Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Morphology and Chemical Composition Using EDX
2.2. Textural Properties
2.3. Raman and FTIR Spectroscopy
2.4. Dimethoate Removal from Aqueous Solutions
2.5. Adsorption Isotherms for Dimethoate Removal
2.6. Materials Properties and Their Link to Dimethoate Removal
2.7. Re-Use of DAHP Adsorbents
3. Materials and Methods
3.1. Materials Synthesis
3.2. Materials Characterization
3.3. Pesticide Adsorption Measurements
3.4. Toxicity Testing
3.5. Semi-Empirical Quantum Chemical Calculations
3.6. Adsorbent Regeneration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef] [PubMed]
- Wanjeri, V.W.O.; Sheppard, C.J.; Prinsloo, A.R.E.; Ngila, J.C.; Ndungu, P.G. Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J. Environ. Chem. Eng. 2018, 6, 1333–1346. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishag, A.E.S.A.; Abdelbagi, A.O.; Hammad, A.M.A.; Elsheikh, E.A.E.; Elsaid, O.E.; Hur, J.H.; Laing, M.D. Biodegradation of Chlorpyrifos, Malathion, and Dimethoate by Three Strains of Bacteria Isolated from Pesticide-Polluted Soils in Sudan. J. Agric. Food Chem. 2016, 64, 8491–8498. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Tian, F.; Liu, W.; Guo, G.; Qiang, Z.; Zhang, C. Chemosphere Kinetics and mechanism of dimethoate chlorination during drinking water treatment. Chemosphere 2014, 103, 181–187. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Chishti, Z.; Hussain, S.; Arshad, K.R.; Khalid, A.; Arshad, M. Microbial degradation of chlorpyrifos in liquid media and soil. J. Environ. Manag. 2013, 114, 372–380. [Google Scholar] [CrossRef]
- FarnerBudarz, J.; Cooper, E.M.; Gardner, C.; Hodzic, E.; Ferguson, P.L.; Gunsch, C.K.; Wiesner, M.R. Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: Assessing the impact of a multi-component degradation scenario. J. Hazard. Mater. 2019, 372, 61–68. [Google Scholar] [CrossRef]
- Samy, M.; Ibrahim, M.G.; Gar Alalm, M.; Fujii, M.; Diab, K.E.; ElKady, M. Innovative photocatalytic reactor for the degradation of chlorpyrifos using a coated composite of ZrV2O7 and graphene nano-platelets. Chem. Eng. J. 2020, 395, 124974. [Google Scholar] [CrossRef]
- Chen, J.Q.; Wang, D.; Zhu, M.X.; Gao, C.J. Photocatalytic degradation of dimethoate using nanosized TiO2 powder. Desalination 2007, 207, 87–94. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Tan, L.S.; Shukor, S.R.A. Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J. Hazard. Mater. 2008, 151, 71–77. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.D.; Pašti, I.A.; Jokić, B.; Babić, B.M.; Vasić, V.M. Heteroatom-doped mesoporous carbons as efficient adsorbents for removal of dimethoate and omethoate from water. RSC Adv. 2016, 6, 62128–62139. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J. Environ. Chem. Eng. 2020, 8, 103904. [Google Scholar] [CrossRef]
- Momić, T.; Pašti, T.L.; Bogdanović, U.; Vodnik, V.; Mraković, A.; Rakočević, Z.; Pavlović, V.B.; Vasić, V. Adsorption of Organophosphate Pesticide Dimethoate on Gold Nanospheres and Nanorods. J. Nanomater. 2016, 2016, 8910271. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, X.; Liu, Z.; Zhang, Y.; Wang, J.; Lin, H.; Xu, D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. J. Mater. Sci. 2018, 53, 10772–10783. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, X.; Wang, X.; Lai, S.; Sun, Y.; Yang, D. Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water. Chem. Eng. J. 2021, 407, 127221. [Google Scholar] [CrossRef]
- Breitenbach, S.; Lumetzberger, A.; Hobisch, M.A.; Unterweger, C.; Spirk, S.; Stifter, D.; Fürst, C.; Hassel, A.W. Supercapacitor Electrodes from Viscose-Based Activated Carbon Fibers: Significant Yield and Performance Improvement Using Diammonium Hydrogen Phosphate as Impregnating Agent. C—J. Carbon Res. 2020, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.F.; Sabri, M.A.; Fazal, H.; Hafeez, A.; Shezad, N.; Hussain, M. Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. J. Anal. Appl. Pyrolysis 2020, 145, 104715. [Google Scholar] [CrossRef]
