Design, Synthesis, and Cytotoxic Activity of Novel Natural Arylsulfonamide-Inspired Molecules
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental
- 2-([1,1′-Biphenyl]-4-sulfonamido)benzoic acid (NC1), white solid, m.p. 205–207 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 11.22 (s, 1H), 7.94–7.89 (m, 3H), 7.86 (dd, J = 8.4, 1.4 Hz, 2H), 7.71–7.69 (m, 2H), 7.59–7.56 (m, 2H), 7.50–7.48 (m, 2H), 7.46–7.42 (m, 1H), 7.16–7.12 (m, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 170.3, 145.4, 140.2, 138.5, 137.8, 135.1, 132.1, 129.6, 129.2, 128.1, 128.0, 127.6, 123.8, 118.8, 117.1 ppm. MS m/z 354.2 = [M + H]+, calculated for C19H15NO4S m/z = 353.0.
- Methyl 2-(2-([1,1′-biphenyl]-4-sulfonamido)benzamido)benzoate (NC2), white solid, m.p. 148–149 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 11.74 (s, 1H), 10.48 (s, 1H), 8.75 (dd, J = 8.4, 0.7 Hz, 1H), 7.97 (dd, J = 8.0, 1.6 Hz, 1H), 7.79 (dd, J = 8.3, 0.9 Hz, 1H), 7.76–7.72 (m, 2H), 7.67 (dd, J = 7.9, 1.3 Hz, 1H), 7.65–7.60 (m, 1H), 7.53–7.49 (m, 1H), 7.47–7.44 (m, 2H), 7.37–7.34 (m, 3H), 7.33–7.30 (m, 2H), 7.25–7.22 (m, 1H), 7.17–7.13 (m, 1H), 3.76 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 168.0, 166.6, 144.9, 139.6, 138.3, 137.6, 137.2, 134.6, 133.3, 131.0, 129.5, 129.1, 128.7, 128.0, 127.7, 127.3, 126.3, 125.9, 124.5, 123.7, 122.1, 118.6, 53.0 ppm. MS m/z 487.4 = [M + H]+, calculated for C27H22N2O5S m/z = 486.1.
- N-([1,1′-Biphenyl]-2-yl)-4-aminobenzenesulfonamide (8a), m.p. 128–129 °C. MS m/z 347.3 = [M + Na]+, calculated for C18H16N2O2S m/z = 324.1.
- 4-Amino-N-(2-phenoxyphenyl)benzenesulfonamide (8b), m.p. 119–120 °C. MS m/z 363.4 = [M + Na]+, calculated for C18H16N2O3S m/z = 340.1.
- 4-Amino-N-(4,5-dimethylisoxazol-3-yl)benzenesulfonamide (8c), m.p. 162–163 °C. MS m/z 290.3 = [M + Na]+, calculated for C11H13N3O3S m/z = 267.1.
- 4-Amino-N-(2-(trifluoromethyl)phenyl)benzenesulfonamide (8d), m.p. 95–96 °C. MS m/z 317.4 = [M + H]+, calculated for C13H11F3N2O2S m/z = 316.0.
- N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-2-(trifluoromethyl)benzamide (10a), white solid, m.p. 151–152 °C. 1H NMR (600 MHz, CDCl3, TMS, 25 °C) δ = 7.93 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.67–7.64 (m, 2H), 7.62 (d, J = 8.6 Hz, 3H), 7.50 (d, J = 8.7 Hz, 2H), 7.36 (dd, J = 5.1, 1.8 Hz, 4H), 7.18 (td, J = 7.5, 0.9 Hz, 1H), 7.12 (dd, J = 7.6, 1.5 Hz, 1H), 6.88 (dt, J = 7.5, 3.8 Hz, 2H), 6.65 (s, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 165.9, 141.7, 137.2, 135.1, 134.5, 134.4, 133.4, 132.4, 130.7, 130.4, 129.2, 128.8, 128.7, 128.5, 128.4, 128.2, 127.2, 126.7, 125.3, 123.4 (q, J = 274.8 Hz), 122.0, 119.6. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −58.8. MS m/z 497.3 = [M + H]+, calculated for C26H19F3N2O3S m/z = 496.1.
