Iran. 2011, 18, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Riedl, J.; Esslinger, S.; Fauhl-Hassek, C. Review of validation and reporting of non-targeted fingerprinting approaches for food authentication. Anal. Chim. Acta 2015, 885, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Lestari, H.P.; Martono, S.; Wulandari, R.; Rohman, A. Simultaneous analysis of Curcumin and demethoxycurcumin in Curcuma xanthorriza using FTIR spectroscopy and chemometrics. Int. Food Res. J. 2017, 24. [Google Scholar]
- Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int. 2014, 60, 189–204. [Google Scholar] [CrossRef]
- Daszykowski, M.; Walczak, B. Use and abuse of chemometrics in chromatography. TrAC Trends Anal. Chem. 2006, 25, 1081–1096. [Google Scholar] [CrossRef]
- Kharyuk, P.; Nazarenko, D.; Oseledets, I.; Rodin, I.; Shpigun, O.; Tsitsilin, A.; Lavrentyev, M. Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task. Sci. Rep. 2018, 8, 17053. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.N.; Jha, Z.; Sharma, D.K. Chemometrics Evaluation of the Herbal Drug Andrographis paniculata. Nat. Prod. Commun. 2011, 6, 1929–1932. [Google Scholar] [CrossRef] [Green Version]
- Shams, G.; Fahmi, H.; Liam, T.; Ali, M.A.; Adibah, F.; Majid, A.; Roji, M. Development of HPLC Fingerprint Analysis of Traditional Diabetes Herbal. J. Teknol. Sci. Eng. 2014, 68, 83–88. [Google Scholar]
- Habibie, H.; Heryanto, R.; Rafi, M.; Darusman, L.K. Development of Quality Control Method for Glucofarmaka Antidiabetic Jamu by HPLC Fingerprint Analysis. Indones. J. Chem. 2017, 17, 79–85. [Google Scholar] [CrossRef]
- Balekundri, A.; Mannur, V. Quality control of the traditional herbs and herbal products: A review. Futur. J. Pharm. Sci. 2020, 6, 67. [Google Scholar] [CrossRef]
- Seo, C.-S.; Shin, H.-K. Quality assessment of traditional herbal formula, Hyeonggaeyeongyo-tang through simultaneous determination of twenty marker components by HPLC–PDA and LC–MS/MS. Saudi Pharm. J. 2020, 28, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Windarsih, A.; Rohman, A.; Swasono, R.T. Application of H-NMR metabolite fingerprinting and chemometrics for the authentication of Curcuma longa adulterated with Curcuma manga. J. Appl. Pharm. Sci. 2018, 8, 75–81. [Google Scholar] [CrossRef]
- Windarsih, A.; Rohman, A.; Swasono, R.T. Authentication of turmeric using proton-nuclear magnetic resonance spectroscopy and multivariate analysis. Int. J. Appl. Pharm. 2018, 10, 174–180. [Google Scholar] [CrossRef]
- Rohman, A.; Wijayanti, T.; Windarsih, A.; Riyanto, S. The Authentication of Java Turmeric (Curcuma xanthorrhiza) Using Thin Layer Chromatography and 1H-NMR Based-Metabolite Fingerprinting Coupled with Multivariate Analysis. Molecules 2020, 25, 3928. [Google Scholar] [CrossRef]
- Windarsih, A.; Rohman, A.; Swasono, R.T. Application of 1H-NMR based metabolite fingerprinting and chemometrics for authentication of Curcuma longa adulterated with C. heyneana. J. Appl. Res. Med. Aromat. Plants 2019, 13, 100203. [Google Scholar] [CrossRef]
- Sun, L.; Wang, M.; Ren, X.; Jiang, M.; Deng, Y. Rapid authentication and differentiation of herbal medicine using 1H NMR fingerprints coupled with chemometrics. J. Pharm. Biomed. Anal. 2018, 160, 323–329. [Google Scholar] [CrossRef]
- Petrakis, E.A.; Cagliani, L.R.; Polissiou, M.G.; Consonni, R. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by 1H NMR metabolite fingerprinting. Food Chem. 2015, 173, 890–896. [Google Scholar] [CrossRef]
- Becerra-Martínez, E.; Florentino-Ramos, E.; Pérez-Hernández, N.; Zepeda-Vallejo, L.G.; Villa-Ruano, N.; Velázquez-Ponce, M.; García-Mendoza, F.; Bañuelos-Hernández, A.E. 1 H NMR-based metabolomic fingerprinting to determine metabolite levels in serrano peppers (Capsicum annum L.) grown in two different regions. Food Res. Int. 2017, 102, 163–170. [Google Scholar] [CrossRef]