- Faur, C.; Métivier-Pignon, H.; Le Cloirec, P. Multicomponent adsorption of pesticides onto activated carbon fibers. Adsorption 2005, 11, 479–490. [Google Scholar] [CrossRef]
- Berber-Mendoza, M.S.; Martínez-Costa, J.I.; Leyva-Ramos, R.; Amezquita Garcia, H.J.; Medellín Castillo, N.A. Competitive Adsorption of Heavy Metals from Aqueous Solution onto Oxidized Activated Carbon Fiber. Water Air Soil Pollut. 2018, 229, 257. [Google Scholar] [CrossRef]
- Zhao, Y.; Cho, C.W.; Wang, D.; Choi, J.W.; Lin, S.; Yun, Y.S. Simultaneous scavenging of persistent pharmaceuticals with different charges by activated carbon fiber from aqueous environments. Chemosphere 2020, 247, 125909. [Google Scholar] [CrossRef]
- Martin-Gullon, I.; Font, R. Dynamic pesticide removal with activated carbon fibers. Water Res. 2001, 35, 516–520. [Google Scholar] [CrossRef]
- Cougnaud, A.; Faur, C.; Le Cloirec, P. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties. Environ. Technol. 2005, 26, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Jocić, A.; Breitenbach, S.; Pašti, I.A.; Unterweger, C.; Fürst, C.; Lazarević-Pašti, T. Viscose-derived activated carbons as adsorbents for malathion, dimethoate, and chlorpyrifos—screening, trends, and analysis. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Breitenbach, S.; Gavrilov, N.; Pašti, I.; Unterweger, C.; Duchoslav, J.; Stifter, D.; Hassel, A.W.; Fürst, C. Biomass-Derived Carbons as Versatile Materials for Energy-Related Applications: Capacitive Properties vs. Oxygen Reduction Reaction Catalysis. C 2021, 7, 55. [Google Scholar] [CrossRef]
- Takahashi, T.; Hayashi, M.; Watanabe, Y.; Sadatomi, H.; Matsumoto, K.; Shono, E. Improving the adsorption performance and surface roughening of rayon fibers via enzymatic treatment with cellulase. Text. Res. J. 2021, 91, 589–598. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Shimodaira, N.; Masui, A. Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 2002, 92, 902–909. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- ShanmugaPriya, M.; Divya, P.; Rajalakshmi, R. A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors. Sustain. Chem. Pharm. 2020, 16, 100243. [Google Scholar] [CrossRef]
- Thomas, L.C.; Chittenden, R.A. Characteristic infra-red absorption frequencies of organophosphorus compounds—V: Phosphorus—Carbon bonds. Spectrochim. Acta 1965, 21, 1905–1914. [Google Scholar] [CrossRef]
- Anićijević, V.; Jelić, M.; Jovanović, A.; Potkonjak, N.; Pašti, I.; Lazarević-Pašti, T. Organophosphorous pesticide removal from water by graphene-based materials—Only adsorption or something else as well? J. Serbian Chem. Soc. 2021, 86, 699–710. [Google Scholar] [CrossRef]
- Al-ghouti, M.A.; Da’ana, D. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Breitenbach, S.; Unterweger, C.; Lumetzberger, A.; Duchoslav, J.; Stifter, D.; Hassel, A.W.; Fürst, C. Viscose-based porous carbon fibers: Improving yield and porosity through optimization of the carbonization process by design of experiment. J. Porous Mater. 2021, 28, 727–739. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Katsnelson, M.I.; Lichtenstein, A.I. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 2008, 77, 035427. [Google Scholar] [CrossRef] [Green Version]
- Dobrota, A.; Gutić, S.; Kalijadis, A.; Baljozović, M.; Mentus, S.; Skorodumova, N.; Pašti, I. Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups—Implications in charge storage applications. RSC Adv. 2016, 6, 57910–57919. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Caturla, F.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon N. Y. 1991, 29, 999–1007. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Stewart Computational Chemistry—MOPAC. 2016. Available online: http://openmopac.net/ (accessed on 17 January 2022).
