Low-Carbohydrate, High-Protein, and Gluten-Free Bread Supplemented with Poppy Seed Flour: Physicochemical, Sensory, and Spectroscopic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pasting Behavior of Bread Mixtures
2.2. Physical Properties of Bread
2.3. Texture Parameters of Bread
2.4. Sensory and Calorific Value of Bread
2.5. TPC and AA of Bread
2.6. Amino Acid and Fatty Acid Composition of Low-Carbohydrate Bread with Optimal PF Supplementation
2.7. Characteristics and FTIR Analysis of Changes in the Spectra of the Studied Bread Samples
3. Materials and Methods
3.1. Materials
3.2. Rapid Visco Analyzer (RVA) Measurements
3.3. Breadmaking Procedure
3.4. Analysis of Physical Properties of Bread
3.5. Texture Evaluation of Bread
3.6. Sensory Evaluation and Calorific Value of Bread
3.7. Amino Acid and Fatty Acid Profile Analysis
3.8. Total Phenolic Content (TPC) and Antioxidant Activity (AA)
3.9. Infrared Spectra Measurements
3.10. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hoehnel, A.; Axel, C.; Bez, J.; Arendt, E.K.; Zannini, E. Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread. J. Cereal Sci. 2019, 89, 102816. [Google Scholar] [CrossRef]
- Taghdir, M.; Mazloomi, S.M.; Honar, N.; Sepandi, M.; Ashourpour, M.; Salehi, M. Effect of soy flour on nutritional, physicochemical, and sensory characteristics of gluten-free bread. Food Sci. Nutr. 2017, 5, 439–445. [Google Scholar] [CrossRef]
- Costantini, L.; Lukšič, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Rayas-Duarte, P.; Shogren, R.L.; Sessa, D.J. Low carbohydrates bread: Formulation, processing and sensory quality. Food Chem. 2006, 99, 686–692. [Google Scholar] [CrossRef]
- Kostenko, E.; Butenko, E.; Golubeva, M.; Arseneva, L. Determining the microelement composition of poppy seeds using solidphase spectrophotometry method. Eastern-Europ. J. Enterpr. Technol. 2018, 2, 11–92. [Google Scholar]
- Aksoylu, Z.; Çağindi, Ö.; Köse, E. Effects of blueberry, grape seed powder and poppy seed incorporation on physicochemical and sensory properties of biscuit. J. Food Qual. 2018, 38, 164–174. [Google Scholar] [CrossRef]
- Gök, V.; Akkaya, L.; Obuz, E.; Bulut, S. Effect of ground poppy seed as a fat replacer on meat burgers. Meat. Sci. 2011, 89, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Reguła, J.; Cerba, A.; Suliburska, J.; Tinkov, A.A. In vitro bioavailability of calcium, magnesium, iron, zinc, and copper from gluten-free breads supplemented with natural additives. Biol. Trace Element Res. 2018, 182, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Reguła, J.; Suliburska, J.; Złotek, U.; Gawlik-Dziki, U.; Ferreira, I.M.P.L.V.O. Safeness of diets based on gluten-free buckwheat bread enriched with seeds and nuts—Effect on oxidative and biochemical parameters in rat serum. Nutrients 2020, 12, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świeca, M.; Reguła, J.; Suliburska, J.; Złotek, U.; Gawlik-Dziki, U. Effects of gluten-free breads, with varying functional supplements, on the biochemical parameters and antioxidant status of rat serum. Food Chem. 2015, 182, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Dankar, I.; Haddarah, A.; Omar, F.E.; Pujolà, M.; Sepulcre, F. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 2018, 260, 7–12. [Google Scholar] [CrossRef]
- Al-Mahsaneh, M.; Aljarrah, M.; Rababah, T.; Alu’datt, M. Using MR-FTIR and texture profile to track the effect of storage time and temperature on pita bread staling. J. Food Qual. 2018, e8252570. [Google Scholar] [CrossRef] [Green Version]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 2012, 131, 802–810. [Google Scholar] [CrossRef]
- Kaushal, P.; Kumar, V.; Sharma, H.K. Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT-Food Sci. Technol. 2012, 48, 59–68. [Google Scholar] [CrossRef]
- Alvarez-Jubette, L.; Auty, M.; Arendt, E.K.; Gallagher, E. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur. Food Res. Technol. 2010, 230, e445. [Google Scholar] [CrossRef]
- Monteiro, J.S.; Farage, P.; Zandonadi, R.P.; Botelho, R.B.A.; de Oliveira, L.d.L.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; Araújo, W.M.C. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021, 10, 614. [Google Scholar] [CrossRef]
- Ziemichód, A.; Różyło, R.; Dziki, D. Impact of Whole and Ground-by-Knife and Ball Mill Flax Seeds on the Physical and Sensorial Properties of Gluten Free-Bread. Processes 2020, 8, 452. [Google Scholar] [CrossRef]
