N-((1H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Species
2.2. Experimental Design
2.3. Extraction of Carotenoids
2.4. Determination of Carotenoids Content
3. Results and Discussion
3.1. Regression Model and Statistical Test
3.2. Interaction among Influence Factors and Confirmation of Optimal Conditions
3.3. Response Optimization and Validation
3.4. Related Research on Carotenoid Extraction from Microalgae
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Han, R.M.; Zhang, J.P.; Skibsted, L.H. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 2012, 17, 2140–2160. [Google Scholar] [CrossRef] [Green Version]
- Igreja, W.S.; Maia, F.A.; Lopes, A.S.; Chisté, R.C. Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review. Int. J. Mol. Sci. 2021, 22, 8819. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, X.; Hu, Y.; Gu, Q.; Chen, W.; Li, J.; Guo, X.; Liu, Y. Evaluation of carotenoids accumulation and biosynthesis in two genotypes of pomelo (Citrus maxima) during early fruit development. Molecules 2021, 26, 5054. [Google Scholar] [CrossRef]
- Gupta, A.K.; Seth, K.; Maheshwari, K.; Baroliya, P.K.; Meena, M.; Kumar, A.; Vinayak, V.; Harish. Biosynthesis and extraction of high-value carotenoid from algae. Front. Biosci. 2021, 26, 171–190. [Google Scholar]
- Sathasivam, R.; Radhakrishnan, R.; Kim, J.K.; Park, S.U. An update on biosynthesis and regulation of carotenoids in plants. S. Afr. J. Bot. 2021, 140, 290–302. [Google Scholar] [CrossRef]
- Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid metabolism in plants: The role of plastids. Mol. Plant 2018, 11, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Larsson, H.; Johansson, E. Carotenoid extraction from locally and organically produced cereals using saponification method. Processes 2021, 9, 783. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Rohani, T.; Raeisossadati, M.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Monochromatic light filters to enhance biomass and carotenoid productivities of Dunaliella salina in raceway ponds. Bioresour. Technol. 2021, 340, 125689. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Procopio, D.; Di Gioia, M.L.; Barone, E. Valorization of tomato waste as a source of carotenoids. Molecules 2021, 26, 5062. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, H.; Wang, Y.; Schneider, J.A.; Willett, W.C.; Morris, M.C. Dietary carotenoids related to risk of incident Alzheimer dementia (AD) and brain AD neuropathology: A community-based cohort of older adults. Am. J. Clin. Nutr. 2020, 113, 200–208. [Google Scholar] [CrossRef]
- Ikoma, Y.; Matsumoto, H.; Kato, M. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breed. Sci. 2016, 66, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Brudzyńska, P.; Sionkowska, A.; Grisel, M. Plant-derived colorants for food, cosmetic and textile industries: A review. Materials 2021, 14, 3484. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A. Effects of carotenoids on human immune function. Proc. Nutr. Soc. 1999, 58, 713–718. [Google Scholar] [CrossRef]
- Ismaiel, M.M.S.; El-Ayouty, Y.M.; Said, A.A.; Fathey, H.A. Transformation of Dunaliella parva with PSY gene: Carotenoids show enhanced antioxidant activity under polyethylene glycol and calcium treatments. Biocatal. Agric. Biotechnol. 2018, 16, 378–384. [Google Scholar] [CrossRef]