- N-(4-(N-(2-Phenoxyphenyl)sulfamoyl)phenyl)-2-(trifluoromethyl)benzamide (10b), white solid, m.p. 161–162 °C. 1H NMR (600 MHz, DMSO-d6, 25 oC) δ = 10.93 (s, 1H), 9.85 (s, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.82 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 8.1 Hz, 4H), 7.70–7.66 (m, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.28 (t, J = 7.8 Hz, 2H), 7.12–7.07 (m, 3H), 6.71 (dd, J = 7.6, 1.5 Hz, 1H), 6.64 (d, J = 8.4 Hz, 2H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 171.2, 161.3, 154.8, 147.8, 140.9, 140.1, 138.0, 135.6, 134.9, 134.8, 133.8, 133.1, 133.0, 131.7, 131.2, 131.0, 129.0 (q, J = 273.3 Hz), 128.8, 128.6, 124.5, 123.7, 123.6. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −53.1. MS m/z 513.5 = [M + H]+, calculated for C26H19F3N2O4S m/z = 512.1.
- N-(4-(N-(4,5-Dimethylisoxazol-3-yl)sulfamoyl)phenyl)-2-(trifluoromethyl)benzamide (10c), white solid, m.p. 183–184 °C. 1H NMR (600 MHz, DMSO-d6, 25 oC) δ = 10.99 (s, 1H), 10.65 (s, 1H), 7.89–7.84 (m, 5H), 7.82 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 7.5 Hz, 2H), 2.23 (s, 3H), 1.80 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 166.6, 166.2, 157.2, 143.3, 136.1, 134.8, 133.2, 130.9, 129.0, 128.9, 127.0, 126.4, 124.2 (q, J = 273.3 Hz), 119.7, 105.0, 11.2, 6.4. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −57.9. MS m/z 440.3 = [M + H]+, calculated for C19H16F3N3O4S m/z = 439.0.
- 2-(Trifluoromethyl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)benzamide (10d), white solid, m.p. 128–129 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.91 (s, 1H), 9.92 (s, 1H), 8.54 (dd, J = 4.7, 1.5 Hz, 1H), 8.25 (dd, J = 8.1, 1.5 Hz, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.75 (d, J = 8.8 Hz, 2H), 7.71 (dd, J = 7.9, 1.1 Hz, 1H), 7.67 (dd, J = 8.1, 4.7 Hz, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.52 (s, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 156.3, 148.7, 147.8, 142.3, 140.1, 139.6, 136.6, 134.6, 133.7, 129.0, 128.4, 128.3, 128.0, 127.3, 127.2, 126.6, 123.7 (q, J = 274.8 Hz), 120.5, 111.8. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −58.0. MS m/z 489.3 = [M + H]+, calculated for C21H14F6N2O3S m/z = 488.0.
- N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (10e), white solid, m.p. 156–157 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.88 (s, 1H), 9.44 (s, 1H), 8.55 (dd, J = 4.7, 1.5 Hz, 1H), 8.27–8.23 (m, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.69–7.66 (m, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.51 (s, 1H), 7.36–7.32 (m, 2H), 7.31 (dt, J = 5.5, 2.3 Hz, 1H), 7.29–7.27 (m, 3H), 7.26–7.22 (m, 3H), 7.07–7.03 (m, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 156.3, 148.7, 147.8, 141.9, 140.1, 139.7, 139.2, 139.0, 136.4, 133.7, 131.4, 129.7, 128.5, 128.2, 128.0, 127.5, 127.3, 127.2, 127.1, 120.4, 111.8 ppm. MS m/z 608.2 = [M + H]+, calculated for C27H19BrClN5O3S m/z = 607.0.
- 3-Bromo-1-(3-chloropyridin-2-yl)-N-(4-(N-(2-phenoxyphenyl)sulfamoyl)phenyl)-1H-pyrazole-5-carboxamide (10f), white solid, m.p. 177–178 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.82 (s, 1H), 10.82 (s, 1H), 9.84 (s, 1H), 8.54 (dd, J = 4.7, 1.4 Hz, 1H), 8.26 (dd, J = 8.1, 1.3 Hz, 1H), 7.71–7.60 (m, 5H), 7.48 (s, 1H), 7.36 (dd, J = 7.8, 1.7 Hz, 1H), 7.22 (t, J = 7.9 Hz, 2H), 7.12–7.03 (m, 3H), 6.67 (dd, J = 7.9, 1.4 Hz, 1H), 6.63–6.55 (m, 2H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 156.4, 156.2, 150.2, 148.7, 147.8, 142.1, 140.1, 139.7, 135.8, 130.1, 128.3, 128.1, 127.3, 127.2, 126.5, 123.9, 123.8, 120.4, 119.0, 118.8, 111.7 ppm. MS m/z 624.2 = [M + H]+, calculated for C27H19BrClN5O4S m/z = 623.0.