- Stewart, J.J.P. Optimization of parameters for semi-empirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993, 5, 799–805. [Google Scholar] [CrossRef]
Carbon | Oxygen | Phosphorus | Textural Properties | |||||
---|---|---|---|---|---|---|---|---|
DAHP-X | at.% | Δ(at.%) | at.% | Δ(at.%) | at.% | Δ(at.%) | SSA/m2 g−1 | Vtot/cm3 g−1 |
0 | 92.4 | 2.1 | 7.6 | 2.0 | 0 | - | 1932 * | 0.83 |
0.25 | 91.6 | 3.5 | 8.4 | 3.5 | 0.02 | 0.02 | 1016 | 0.41 |
0.5 | 93.6 | 2.3 | 6.2 | 2.2 | 0.18 | 0.10 | 1250 * | 0.51 |
1 | 87.9 | 1.3 | 12.0 | 1.3 | 0.11 | 0.04 | 2037 | 0.85 |
1.5 | 93.9 | 1.9 | 5.9 | 1.9 | 0.28 | 0.07 | 2002 * | 0.85 |
2 | 91.3 | 2.0 | 7.7 | 2.3 | 0.91 | 0.29 | 2556 | 1.21 |
2.5 | 87.9 | 2.0 | 11.4 | 2.2 | 0.65 | 0.30 | 2018 * | 0.95 |
5 | 85.6 | 2.5 | 13.1 | 2.7 | 1.32 | 0.34 | 2718 * | 1.42 |
7.5 | 82.2 | 2.2 | 16.1 | 2.3 | 1.78 | 0.13 | 2763 | 1.83 |
10 | 77.8 | 5.0 | 19.7 | 5.3 | 1.90 | 0.64 | 2718 | 1.45 |
Adsorbent | AChE Inhibition before Adsorption (% of Control) | AChE Inhibition after Adsorption in (% of Control) | |
---|---|---|---|
DAHP-X | Filter | Batch | |
0 | 35 ± 2 | 0 | 5 ± 1 |
0.25 | 35 ± 2 | 15 ± 2 | 5 ± 1 |
0.5 | 35 ± 2 | 5 ± 1 | 0 |
1 | 35 ± 2 | 5 ± 2 | 5 ± 1 |
1.5 | 35 ± 2 | 5 ± 1 | 5 ± 2 |
2 | 35 ± 2 | 5 ± 1 | 15 ± 2 |
2.5 | 35 ± 2 | 7 ± 2 | 12 ± 2 |
5 | 35 ± 2 | 9 ± 2 | 18 ± 2 |
7.5 | 35 ± 2 | 9 ± 2 | 20 ± 3 |
10 | 35 ± 2 | 12 ± 2 | 21 ± 2 |
Freundlich | Lagmuir | Dubinin–Radushkevich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DAHP-X | n | Kf/mg g−1 (mg dm−3)1/n | R2 | qmax/103 /mg g−1 | b/dm3 mg−1 | R2 | qDR/mg g−1 | KDR/10−7 /mol2 J−2 | E /kJ mol−1 | R2 |
0 | 1.561 | 29.09 | 0.996 | 3.96 | 0.008 | 0.984 | 186.7 | 1.481 | 1.84 | 0.813 |
0.25 | 1.596 | 18.53 | 0.996 | 2.54 | 0.007 | 0.982 | 134.2 | 2.179 | 1.52 | 0.817 |
0.5 | 1.661 | 35.82 | 0.994 | 4.71 | 0.010 | 0.989 | 196.4 | 1.104 | 2.13 | 0.823 |
1 | 1.652 | 31.88 | 0.995 | 4.12 | 0.009 | 0.987 | 184.2 | 1.239 | 2.01 | 0.822 |
1.5 | 1.411 | 19.11 | 0.998 | 3.11 | 0.006 | 0.972 | 165.1 | 2.490 | 1.42 | 0.799 |
2 | 1.461 | 17.28 | 0.989 | 5.20 | 0.003 | 0.994 | 149.2 | 2.813 | 1.33 | 0.831 |
2.5 | 1.601 | 21.63 | 0.987 | 4.58 | 0.005 | 0.994 | 151.0 | 2.020 | 1.57 | 0.840 |
5 | 1.485 | 15.99 | 0.988 | 4.90 | 0.003 | 0.995 | 137.9 | 2.959 | 1.30 | 0.836 |
7.5 | 1.369 | 9.91 | 0.997 | 2.33 | 0.004 | 0.997 | 110.2 | 4.389 | 1.07 | 0.804 |
10 | 1.408 | 9.15 | 0.993 | 2.80 | 0.003 | 0.990 | 99.2 | 4.655 | 1.04 | 0.823 |
Conditions | A | B | C | D/% g m−2 | E/% g cm−3 | R2 | Model No. |
---|---|---|---|---|---|---|---|
1 mg cm−3 ACFs, 5 × 10−4 moldm−3 dimethoate, batch | 0.957 | 0.58 | −6.1 | 0.006 | −10.3 | 0.9994 | 1 |
0.994 | 0.61 | −7.1 | / | −0.73 | 0.9992 | 2 | |
1.066 | 0.30 | / | / | −8.5 | 0.998 | 3 | |
0.1 mg cm−3 ACFs, 5 × 10−6 moldm−3 dimethoate, batch | 0.755 | 0.94 | −18 | 0.005 | −4.1 | 0.991 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jocić, A.; Breitenbach, S.; Bajuk-Bogdanović, D.; Pašti, I.A.; Unterweger, C.; Fürst, C.; Lazarević-Pašti, T. Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. Molecules 2022, 27, 1477. https://doi.org/10.3390/molecules27051477
Jocić A, Breitenbach S, Bajuk-Bogdanović D, Pašti IA, Unterweger C, Fürst C, Lazarević-Pašti T. Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. Molecules. 2022; 27(5):1477. https://doi.org/10.3390/molecules27051477
Chicago/Turabian StyleJocić, Ana, Stefan Breitenbach, Danica Bajuk-Bogdanović, Igor A. Pašti, Christoph Unterweger, Christian Fürst, and Tamara Lazarević-Pašti. 2022. "Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water" Molecules 27, no. 5: 1477. https://doi.org/10.3390/molecules27051477
APA StyleJocić, A., Breitenbach, S., Bajuk-Bogdanović, D., Pašti, I. A., Unterweger, C., Fürst, C., & Lazarević-Pašti, T. (2022). Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. Molecules, 27(5), 1477. https://doi.org/10.3390/molecules27051477