- Sathasivam, R.; Ki, J.S. Differential transcriptional responses of carotenoid biosynthesis genes in the marine green alga Tetraselmis suecica exposed to redox and non-redox active metals. Mol. Biol. Rep. 2019, 46, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Sathasivam, R.; Ki, J.-S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar. Drugs 2018, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef]
- Shang, C.; Bi, G.; Yuan, Z.; Wang, Z.; Alam, M.A.; Xie, J. Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Res. 2016, 13, 318–326. [Google Scholar] [CrossRef]
- Shang, C.; Zhu, S.; Wang, Z.; Qin, L.; Alam, M.A.; Xie, J.; Yuan, Z. Proteome response of Dunaliella parva induced by nitrogen limitation. Algal Res. 2017, 23, 196–202. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Alharthi, S. Use of response surface methodology in optimization of biomass, lipid productivity and fatty acid profiles of marine microalga Dunaliella parva for biodiesel production. Environ. Technol. Innov. 2021, 22, 101485. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Siva, C.J. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol. 2007, 19, 567–590. [Google Scholar] [CrossRef]
- Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.F. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Tafreshi, A.; Shariati, M. Dunaliella biotechnology: Methods and applications. J. Appl. Microbiol. 2009, 107, 14–35. [Google Scholar] [CrossRef] [PubMed]
- Barzegari, A.; Hejazi, M.A.; Hosseinzadeh, N.; Eslami, S.; Aghdam, E.M.; Hejazi, M.S. Dunaliella as an attractive candidate for molecular farming. Mol. Biol. Rep. 2010, 37, 3427–3430. [Google Scholar] [CrossRef]
- Golldack, D.; Dietz, K.J.; Gimmleri, H. The effects of sudden salt stress on protein synthesis in the green alga Dunaliella parva. J. Plant Physiol. 1995, 146, 508–514. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Dunaliella: Biology, production, and markets. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; Richmond, A., Hu, Q., Eds.; Wiley-Blackwell: New York, NY, USA, 2013; pp. 359–368. [Google Scholar]
- Zhang, S.; Li, X.R.; Xu, H.; Cao, Y.; Ma, S.H.; Cao, Y.; Qiao, D. Molecular cloning and functional characterization of MnSOD from Dunaliella salina. J. Basic Microbiol. 2014, 54, 438–447. [Google Scholar] [CrossRef]
- Srinivasan, R.; Kumar, V.A.; Kumar, D.; Ramesh, N.; Babu, S.; Gothandam, K.M. Effect of dissolved inorganic carbon on β-carotene and fatty acid production in Dunaliella sp. Appl. Biochem. Biotechnol. 2015, 175, 2895–2906. [Google Scholar] [CrossRef]
- Shang, C.; Zhu, S.; Qin, L.; Mohammad, A.A.; Wang, Z.; Yuan, Z.; Xie, J. Cloning and expression analysis of a lipase gene from Dunaliella parva. J. Biobased Mater. Bioenergy 2017, 11, 483–490. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, B.; Du, S.; Gao, S.; Chen, X.; Chen, D. Proteomic analyses reveal the mechanism of Dunaliella salina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLoS ONE 2016, 11, e0153640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Lu, Y.; Jiang, J.G. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses. PLoS ONE 2012, 7, e37578. [Google Scholar]
- Shang, C.; Zhu, S.; Yuan, Z.; Wang, Z. Molecular cloning and characterization analysis of pyruvate phosphate dikinase gene from Dunaliella parva. Adv. Mater. Res. 2012, 347, 2438–2442. [Google Scholar] [CrossRef]