- 3-Bromo-1-(3-chloropyridin-2-yl)-N-(4-(N-(4,5-dimethylisoxazol-3-yl)sulfamoyl)phenyl)-1H-pyrazole-5-carboxmide (10g), white solid, m.p. 171–172 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.91 (s, 1H), 10.66 (s, 1H), 8.53 (dd, J = 4.7, 1.5 Hz, 1H), 8.24 (dd, J = 8.1, 1.5 Hz, 1H), 7.84–7.79 (m, 4H), 7.66 (dd, J = 8.1, 4.7 Hz, 1H), 7.48 (s, 1H), 2.21 (s, 3H), 1.77 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 166.3, 157.1, 156.3, 148.7, 147.8, 142.4, 140.1, 139.7, 135.3, 128.9, 128.2, 127.3, 127.2, 120.4, 111.8, 105.1, 11.2, 6.4 ppm. MS m/z 651.2 = [M + H]+, calculated for C20H16BrClN6O4S m/z = 649.9.
- 3-Bromo-1-(3-chloropyridin-2-yl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)-1H-pyrazole-5-carboxamide (10h), white solid, m.p. 181–182 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.91 (s, 1H), 9.92 (s, 1H), 8.55 (dd, J = 4.7, 1.5 Hz, 1H), 8.25 (dd, J = 8.1, 1.5 Hz, 1H), 7.84 (d, J = 8.9 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 7.71 (dd, J = 7.9, 1.1 Hz, 1H), 7.67 (dd, J = 8.1, 4.7 Hz, 1H), 7.60–7.56 (m, 1H), 7.52 (s, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 156.3, 148.7, 147.8, 142.3, 140.1, 139.6, 136.6, 134.6, 133.7, 128.9, 128.4, 128.3, 127.9, 127.5, 127.3, 127.2, 126.6, 123.7 (q, J = 273.3 Hz), 120.5, 111.8. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −57.9. MS m/z 600.5 = [M + H]+, calculated for C22H14F3BrClN5O3S m/z = 598.9.
- N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-2-methyl-[1,1′-biphenyl]-3-carboxamide (10i), white solid, m.p. 197–198 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.79 (s, 1H), 9.40 (s, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.57–7.53 (m, 2H), 7.51–7.46 (m, 3H), 7.43–7.39 (m, 2H), 7.39–7.35 (m, 4H), 7.34–7.33 (m, 2H), 7.30–7.27 (m, 2H), 7.27–7.23 (m, 3H), 7.11–7.08 (m, 1H), 2.25 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 169.1, 143.2, 142.9, 141.3, 139.1, 139.0, 138.7, 135.6, 133.9, 132.4, 131.5, 131.4, 129.7, 129.5, 128.9, 128.5, 128.1, 127.7, 127.5, 127.1, 126.9, 126.7, 126.3, 119.7, 17.7 ppm. MS m/z 519.4 = [M + H]+, calculated for C32H26N2O3S m/z = 518.1.
- 2-Methyl-N-(4-(N-(2-phenoxyphenyl)sulfamoyl)phenyl)-[1,1′-biphenyl]-3-carboxamide (10j), white solid, m.p. 170–171 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.76 (s, 1H), 9.84 (s, 1H), 7.80 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 7.50–7.46 (m, 3H), 7.42–7.39 (m, 3H), 7.36–7.34 (m, 3H), 7.29–7.27 (m, 2H), 7.10–7.07 (m, 3H), 6.71 (dd, J = 7.8, 1.8 Hz, 1H), 6.66 (dd, J = 8.6, 0.9 Hz, 2H), 2.24 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 169.1, 156.6, 150.0, 143.4, 143.0, 141.3, 138.6, 135.0, 132.4, 130.1, 129.6, 129.5, 128.8, 128.7, 128.3, 127.7, 127.0, 126.7, 126.3, 126.1, 124.1, 123.9, 119.6, 118.9, 118.8, 17.7 ppm. MS m/z 535.5 = [M + H]+, calculated for C32H26N2O4S m/z = 534.1.
- N-(4-(N-(4,5-Dimethylisoxazol-3-yl)sulfamoyl)phenyl)-2-methyl-[1,1′-biphenyl]-3-carboxamide (10k), white solid, m.p. 156–157 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.84 (s, 1H), 10.65 (s, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.87–7.84 (m, 2H), 7.50–7.47 (m, 3H), 7.43–7.38 (m, 2H), 7.36–7.33 (m, 3H), 2.23 (s, 6H), 1.81 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 169.2, 166.2, 157.2, 143.7, 142.9, 141.3, 138.6, 134.5, 132.5, 131.5, 129.5, 128.9, 128.8, 127.7, 126.7, 126.3, 119.6, 105.0, 17.7, 11.2, 6.4 ppm. MS m/z 462.4 = [M + H]+, calculated for C25H23N3O4S m/z = 461.1.
