Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Initial pH Value on Adsorption Process
2.2. Kinetics of Adsorption
2.2.1. Pseudo-First-Order and Pseudo-Second-Order Kinetic Models
2.2.2. Intraparticle Diffusion Model
- (i)
- Mass transfer of adsorbate from the solution to adsorbent surface,
- (ii)
- Adsorption of adsorbate at a site on the surface of the adsorbent, and
- (iii)
- Intraparticle diffusion of the adsorbate in the pores of adsorbent and adsorption at the site.
2.3. Adsorption Thermodynamics
3. Materials and Methods
3.1. Chemicals
3.2. Batch Mode Adsorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Blackburn, R.S. Sustainable Textiles: Life Cycle and Environmental Impact; Woodhead Publishing Limited: Abington Hall, UK, 2009. [Google Scholar]
- Prasad, M.N.V.; Shih, K. Environmental Materials and Waste; Elsevier Academic Press: London, UK, 2016. [Google Scholar]
- Tharakeswari, S.; Shabaridharan, K.; Saravanan, D. Textile Effluent Treatment Using Adsorbents. In Handbook of Textile Effluent Remediation; Yusuf, M., Ed.; Pan Stanford Publishing Pte: Singapore, 2018; pp. 116–146. [Google Scholar]
- Ejder-Korucu, M.; Gürses, A.; Doğar, Ç.; Sharma, S.K.; Açikyildiz, M. Removal of organic dyes from industrial Effluents: An overview of physical and biotechnological applications. In Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–34. [Google Scholar]
- Mahony, T.O.; Guibal, E.; Tobin, J. Reactive dye biosorption by Rhizopus arrhizus biomass. Enzym. Microb. Technol. 2002, 31, 456–463. [Google Scholar]
- Ince, N.H.; Tezcanlı, G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigments 2001, 49, 145–153. [Google Scholar] [CrossRef]
- Verma, A.K.; Dash, R.R.; Bhunia, P. Review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ. Manag. 2012, 93, 154–168. [Google Scholar]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar]
- Bilinska, L.; Gmurek, M.; Ledakowicz, S. Application of Advanced Oxidation Technologies for Decolorization and Mineralization of Textile Wastewaters. J. Adv. Oxid. Technol. 2015, 18, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Jalali Sarvestani, M.R.; Doroudi, Z. Removal of Reactive Black 5 from Waste Waters by Adsorption: A Comprehensive Review. J. Water Environ. Nanotechnol. 2020, 5, 180–190. [Google Scholar]
- Afsharnia, M.; Biglari, H.; Javid, A.; Zabihi, F. Removal of Reactive Black 5 dye from Aqueous Solutions by Adsorption onto Activated Carbon of Grape Seed. Iran. J. Health Sci. 2017, 5, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, J.E.; Bezerra, B.T.C.; Siqueira, A.C.A.; Barrera, D.; Sapag, K.; Azevedo, D.C.S.; Silva, I.J. Improvement in the Adsorption of Anionic and Cationic Dyes from Aqueous Solutions: A Comparative Study using Aluminium Pillared Clays and Activated Carbon. Sep. Sci. Technol. 2014, 49, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Eren, Z.; Acar, F.N. Adsorption of Reactive Black 5 from an aqueous solution: Equilibrium and kinetic studies. Desalination 2006, 194, 1–10. [Google Scholar] [CrossRef]
- Nabil, G.M.; El-Mallah, N.M.; Mahmoud, M.E. Enhanced decolorization of Reactive Black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS). J. Ind. Eng. Chem. 2014, 20, 994–1002. [Google Scholar] [CrossRef]
- De Luca, P.; Nagy, B.J. Treatment of Water Contaminated with Reactive Black-5 Dye by Carbon Nanotubes. Materials 2020, 13, 5508. [Google Scholar] [CrossRef]
- Mengelizadeh, N.; Pourzamani, H. Adsorption of Reactive Black 5 Dye from Aqueous Solutions by Carbon Nanotubes and its Electrochemical Regeneration Process. Health Scope 2020, 9, e102443. [Google Scholar] [CrossRef]
- Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [PubMed]