- Shang, C.; Zhu, S.; Yuan, Z.; Wang, Z. Molecular cloning and characterization analysis of malic enzyme gene from Dunaliella parva. Adv. Mater. Res. 2012, 347, 2536–2540. [Google Scholar] [CrossRef]
- Shang, C.; Zhu, S.; Yuan, Z.; Wang, Z. Molecular cloning and characterization analysis of low CO2-inducible protein gene from Dunaliella parva. Adv. Mater. Res. 2012, 347, 2705–2708. [Google Scholar]
- Shang, C.; Zhu, S.; Yuan, Z.; Wang, Z. Molecular cloning and characterization analysis of 3,8-divinyl protochlorophyllide a 8-vinyl reductase gene from Dunaliella parva. Adv. Mater. Res. 2012, 347, 3203–3206. [Google Scholar] [CrossRef]
- Shang, C.; Wang, Z.; Zhu, S.; Qin, L.; Yuan, Z. Molecular cloning and characterization analysis of phosphofructokinase gene from Dunaliella parva. Adv. Mater. Res. 2012, 518, 73–76. [Google Scholar] [CrossRef]
- Shang, C.; Wang, W.; Zhu, S.; Wang, Z.; Qin, L.; Alam, M.A.; Xie, J.; Yuan, Z. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva. Algal Res. 2018, 32, 1–10. [Google Scholar] [CrossRef]
- Shang, C.; Xu, X.; Yuan, Z.; Wang, Z.; Hu, L.; Alam, M.A.; Xie, J. Cloning and differential expression analysis of geranylgeranyl diphosphate synthase gene from Dunaliella parva. J. Appl. Phycol. 2016, 28, 2397–2405. [Google Scholar] [CrossRef]
- Careri, M.; Furlattini, L.; Mangia, A.; Musc, M.; Anklam, E.; Theobald, A.; von Holst, C. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: A chemometric approach. J. Chromatogr. A 2001, 912, 61–71. [Google Scholar] [CrossRef]
- Cerón, M.C.; Campos, I.; Sánchez, J.F.; Acién, F.G.; Molina, E.; Fernández-Sevilla, J.M. Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. J. Agric. Food Chem. 2008, 56, 11761–11766. [Google Scholar] [CrossRef]
- Khoo, K.S.; Chew, K.W.; Yew, G.Y.; Manickam, S.; Ooi, C.W.; Show, P.L. Integrated ultrasound-assisted liquid biphasic flotation for efficient extraction of astaxanthin from Haematococcus pluvialis. Ultrason. Sonochem. 2020, 67, 105052. [Google Scholar] [CrossRef]
- Petry, F.C.; Mercadante, A.Z. New method for carotenoid extraction and analysis by HPLC-DAD-MS/MS in freeze-dried citrus and mango pulps. J. Braz. Chem. Soc. 2018, 29, 205–215. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Kokkali, M.; Martí-Quijal, F.J.; Taroncher, M.; Ruiz, M.J.; Kousoulaki, K.; Barba, F.J. Improved extraction efficiency of antioxidant bioactive compounds from Tetraselmis chuii and Phaedoactylum tricornutum using pulsed electric fields. Molecules 2020, 25, 3921. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kwon, Y.M.; Kim, K.W.; Kim, J.Y.H. Exploring the potential of Nannochloropsis sp. extract for cosmeceutical applications. Mar. Drugs 2021, 19, 690. [Google Scholar] [CrossRef] [PubMed]
- Saxena, G.; Kumar, L.; Hariri, S.M.; Roy, A.; Kundu, K.; Bharadvaja, N. Identification of potential culture conditions for enhancing the biomass production of microalga Chlorella minutissima. Expert Opin. Environ. Biol. 2016, S1, 2. [Google Scholar]
- Kumar, L.; Roy, A.; Saxena, G.; Kundu, K.; Bharadvaja, N. Isolation, identification and biomass productivity analysis of microalga Scenedesmus rubescens from DTU Lake. J. Algal Biomass Util 2017, 8, 56–67. [Google Scholar]
- Chen, W.; Zhu, P.; Chen, Y.; Liu, Y.; Du, L.; Wu, C. Iodine immobilized UiO-66-NH2 metal-organic framework as an effective antibacterial additive for poly(ε-caprolactone). Polymers 2022, 14, 283. [Google Scholar] [CrossRef]