- 2-Methyl-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)-[1,1′-biphenyl]-3-carboxamide (10l), m.p. 178–180 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.84 (s, 1H), 9.88 (s, 1H), 7.96 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 7.2 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.50–7.44 (m, 4H), 7.40 (dd, J = 14.0, 7.4 Hz, 2H), 7.36–7.33 (m, 3H), 7.08 (d, J = 8.1 Hz, 1H), 2.24 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 169.2, 143.5, 143.0, 141.3, 138.6, 135.8, 134.8, 133.8, 132.5, 131.5, 129.5, 128.9, 128.8, 128.4, 127.8, 127.7, 127.5, 126.7, 126.5, 126.3, 123.7 (q, J = 273.3 Hz), 119.8, 17.7. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −57.9. MS m/z 511.4 = [M + H]+, calculated for C27H21F3N2O3S m/z = 510.1.
- N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-4′-(trifluoromethyl)-[1,1′-biphenyl]-2-carboxamide (10m), white solid, m.p. 163–164 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.76 (s, 1H), 9.40 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.73 (dd, J = 7.5, 1.1 Hz, 1H), 7.71–7.67 (m, 3H), 7.65–7.61(m, 3H), 7.58 (d, J = 7.6 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.35–7.28 (m, 5H), 7.27–7.24 (m, 1H), 7.21–7.17 (m, 2H), 7.14 (d, J = 9.3 Hz, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 168.3, 144.6, 142.9, 139.1, 139.0, 138.6, 137.0, 135.6, 133.8, 131.3, 130.9, 130.6, 129.7, 129.6, 128.6, 128.5, 128.2, 127.9, 127.4, 127.2, 127.1, 126.7, 126.6, 124.7 (q, J = 272.0 Hz), 119.7. MS m/z 573.6 = [M + H]+, calculated for C32H23F3N2O3S m/z = 572.1.
- N-(4-(N-(2-Phenoxyphenyl)sulfamoyl)phenyl)-4′-(trifluoromethyl)-[1,1′-biphenyl]-2-carboxamide (10n), white solid, m.p. 173–174 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.74 (s, 1H), 9.82 (s, 1H), 7.73 (d, J = 8.2 Hz, 2H), 7.69–7.67 (m, 1H), 7.66–7.63 (m, 2H), 7.63–7.56 (m, 6H), 7.54 (d, J = 7.6 Hz, 1H), 7.37 (dd, J = 7.8, 1.9 Hz, 1H), 7.25–7.21 (m, 2H), 7.11–7.03 (m, 3H), 6.70 (dd, J = 7.9, 1.6 Hz, 1H), 6.64 (dd, J = 8.6, 0.9 Hz, 2H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 168.3, 156.6, 149.9, 144.7, 143.1, 138.6, 136.9, 135.1, 130.9, 130.7, 130.1, 129.6, 128.6, 128.4, 128.2, 126.9, 125.7 (q, J = 3.0 Hz), 124.1 (q, J = 272.0 Hz), 123.8, 119.6, 118.9, 118.8. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −60.9. MS m/z 589.6 = [M + H]+, calculated for C32H23F3N2O4S m/z = 588.1.
- N-(4-(N-(4,5-Dimethylisoxazol-3-yl)sulfamoyl)phenyl)-4′-(trifluoromethyl)-[1,1′-biphenyl]-2-carboxamide (10o), white solid, m.p. 199–200 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.82 (s, 1H), 10.61 (s, 1H), 7.78–7.76 (m, 3H), 7.75–7.73 (m, 3H), 7.69 (dd, J = 7.6, 1.1 Hz, 1H), 7.64–7.62 (m, 2H), 7.58 (td, J = 7.5, 1.2 Hz, 1H), 7.55–7.53 (m, 2H), 2.22 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 169.4, 168.3, 166.2, 157.2, 144.6, 143.5, 140.5, 138.6, 136.8, 134.5, 132.2, 131.8, 130.9, 128.8, 128.3 (q, J = 31.7 Hz), 125.8 (q, J = 3.0 Hz), 124.7 (q, J = 273.0 Hz), 119.6, 105.0, 11.2, 6.3. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −60.9. MS m/z 516.3 = [M + H]+, calculated for C25H20F3N3O4S m/z = 515.1.