- Vakili, M.; Zwain, H.M.; Mojiri, A.; Wang, W.; Gholami, F.; Gholami, Z.; Giwa, A.S.; Wang, B.; Cagnetta, G.; Salamatinia, B. Effective Adsorption of Reactive Black 5 onto Hybrid Hexadecylamine Impregnated Chitosan-Powdered Activated Carbon Beads. Water 2020, 12, 2242. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Nowacka, M.; Klapiszewski, Ł.; Hubicki, Z. Treatment of wastewaters containing acid, reactive and direct dyes using aminosilosane functionalized silica. Open Chem. 2015, 13, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Wawrzkiewicz, M.; Wiśniewska, M.; Gun’ko, V.M. Application of silica–alumina oxides of different compositions for removal of C.I. Reactive Black 5 dye from wastewaters. Adsorpt. Sci. Technol. 2017, 35, 448–457. [Google Scholar]
- Wawrzkiewicz, M.; Wiśniewska, M.; Gun’ko, V.M.; Zarko, V.I. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide. Powder Technol. 2015, 278, 306–315. [Google Scholar] [CrossRef]
- Ip, A.W.M.; Barford, J.P.; McKay, G. Reactive Black dye adsorption/desorption onto different adsorbents: Effect of salt, surface chemistry, pore size and surface area. J. Colloid Interface Sci. 2009, 337, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bonić, I.; Palac, A.; Sutlović, A.; Vojnović, B.; Cetina, M. Removal of Reactive Black 5 dye from aqueous media using powdered activated carbon—Kinetics and mechanisms. Tekstilec 2020, 63, 151–161. [Google Scholar] [CrossRef]
- Metcalf & Eddy Inc. Separation processes for Removal of Residual Constituents. In Wastewater Engineering Treatment and Reuse, 5th ed.; Metcalf & Eddy, Inc., Ed.; McGraw-Hill Education: New York, NY, USA, 2014; pp. 1224–1245. [Google Scholar]
- Sulaymon, A.H.; Abood, W.M. Equilibrium and kinetic study of the adsorption of reactive blue, red, and yellow dyes onto activated carbon and barley husk. Desalin. Water Treat. 2014, 52, 5485–5493. [Google Scholar] [CrossRef]
- Gaščić, A.; Sutlović, A.; Vojnović, B.; Cetina, M. Adsorption of reactive dye on activated carbon: Kinetic study and influence of initial dye concentration. In Proceedings of the 2nd International Conference the Holistic Approach to Environment, Sisak, Croatia, 28 May 2021; pp. 131–138. [Google Scholar]
- Ip, A.W.M.; Barford, J.P.; McKay, G. A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem. Eng. J. 2010, 157, 434–442. [Google Scholar] [CrossRef]
- Machado, F.M.; Bergmann, C.P.; Fernandes, T.H.M.; Lima, E.C.; Royer, B.; Calvete, T.; Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 2011, 192, 1122–1131. [Google Scholar] [PubMed]
- Kumar, A.; Prasad, B.; Mishra, I.M. Adsorptive removal of acrylonitrile by commercial grade activated carbon: Kinetics, equilibrium and thermodynamics. J. Hazard. Mater. 2008, 152, 589–600. [Google Scholar] [PubMed]
- Al-Degs, Y.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N. Effect of carbon surface chemistry on the removal of Reactive dyes from textile effluent. Water Res. 2000, 34, 927–935. [Google Scholar] [CrossRef]
- Hunter, C.A.; Sanders, J.K.M. The Nature of π-π Interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Lazaridis, N.K. Magnetic modification of microporous carbon for dye adsorption. J. Colloid Interface Sci. 2014, 430, 166–173. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Kyzas, G.Z.; Avranas, A.; Lazaridis, N.K. Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. J. Mol. Liq. 2016, 213, 381–389. [Google Scholar] [CrossRef]
- Steed, J.W.; Turner, D.R.; Wallace, K.J. Core Concepts in Supramolecular Chemistry and Nanochemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2007. [Google Scholar]
- Lee, J.-W.; Choi, S.-P.; Thiruvenkatachari, R.; Shim, W.-G.; Moon, H. Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water Res. 2006, 40, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Choi, S.-P.; Thiruvenkatachari, R.; Shim, W.-G.; Moon, H. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigments 2006, 69, 196–203. [Google Scholar] [CrossRef]