- Lee, D.; Kim, M.; Kim, B.H.; Ahn, S. Identification of the Geographical Origin of Asian Red Pepper (Capsicum annuum L.) Powders Using 1 H NMR Spectroscopy. Bull. Korean Chem. Soc. 2020, 41, 317–322. [Google Scholar] [CrossRef]
- Rivera-Pérez, A.; Romero-González, R.; Frenich, A.G. A metabolomics approach based on 1H NMR fingerprinting and chemometrics for quality control and geographical discrimination of black pepper. J. Food Compos. Anal. 2021, 105, 104235. [Google Scholar] [CrossRef]
- Lau, H.; Laserna, A.K.C.; Li, S.F.Y. 1H NMR-based metabolomics for the discrimination of celery (Apium graveolens L. var. dulce) from different geographical origins. Food Chem. 2020, 332, 127424. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Nguyen, A.T.; Nacoulma, A.P.; Sheridan, H.; Wang, J.; Guendouze, N.; Madani, K.; Duez, P. Discrimination of Mentha species grown in different geographical areas of Algeria using 1H-NMR-based metabolomics. J. Pharm. Biomed. Anal. 2020, 189, 113430. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Labib, R.M.; Noleto, C.; Porzel, A.; Wessjohann, L.A. NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools. LWT Food Sci. Technol. 2018, 90, 491–498. [Google Scholar] [CrossRef]
- Saviano, G.; Paris, D.; Melck, D.; Fantasma, F.; Motta, A.; Iorizzi, M. Metabolite variation in three edible Italian Allium cepa L. by NMR-based metabolomics: A comparative study in fresh and stored bulbs. Metabolomics 2019, 15, 105. [Google Scholar] [CrossRef] [PubMed]
- Nurani, L.H.; Rohman, A.; Windarsih, A.; Guntarti, A.; Riswanto, F.D.O.; Lukitaningsih, E.; Fadzillah, N.A.; Rafi, M. Metabolite Fingerprinting Using 1H-NMR Spectroscopy and Chemometrics for Classification of Three Curcuma Species from Different Origins. Molecules 2021, 26, 7626. [Google Scholar] [CrossRef]
- Sandusky, P.; Raftery, D. Use of Selective TOCSY NMR Experiments for Quantifying Minor Components in Complex Mixtures: Application to the Metabonomics of Amino Acids in Honey. Anal. Chem. 2005, 77, 2455–2463. [Google Scholar] [CrossRef]
- Venditti, A.; Frezza, C.; Maggi, F.; Lupidi, G.; Bramucci, M.; Quassinti, L.; Giuliani, C.; Cianfaglione, K.; Papa, F.; Serafini, M.; et al. Phytochemistry, micromorphology and bioactivities of Ajuga chamaepitys (L.) Schreb. (Lamiaceae, Ajugoideae): Two new harpagide derivatives and an unusual iridoid glycosides pattern. Fitoterapia 2016, 113, 35–43. [Google Scholar] [CrossRef]
- Venditti, A.; Frezza, C.; Celona, D.; Sciubba, F.; Foddai, S.; Delfini, M.; Serafini, M.; Bianco, A. Phytochemical comparison with quantitative analysis between two flower phenotypes of Mentha aquatica L.: Pink-violet and white. AIMS Mol. Sci. 2017, 4, 288–300. [Google Scholar] [CrossRef]
- Krishnan, P.; Kruger, N.J.; Ratcliffe, R.G. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 2004, 56, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, N.J.; Troncoso-Ponce, M.A.; Ratcliffe, R.G. 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat. Protoc. 2008, 3, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
No. | Instruments | Chemometrics Techniques | Sample | Brief Results | References |
---|---|---|---|---|---|
1 | HPLC, UPLC, NIR, and CE | PCA and HCA | Panax notoginseng | Identification of Panax notoginseng can be performed using a combination of analytical chemistry methods and chemometrics techniques. | [33] |
2 | HPLC | PCA and SIMCA | Andrographis paniculata Nees | A. paniculata from different origins were successfully classified using SIMCA based on the predefined PCA model. | [51] |
3 | UPLC-DAD | N/A | Rosa rugosa | Authentication of Rosa rugosa was carried out and 23 characteristic fingerprint peaks were verified. | [10] |
4 | HPLC | N/A | Andrographis paniculata, Cinnamomum zeylanicum, Curcuma xanthorrhiza, Eugenia polyantha, and Orthosiphon stamineus | HPLC fingerprint analysis can be applied for the quality control method for glucofarmaka antidiabetic jamu. | [52,53] |