- 4′-(Trifluoromethyl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)-[1,1′-biphenyl]-2-carboxamide (10p), white solid, m.p. 160–161 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.77 (s, 1H), 9.86 (s, 1H), 7.76–7.73 (m, 4H), 7.72–7.69 (m, 4H), 7.64–7.62 (m, 2H), 7.61–7.57 (m, 2H), 7.56–7.53 (m, 2H), 7.46–7.44 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 168.4, 144.6, 143.2, 138.6, 136.9, 135.8, 134.7, 133.7, 131.8, 130.9, 130.7, 130.1, 129.7, 129.6, 128.8, 127.8, 127.5, 126.6 (q, J = 28.7 Hz), 125.7 (q, J = 3.8 Hz), 125.4 (q, J = 4.5 Hz), 123.8, 123.7 (q, J = 273.3 Hz), 122.9 (q, J = 274.0 Hz), 119.7. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −58.0, −60.9. MS m/z 565.5 = [M + H]+, calculated for C27H18F6N2O3S m/z = 564.0.
- 2-(6-Chloro-9H-carbazol-2-yl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)propanamide (10q), white solid, m.p. 159–160 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 11.39 (s, 1H), 10.52 (s, 1H), 9.83 (s, 1H), 8.17 (d, J = 2.1 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.9 Hz, 2H), 7.72–7.65 (m, 3H), 7.56–7.51 (m, 2H), 7.48 (d, J = 8.6 Hz, 1H), 7.43–7.34 (m, 2H), 7.23 (dd, J = 8.2, 1.4 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 4.05–4.02 (m, 1H), 1.52 (d, J = 7.0 Hz, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 173.6, 141.0, 140.4, 138.8, 133.6, 128.4, 127.5 (q, J = 4.5 Hz), 125.6, 124.1, 123.3, 121.1, 121.0, 120.1, 119.3, 119.2, 112.8, 110.1, 47.0, 19.5. 19F NMR (565 MHz, DMSO-d6, 25 °C) δ = −57.9. MS m/z 572.4 = [M + H]+, calculated for C28H21ClF3N3O3S m/z = 571.0.
- 2-(6-Chloro-9H-carbazol-2-yl)-N-(4-(N-(2-phenoxyphenyl)sulfamoyl)phenyl)propanamide (10r), white solid, m.p. 166–167 °C. 1H NMR (600 MHz, DMSO-d6, 25 °C) δ = 10.87 (s, 1H), 9.45 (s, 1H), 8.56 (d, J = 2.9 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H), 7.77–7.66 (m, 3H), 7.59–7.50 (m, 3H), 7.35–7.31 (m, 2H), 7.28–7.22 (m, 4H), 7.06 (s, 1H), 4.04 (q, J = 7.0 Hz, 1H), 1.21 (d, J = 7.0 Hz, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 °C) δ = 170.8, 156.3, 148.8, 147.8, 142.0, 140.1, 139.8, 139.2, 139.1, 136.4, 133.7, 131.4, 129.7, 128.5, 128.2, 128.1, 127.5, 127.4, 127.3, 127.2, 120.4, 111.8, 60.2, 21.2 ppm. MS m/z 596.4 = [M + H]+, calculated for C33H26ClN3O4S m/z = 595.1.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on Natural Products for Drug Design. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Li, H.; Ji, B.; Cheng, K.; Wu, B.; Li, Z.; Zheng, C.; Hua, H.; Li, D. Renieramycin-Type Alkaloids from Marine-Derived Organisms: Synthetic Chemistry, Biological Activity and Structural Modification. Eur. J. Med. Chem. 2021, 210, 113092. [Google Scholar] [CrossRef]
- Ren, X.; Xie, X.; Chen, B.; Liu, L.; Jiang, C.; Qian, Q. Marine Natural Products: A Potential Source of Anti-Hepatocellular Carcinoma Drugs. J. Med. Chem. 2021, 64, 7879–7899. [Google Scholar] [CrossRef]
- Schulz, G.; Victoria, C.; Kirschning, A.; Steinmann, E. Rocaglamide and Silvestrol: A Long Story from Anti-tumor to Anti-Coronavirus Compounds. Nat. Prod. Rep. 2021, 38, 18–23. [Google Scholar] [CrossRef]
- Ren, Y.; Kinghorn, A.D. Development of Potential Antitumor Agents from The Scaffolds of Plant-derived Terpenoid Lactones. J. Med. Chem. 2020, 63, 15410–15448. [Google Scholar] [CrossRef]