- Furlan, F.R.; da Silva, L.G.D.; Morgado, A.F.; de Souza, A.A.U.; de Souza, S.M.A.G.U. Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon. Resour. Conserv. Recycl. 2010, 54, 283–290. [Google Scholar] [CrossRef]
- Furlan, F.R.; da Silva, L.G.D.; Morgado, A.F.; de Souza, A.A.U.; de Souza, S.M.A.G.U. Application of Coagulation Systems Coupled with Adsorption on Powdered Activated Carbon to Textile Wastewater Treatment. Chem. Prod. Process Model. 2009, 4, 8. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar]
- Ho, Y.S.; Mckay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Dulman, V.; Cucu-Man, S.M. Sorption of some textile dyes by beech wood sawdust. J. Hazard. Mater. 2009, 162, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Baccar, R.; Blánquez, P.; Bouzid, J.; Feki, M.; Sarrà, M. Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chem. Eng. J. 2010, 165, 457–464. [Google Scholar] [CrossRef]
- Travlou, N.A.; Kyzas, G.Z.; Lazaridis, N.K.; Deliyanni, E.A. Graphite oxide/chitosan composite for reactive dye removal. Chem. Eng. J. 2013, 217, 256–265. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Rekaby, M. Efficient removal of Reactive Black 5 from aqueous media using glycidyl methacrylate resin modified with tetraethelenepentamine. J. Hazard. Mater. 2011, 188, 10–18. [Google Scholar] [CrossRef] [PubMed]
t/ min | qt/mg g−1 | |||
---|---|---|---|---|
pH0 = 2.00 | pH0 = 4.00 | pH0 = 8.00 | pH0 = 10.00 | |
15 | 117.1 | 65.5 | 70.5 | 111.0 |
30 | 132.0 | 86.0 | 84.7 | 116.4 |
60 | 155.9 | 98.5 | 99.0 | 126.7 |
120 | 177.9 | 115.8 | 128.5 | 161.7 |
960 | 246.0 | 193.0 | 194.9 | 239.1 |
t/ min | Ed/% | ||||
---|---|---|---|---|---|
pH0 = 2.00 | pH0 = 4.00 | pH0 = 8.00 | pH0 = 10.00 | pH0 = 4.83 [26] | |
15 | 46.8 | 26.2 | 28.2 | 44.4 | -- a |
30 | 52.8 | 34.4 | 33.9 | 46.5 | 33.4 |
60 | 62.3 | 39.4 | 39.6 | 50.7 | 40.3 |
120 | 71.1 | 46.3 | 51.4 | 64.7 | 52.8 |
960 | 98.4 | 77.2 | 78.0 | 95.6 | 76.3 |
pH0 | qe,exp./ mg g−1 | Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|---|---|
qe,calc./ mg g−1 | R2 | k1/ min−1 | qe,calc./ mg g−1 | R2 | k2/ g mg−1min−1 | h/ mg g−1 min−1 | ||
2.00 | 246.0 | 136.6 | 0.9798 | 0.0060 | 256.4 | 0.9990 | 7.69 | |
4.00 | 193.0 | 127.9 | 0.9388 | 0.0044 | 204.1 | 0.9968 | 3.64 | |
8.00 | 194.9 | 134.3 | 0.9962 | 0.0058 | 204.1 | 0.9982 | 4.02 | |
10.00 | 239.1 | 142.2 | 0.9696 | 0.0049 | 250.0 | 0.9979 | 5.76 |
T/ K | ce/ mg dm3 | c0 − ce/ mg dm−3 | Kc | ∆G°/ kJ mol−1 | ∆H°/ kJ mol−1 | ∆S°/ J mol−1 K−1 | T·∆S°/ kJ mol−1 |
---|---|---|---|---|---|---|---|
302 | 229.3 | 270.7 | 1.1805 | −0.42 | 41.63 | 139.12 | 42.01 |
308 | 204.4 | 295.6 | 1.4462 | −0.95 | 42.85 | ||
318 | 114.1 | 385.9 | 3.3821 | −3.22 | 44.24 | ||
328 | 102.1 | 397.9 | 3.8972 | −3.71 | 45.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojnović, B.; Cetina, M.; Franjković, P.; Sutlović, A. Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics. Molecules 2022, 27, 1349. https://doi.org/10.3390/molecules27041349
Vojnović B, Cetina M, Franjković P, Sutlović A. Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics. Molecules. 2022; 27(4):1349. https://doi.org/10.3390/molecules27041349
Chicago/Turabian StyleVojnović, Branka, Mario Cetina, Petra Franjković, and Ana Sutlović. 2022. "Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics" Molecules 27, no. 4: 1349. https://doi.org/10.3390/molecules27041349
APA StyleVojnović, B., Cetina, M., Franjković, P., & Sutlović, A. (2022). Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics. Molecules, 27(4), 1349. https://doi.org/10.3390/molecules27041349