5 | LC–MS/MS | N/A | The Sogunjung decoction (Korean traditional medicine) | Eleven marker components in the Sogunjung decoction were detected in amounts of 0.01–51.83 mg/g. | [54] |
6 | HPLC-PDA and LC–MS/MS | N/A | Hyeonggaeyeongyo-tang (Korean traditional medicine) | The amounts of 20 marker components using HPLC–PDA and LC–MS/MS were determined to be 0.18–14.60 and 0.01–1.76 mg/freeze-dried g, respectively. | [55] |
7 | RRLC–ESI/QTOF MS | PCA and SVM | Lonicera species | Seven Lonicera species flower buds were classified with six marker compounds. | [31] |
8 | 1H-NMR | PLSA–DA, OPLSA–DA, and PLS | Curcuma longa, Curcuma heyneana, and Curcuma manga | The authentic C. longa samples were successfully separated from the adulterated samples with the good and accurate calibration chemometrics models. | [56,57] |
9 | 1H-NMR | PCA and OPLSA–DA | Curcuma xanthorrhiza and Curcuma aeruginosa | The acceptable discrimination parameters were achieved with a high value of R2X, R2Y and Q2(cum). | [58,59] |
10 | 1H-NMR | PCA, PLSA–DA, and N-nearest neighbors (N3) | Polygoni multiflori Radix, and Cynanchi auriculati Radix | In total, 70.99% data contributions were involved in the PCA model. PLSA–DA and N3 were effective to employ the authentication stage. | [60] |
11 | 1H-NMR | PCA and O2PLSA–DA | Crocus sativus (Saffron) | Metabolites of pirocrocin (1.12, 1.16, 2.08, 4.28, and 10.04 ppm) and crocins (1.96, 4.16, 5.40, 6.52, 6.64, 6.84, and 7.32 ppm) were found higher in authentic Saffron samples. | [61] |
12 | 1H-NMR | PCA and OPLSA–DA | Capsicum annum L. (serrano pepper) | Metabolites of citrate, lactate, aspartate, leucine, and sucrose in serrano peppers were successfully identified and classified. | [62] |
13 | 1H-NMR | CDA | Capsicum annuum L. | Korean, Chinese, and Vietnamese red pepper powders were successfully differentiated. | [63] |
14 | 1H-NMR | OPLSA–DA | Pepper nigrum L. (black pepper) | PCA was used to differentiate piperine samples from Srilanka, Brazil, and Vietnam. OPLSA–DA model using CD3OD resulted in the value of R2X (0.977), R2Y (0.962), and Q2 (0.928). | [64] |
15 | 1H-NMR | PCA and PLSA–DA | Apium graveolens L. var. dulce | All samples were correctly classified without misclassification, indicating a good performance of the OPLSA–DA model. | [65] |
16 | 1H-NMR | PCA and OPLSA–DA | Mentha species | Three species of Mentha were classified with good predictive ability (Q2 = 0.978). | [66] |
17 | 1H-NMR | PCA and OPLSA–DA | Cinanmomum verum and Cinnamomum cassia | Eugenol was found to be a potential biomarker of Cinnamomum verum, whereas the presence of fatty acids was found as a potential biomarker of Cinnamomum cassia. | [67] |
18 | 1H-NMR | PCA and OPLSA–DA | Allium cepa L. | White onion was characterized by the presence of glucose, sucrose, FOS, and sterols, whereas the red onion contained sterols and glucose. Important metabolites in yellow onion were methiin, free isoalliin, γ-glutamyl-isoalliin, glutamine, malate, and choline. | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riswanto, F.D.O.; Windarsih, A.; Lukitaningsih, E.; Rafi, M.; Fadzilah, N.A.; Rohman, A. Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products. Molecules 2022, 27, 1198. https://doi.org/10.3390/molecules27041198
Riswanto FDO, Windarsih A, Lukitaningsih E, Rafi M, Fadzilah NA, Rohman A. Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products. Molecules. 2022; 27(4):1198. https://doi.org/10.3390/molecules27041198
Chicago/Turabian StyleRiswanto, Florentinus Dika Octa, Anjar Windarsih, Endang Lukitaningsih, Mohamad Rafi, Nurrulhidayah A. Fadzilah, and Abdul Rohman. 2022. "Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products" Molecules 27, no. 4: 1198. https://doi.org/10.3390/molecules27041198
APA StyleRiswanto, F. D. O., Windarsih, A., Lukitaningsih, E., Rafi, M., Fadzilah, N. A., & Rohman, A. (2022). Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products. Molecules, 27(4), 1198. https://doi.org/10.3390/molecules27041198