- Kwon, Y.; Song, J.; Lee, H.; Kim, E.-Y.; Lee, K.; Lee, S.K.; Kim, S. Design, Synthesis, and Biological Activity of Sulfonamide Analogues of Antofine and Cryptopleurine as Potent and Orally Active Antitumor Agents. J. Med. Chem. 2015, 58, 7749–7762. [Google Scholar] [CrossRef] [Green Version]
- Lad, N.P.; Kulkarni, S.; Sharma, R.; Mascarenhas, M.; Kulkarni, M.R.; Pandit, S.S. Piperlongumine Derived Cyclic Sulfonamides (sultams): Synthesis and In Vitro Exploration for Therapeutic Potential Against HeLa Cancer Cell Lines. Eur. J. Med. Chem. 2017, 126, 870–878. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Sun, L.; Gu, Y.; Hu, L. Synthesis and Structure-Activity Relationship Study of Water-soluble Carbazole Sulfonamide Derivatives as New Anticancer Agents. Eur. J. Med. Chem. 2020, 191, 112181. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Santali, E.Y. Discovery of Pyridine-sulfonamide Hybrids as A New Scaffold for The Development of Potential VEGFR-2 Inhibitors and Apoptosis Inducers. Bioorg. Chem. 2021, 111, 104842. [Google Scholar] [CrossRef] [PubMed]
- Kachaeva, M.V.; Hodyna, D.M.; Semenyuta, I.V.; Pilyo, S.G.; Prokopenko, V.M.; Kovalishyn, V.V.; Metelytsia, L.O.; Brovarets, V.S. Design, Synthesis and Evaluation of Novel Sulfonamides as Potential Anticancer Agents. Comput. Biol. Chem. 2018, 74, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dayma, V.; Dwivedi, A.; Baroliya, P.K.; Tripathi, I.P.; Vanangamudi, M.; Chauhan, R.S.; Goswami, A.K. Synthesis of Sulpha Drug Based Hydroxytriazene Derivatives: Anti-diabetic, Antioxidant, Anti-inflammatory Activity and Their Molecular Docking Studies. Bioorg. Chem. 2020, 96, 103642. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.-M.; Angeli, A.; El-Azab, A.S.; Hammouda, M.E.A.; El-Sherbeny, M.A.; Supuran, C.T. Synthesis and Anti-inflammatory Activity of Sulfonamides and Carboxylates Incorporating Trimellitimides: Dual Cyclooxygenase/Carbonic Anhydrase Inhibitory Actions. Bioorg. Chem. 2019, 84, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pei, Y.; Wang, L.; Li, S.; Jiang, C.; Tan, X.; Dong, Y.; Xiang, Y.; Ma, Y.; Liu, G. Discovery of (1H-Pyrazolo[3,4-c]pyridin-5-yl) Sulfonamide Analogues as Hepatitis B Virus Capsid Assembly Modulators by Conformation Constraint. J. Med. Chem. 2020, 63, 6066–6089. [Google Scholar] [CrossRef]
- He, F.; Shi, J.; Wang, Y.; Wang, S.; Chen, J.; Gan, X.; Song, B.; Hu, D. Synthesis, Antiviral Activity, and Mechanisms of Purine Nucleoside Derivatives Containing A Sulfonamide Moiety. J. Agric. Food Chem. 2019, 67, 8459–8467. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, P.; Poulsen, S.-A. Natural Product Primary Sulfonamides and Primary Sulfamates. J. Nat. Prod. 2015, 78, 1470–1477. [Google Scholar] [CrossRef]
- Kende, A.S.; Liu, K.; Jos Brands, K.M. Total Synthesis of (-)-Altemicidin: A Novel Exploitation of The Potier-polonovski Rearrangement. J. Am. Chem. Soc. 1995, 117, 10597–10598. [Google Scholar] [CrossRef]
- Peng, Y.; Cao, L.; Liu, Y.; Huang, R. Sargassulfamide A, An Unprecedented Amide Derivative from the Seaweed Sargassum naozhouense. Chem. Nat. Compd. 2020, 56, 98–100. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Li, Y.; Liang, Z.; Huang, W.; Zhang, H.; Jiang, Y.; Cui, J.; Song, X. Arylsulfonamides from The Roots and Rhizomes of Tupistra chinensis Baker. Nat. Prod. Commun. 2020, 15, 1–5. [Google Scholar] [CrossRef]