- Hamedalla, A.M.; Ali, M.M.; Ali, W.M.; Ahmed, M.A.A.; Kaseb, M.O.; Kalaji, H.M.; Gajc-Wolska, J.; Yousef, A.F. Increasing the performance of cucumber (Cucumis sativus L.) seedlings by LED illumination. Sci. Rep. 2022, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- İnan-Çınkır, N.; Ağçam, E.; Altay, F.; Akyıldız, A. Extraction of carotenoid compounds from watermelon pulp with microemulsion based technique: Optimization studies. Food Chem. 2022, 380, 132169. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.L.; Langellotti, A.L.; Verardo, V.; Martín-García, B.; Di Pierro, P.; Sorrentino, A.; Baselice, M.; Oliviero, M.; Sacchi, R.; Masi, P. Formulation of new media from dairy and brewery wastes for a sustainable production of DHA-rich oil by aurantiochytrium mangrovei. Mar. Drugs 2021, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Roy, A.; Kumar, L.; Bharadvaja, N. Media optimization using Box Behnken design for enhanced production of biomass, beta-carotene and lipid from Dunaliella salina. Vegetos 2020, 33, 31–39. [Google Scholar] [CrossRef]
- Ma, Y.; Meng, A.; Liu, P.; Chen, Y.; Yuan, A.; Dai, Y.; Ye, K.; Yang, Y.; Wang, Y.; Li, Z. Reflux extraction optimization and antioxidant activity of phenolic compounds from Pleioblastus amarus (Keng) Shell. Molecules 2022, 27, 362. [Google Scholar] [CrossRef] [PubMed]
- Espada, J.J.; Pérez-Antolín, D.; Vicente, G.; Luis FBautista, L.F.; Morales, V.; Rodríguez, R. Environmental and techno-economic evaluation of β-carotene production from Dunaliella salina. A biorefinery approach. Biofuels Bioprod. Biorefining 2020, 14, 43–54. [Google Scholar] [CrossRef]
- Monte, J.; Ribeiro, C.; Parreira, C.; Costa, L.; Brive, L.; Casal, S.; Brazinha, C.; Crespo, J.G. Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol. Bioresour. Technol. 2020, 297, 122509. [Google Scholar] [CrossRef]
- Rammuni, M.N.; Ariyadasa, T.U.; Nimarshana, P.H.V.; Attalage, R.A. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem. 2019, 277, 128–134. [Google Scholar] [CrossRef]
- Guellati, A.; Maachi, R.; Chaabane, T.; Darchen, A.; Danish, M. Aluminum dispersed bamboo activated carbon production for effective removal of Ciprofloxacin hydrochloride antibiotics: Optimization and mechanism study. J. Environ. Manag. 2021, 301, 113765. [Google Scholar] [CrossRef]
- Du, Y.; Huang, P.; Jin, W.; Li, C.; Yang, J.; Wan, H.; He, Y. Optimization of extraction or purification process of multiple components from natural products: Entropy weight method combined with Plackett-Burman Design and Central Composite Design. Molecules 2021, 26, 5572. [Google Scholar] [CrossRef]
- Fu, W.; Paglia, G.; Magnúsdóttir, M.; Steinarsdóttir, E.A.; Gudmundsson, S.; Palsson, B.Ø.; Andrésson, Ó.S.; Brynjólfsson, S. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb. Cell Fact 2014, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.K.; Moane, S.; Murray, P. Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour. Technol. 2013, 147, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Campenni’, L.; Nobre, B.P.; Santos, C.A.; Oliveira, A.C.; Aires-Barros, M.R.; Palavra, A.M.; Gouveia, L. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl. Microbiol. Biotechnol. 2013, 97, 1383–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factors | Levels | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |
A (time, min) | 6.59 | 10 | 15 | 20 | 23.41 |