- Xu, T.; Shi, L.; Zhang, Y.; Wang, K.; Yang, Z.; Ke, S. Synthesis and Biological Evaluation of Marine Alkaloid-oriented β-Carboline Analogues. Eur. J. Med. Chem. 2019, 168, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bao, L.; Song, D.; Wang, J.; Cao, X.; Ke, S. Amino Acid-oriented Poly-substituted Heterocyclic Tetramic Acid Derivatives as Potential Antifungal Agents. Eur. J. Med. Chem. 2019, 179, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Zhang, Z.; Liu, M.; Fang, W.; Huang, D.; Wan, Z.; Zhou, R.; Wang, K.; Shi, L. Synthesis and Bioevaluation of Novel Steroidal Isatin Conjugates Derived from Epiandrosterone/Androsterone. J. Enzyme Inhib. Med. Chem. 2019, 34, 1607–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Wang, S.; Song, D.; Cao, X.; Huang, W.; Ke, S. Discovery of γ-Lactam Alkaloid Derivatives as Potential Fungicidal Agents Targeting Steroid Biosynthesis. J. Agric. Food Chem. 2020, 68, 14438–14451. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Gao, Z.; Zhang, Z.; Fang, W.; Wang, Z.; Wan, Z.; Shi, L.; Wang, K.; Ke, S. Selective and Effective Anticancer Agents: Synthesis, Biological Evaluation and Structure-Activity Relationships of Novel Carbazole Derivatives. Bioorg. Chem. 2021, 113, 104991. [Google Scholar] [CrossRef]
- Ke, S.; Zhang, Z.; Shi, L.; Liu, M.; Fang, W.; Zhang, Y.; Wu, Z.; Wan, Z.; Long, T.; Wang, K. An Efficient Synthesis and Bioactivity Evaluation of Oxazole-containing Natural Hinduchelin A-D and Their Derivatives. Org. Biomol. Chem. 2019, 17, 3635–3639. [Google Scholar] [CrossRef]
- Mahmood, N.; Rasool, N.; Ikram, H.M.; Hashmi, M.A.; Mahmood, T.; Zubair, M.; Ahmad, G.; Rizwan, K.; Rashid, T.; Rashid, Y. Synthesis of 3,4-Biaryl-2,5-Dichlorothiophene through Suzuki Cross-Coupling and Theoretical Exploration of Their Potential Applications as Nonlinear Optical Materials. Symmetry 2018, 10, 766. [Google Scholar] [CrossRef] [Green Version]
- Sial, N.; Rasool, N.; Rizwan, K.; Altaf, A.A.; Ali, S.; Malik, A.; Zubair, M.; Akhtar, A.; Kausar, S.; Shah, S.A.A. Efficient Synthesis of 2,3-Diarylbenzo[b]thiophene Molecules Through Palladium (0) Suzuki–Miyaura Cross-coupling Reaction and Their Antithrombolyitc, Biofilm Inhibition, Hemolytic Potential and Molecular Docking Studies. Med. Chem. Res. 2020, 29, 1486–1496. [Google Scholar] [CrossRef]
- Masand, N.; Gupta, S.P.; Khosa, R.L. N-Substituted Aryl Sulphonamides as Potential Anti-Alzheimer’s Agents: Design, Synthesis and Biological Evaluation. Curr. Comput. Aided Drug Des. 2018, 14, 338–348. [Google Scholar] [CrossRef]
- Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of Drug Screening with Panels of Human Tumor Cell Lines using A Microculture Tetrazolium Assay. Cancer Res. 1988, 48, 589–601. [Google Scholar]
- Ke, S.; Shi, L.; Cao, X.; Yang, Q.; Liang, Y.; Yang, Z. Heterocycle-Functional Gramine Analogues: Solvent- and Catalyst-free Synthesis and Their Inhibition Activities Against Cell Proliferation. Eur. J. Med. Chem. 2012, 54, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Meanwell, N.A. Fluorine and Fluorinated Motifs in The Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef] [PubMed]