B (temperature, °C) | 33.18 | 40 | 50 | 60 | 66.82 |
C (mixed proportion of DMSO and 95% ethanol) | 0.3:1 | 1.5:1 | 3.25:1 | 5:1 | 6.3:1 |
Group | A (Time, Min) | B (Temperature, °C) | C (Proportion of Mixed Solvent) | Actual Extraction Efficiency (Y, 10−5) | Predictive Extraction Efficiency (Y, 10−5) |
---|---|---|---|---|---|
1 | 10 | 60 | 5:1 | 30.78 | 31.07 |
9 | 20 | 60 | 5:1 | 34.00 | 34.81 |
2 | 15 | 50 | 3.25:1 | 35.87 | 34.81 |
3 | 15 | 50 | 3.25:1 | 38.87 | 39.16 |
4 | 20 | 40 | 5:1 | 32.17 | 31.77 |
5 | 6.59 | 50 | 3.25:1 | 33.54 | 34.81 |
6 | 15 | 50 | 3.25:1 | 36.85 | 37.14 |
7 | 10 | 40 | 1.5:1 | 35.41 | 34.81 |
8 | 15 | 50 | 3.25:1 | 30.76 | 31.05 |
10 | 23.4 | 50 | 3.25:1 | 32.21 | 31.81 |
11 | 10 | 40 | 5:1 | 37.63 | 37.92 |
12 | 10 | 60 | 1.5:1 | 29.14 | 29.43 |
13 | 15 | 50 | 6.19:1 | 32.28 | 31.88 |
14 | 15 | 66.8 | 3.25:1 | 41.83 | 41.43 |
15 | 15 | 50 | 3.25:1 | 33.84 | 34.81 |
16 | 15 | 33.18 | 3.25:1 | 38.48 | 38.08 |
17 | 15 | 50 | 0.31:1 | 30.59 | 30.19 |
18 | 20 | 60 | 1.5:1 | 29.22 | 29.51 |
19 | 15 | 50 | 3.25:1 | 36.07 | 34.81 |
20 | 20 | 40 | 1.5:1 | 37.69 | 37.98 |
Source | Sum of Squares | d. f. | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 227.97 | 13 | 17.54 | 13.31 | 0.0023 | ** |
A | 0.0008 | 1 | 0.0008 | 0.0006071 | 0.9811 | |
B | 5.61 | 1 | 5.61 | 4.26 | 0.0846 | |
C | 1.43 | 1 | 1.43 | 1.08 | 0.3380 | |
AB | 0.51 | 1 | 0.51 | 0.39 | 0.5567 | |
AC | 0.011 | 1 | 0.011 | 0.008537 | 0.9294 | |
BC | 0.19 | 1 | 0.19 | 0.14 | 0.7200 | |
A2 | 16.48 | 1 | 16.48 | 12.51 | 0.0123 | * |
B2 | 43.97 | 1 | 43.97 | 33.37 | 0.0012 | ** |
C2 | 25.73 | 1 | 25.73 | 19.53 | 0.0045 | * |
ABC | 0.031 | 1 | 0.031 | 0.024 | 0.8827 | |
A2B | 79.19 | 1 | 79.19 | 60.09 | 0.0002 | ** |
A2C | 0.065 | 1 | 0.065 | 0.049 | 0.8316 | |
B2A | 0.22 | 1 | 0.22 | 0.16 | 0.6993 | |
Residual | 7.91 | 1 | 1.32 | - | - | |
Lack of fit | 1.63 | 1 | 1.63 | 1.30 | 0.3064 | |
Pure error | 6.28 | 1 | 1.26 | - | - | |
Sum | 235.88 | - | - | - | - | |
R2 | 0.9665 | - | - | - | - | |
Adj R2 | 0.8939 | - | - | - | - | |
Precision | 12.496 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariwamy, V.H.; Kollur, S.P.; Shivananda, B.; Begum, M.; Shivamallu, C.; Dharmashekara, C.; Pradeep, S.; Jain, A.S.; Prasad, S.K.; Syed, A.; et al. N-((1H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations. Molecules 2022, 27, 1436. https://doi.org/10.3390/molecules27041436
Mariwamy VH, Kollur SP, Shivananda B, Begum M, Shivamallu C, Dharmashekara C, Pradeep S, Jain AS, Prasad SK, Syed A, et al. N-((1H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations. Molecules. 2022; 27(4):1436. https://doi.org/10.3390/molecules27041436
Chicago/Turabian StyleMariwamy, Vinusha H., Shiva Prasad Kollur, Bindya Shivananda, Muneera Begum, Chandan Shivamallu, Chandan Dharmashekara, Sushma Pradeep, Anisha S. Jain, Shashanka K. Prasad, Asad Syed, and et al. 2022. "N-((1H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations" Molecules 27, no. 4: 1436. https://doi.org/10.3390/molecules27041436
APA StyleMariwamy, V. H., Kollur, S. P., Shivananda, B., Begum, M., Shivamallu, C., Dharmashekara, C., Pradeep, S., Jain, A. S., Prasad, S. K., Syed, A., Elgorban, A. M., Al-Rejaie, S., Ortega-Castro, J., Frau, J., Flores-Holguín, N., & Glossman-Mitnik, D. (2022). N-((1H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations. Molecules, 27(4), 1436. https://doi.org/10.3390/molecules27041436