- Xi, D.; Niu, Y.; Li, H.; Noha, S.M.; Temml, S.M.; Schuster, D.; Wang, C.; Xu, F.; Xu, P. Discovery of Carbazole Derivatives as Novel Allosteric MEK Inhibitors by Pharmacophore Modeling and Virtual Screening. Eur. J. Med. Chem. 2019, 178, 802–817. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-Y.; Lin, Y.-C.; Lai, Y.-T.; Ou, J.-Y.; Chang, W.-W.; Chu, C.-C. Targeted Photoresponsive Carbazole-coumarin and Drug Conjugates for Efficient Combination Therapy in Leukemia Cancer Cells. Bioorg. Chem. 2020, 100, 103904. [Google Scholar] [CrossRef]
- Ma, X.-L.; Zhu, S.-S.; Liu, Y.; Chen, H.-W.; Shi, Y.-T.; Zeng, K.-W.; Tu, P.-F.; Jiang, Y. Carbazole Alkaloids with Potential Cytotoxic Activities Targeted on PCK2 Protein from Murraya Microphylla. Bioorg. Chem. 2021, 114, 105113. [Google Scholar] [CrossRef]
Entry | Compd. No. | Substrates | In Vitro cytotoxicity IC50 a(μg/mL) | |||
Ar1NH2 | Ar2CO2H | A875 b | HepG2 b | MARC145 b | ||
1 | 10a | 5a | 9a | >40 | 22.06 ± 3.99 | 13.16 ± 2.49 |
2 | 10b | 5b | 9a | >40 | >40 | >40 |
3 | 10c | 5c | 9a | >40 | >40 | >40 |
4 | 10d | 5d | 9a | >40 | 33.08 ± 2.13 | 24.89 ± 4.45 |
5 | 10e | 5a | 9b | >40 | >40 | >40 |
6 | 10f | 5b | 9b | >40 | >40 | 11.79 ± 2.93 |
7 | 10g | 5c | 9b | >40 | >40 | >40 |
8 | 10h | 5d | 9b | 16.79 ± 1.14 | 14.36 ± 1.89 | 6.75 ± 0.89 |
9 | 10i | 5a | 9c | >40 | >40 | >40 |
10 | 10j | 5b | 9c | >40 | >40 | >40 |
11 | 10k | 5c | 9c | >40 | 34.69 ± 2.94 | >40 |
12 | 10l | 5d | 9c | 10.76 ± 2.28 | 9.03 ± 1.49 | 5.62 ± 0.98 |
13 | 10m | 5a | 9d | >40 | >40 | >40 |
14 | 10n | 5b | 9d | >40 | >40 | 22.56 ± 2.78 |
15 | 10o | 5c | 9d | >40 | >40 | >40 |
16 | 10p | 5d | 9d | 20.42 ± 3.99 | 9.60 ± 0.88 | 8.50 ± 2.55 |
17 | 10q | 5d | 9e | 4.19 ± 0.78 | 3.55 ± 0.63 | 2.95 ± 0.78 |
18 | 10r | 5b | 9e | 15.15 ± 2.40 | 8.84 ± 1.68 | 5.96 ± 1.33 |
19 | NC1 | - | - | 27.17 ± 5.39 | - | 25.80 ± 10.40 |
20 | NC2 | - | - | >40 | - | >40 |
21 | 5-FUc | - | - | 11.76 ± 2.03 | 15.14 ± 1.06 | 13.05 ± 1.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Shi, L.; Liu, M.; Zhang, Z.; Liu, F.; Long, T.; Wen, S.; Huang, D.; Wang, K.; Zhou, R.; et al. Design, Synthesis, and Cytotoxic Activity of Novel Natural Arylsulfonamide-Inspired Molecules. Molecules 2022, 27, 1479. https://doi.org/10.3390/molecules27051479
Huang W, Shi L, Liu M, Zhang Z, Liu F, Long T, Wen S, Huang D, Wang K, Zhou R, et al. Design, Synthesis, and Cytotoxic Activity of Novel Natural Arylsulfonamide-Inspired Molecules. Molecules. 2022; 27(5):1479. https://doi.org/10.3390/molecules27051479
Chicago/Turabian StyleHuang, Wenbo, Liqiao Shi, Manli Liu, Zhigang Zhang, Fang Liu, Tong Long, Shaohua Wen, Daye Huang, Kaimei Wang, Ronghua Zhou, and et al. 2022. "Design, Synthesis, and Cytotoxic Activity of Novel Natural Arylsulfonamide-Inspired Molecules" Molecules 27, no. 5: 1479. https://doi.org/10.3390/molecules27051479
APA StyleHuang, W., Shi, L., Liu, M., Zhang, Z., Liu, F., Long, T., Wen, S., Huang, D., Wang, K., Zhou, R., Fang, W., Hu, H., & Ke, S. (2022). Design, Synthesis, and Cytotoxic Activity of Novel Natural Arylsulfonamide-Inspired Molecules. Molecules, 27(5), 1479. https://doi.org/10.3390/molecules27051479