- Herchi, W.; Arráez-Román, D.; Boukhchina, S.; Kallel, H.; Segura-Carretero, A.; Fernández-Gutierrez, A. A review of the methods used in the determination of flaxseed components. African J. Biotechnol. 2012, 11, 724–731. [Google Scholar]
- Wójcik, M.; Różyło, R.; Schonlechner, R.; Berger, M.V. Physico-chemical properties of an innovative gluten-free, low-carbohydrate and high protein-bread enriched with pea protein powder. Sci. Rep. 2021, 11, e14498. [Google Scholar] [CrossRef]
- Lainer, J.; Dawid, C.; Dunkel, A.; Glaser, P.; Wittl, S.; Hofmann, T. Characterization of Bitter-Tasting Oxylipins in Poppy Seeds (Papaver somniferum L.). J. Agric. Food Chem. 2020, 68, 10361–10373. [Google Scholar] [CrossRef]
- Ishtiaque, S.; Khan, N.; Siddiqui, M.A.; Siddiqi, R.; Naz, S. Antioxidant potential of the extracts, fractions and oils derived from oilseeds. Antioxidants 2013, 2, 246–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, U.; Gani, A.; Ahmad, M.; Shah, U.; Baba, W.N.; Masoodi, F.A.; Maqsood, S.; Gani, A.; Wani, I.A.; Wani, S.M. Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties. J. Food Sci. Technol. 2015, 52, 6334–6344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlinková, A.; Havrlentová, M.; Šupová, J.; Bednárová, A. Poppy seed (papaver somniferum l.): Effect of genotype and year of cultivation on variability in its lipid composition. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 908–922. [Google Scholar]
- Oniszczuk, T.; Combrzyński, M.; Matwijczuk, A.; Oniszczuk, A.; Gładyszewska, B.; Podleśny, J.; Wójtowicz, A. Physical assessment, spectroscopic and chemometric analysis of starch-based foils with selected functional additives. PLoS ONE 2019, 14, e0212070. [Google Scholar] [CrossRef] [PubMed]
- Pourfarzad, A.; Ahmadian, Z.; Habibi-Najafi, M.B. Interactions between polyols and wheat biopolymers in a bread model system fortified with inulin: A Fourier transform infrared study. Heliyon 2018, 4, e01017. [Google Scholar] [CrossRef] [Green Version]
- ISO Standard 20483:2006; Cereals and Pulses Determination of the Nitrogen Content and Calculation of the Crude Protein Content-Kjeldahl Method. ISO International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO Standard 11085:2008; Cereals, Cereals-Based Products and Animals Feeding Stuffs Determination of Crude Fat and Total Fat Content by the Randall Extraction Method. ISO International Organization for Standardization: Geneva, Switzerland, 2008.
- Asp, N.G.; Johansson, C.G.; Hallmer, H.; Siljestrom, M. Rapid enzymatic assay of insoluble and soluble dietary fiber. J. Agric. Food Chem. 1983, 31, 476–482. [Google Scholar] [CrossRef]
- ISO Standard 2171:2007; Cereals, Pulses and By-Products Determination of Ash Yield by Incineration. ISO International Organization for Standardization: Geneva, Switzerland, 2007.
- Gámbaro, A.; Giménez, A.; Ares, G.; Gilardi, V. Influence of enzymes on the texture of brown pan bread. J. Texture Stud. 2006, 37, 300–314. [Google Scholar] [CrossRef]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, C.; Biliaderis, C. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Davis, M.G.; Thomas, A.J. An investigation of hydrolytic techniques for the amino acid analysis of food stuffs. J. Sci. Food Agric. 1973, 24, 1525–1540. [Google Scholar] [CrossRef]
- Schramm, F.; Moor, S.J.; Bigwood, E.J. Chromatographic determination of cystine as cysteic acid. Biochem. J. 1954, 59, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Ziemichód, A.; Wójcik, M.; Różyło, R. Ocimum tenuiflorum seeds and Salvia hispanica seeds: Mineral and amino acid composition, physical properties, and use in gluten-free bread. CYTA-J. Food 2019, 17, 804–813. [Google Scholar] [CrossRef] [Green Version]
- ISO Standard 12966-2:2017; Animal and vegetable fats and oils Gas chromatography of fatty acid methyl esters-Part 2: Preparation of methyl esters of fatty acids. ISO International Organization for Standardization: Geneva, Switzerland, 2017.
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.B.; Wirkowska-Wojdyła, M.; Ceglińska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, e7352631. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Sample | Peak Viscosity (cP) | Trough Viscosity (cP) | Breakdown Viscosity (cP) | Final Viscosity (cP) | Setback Viscosity (cP) | Peak Time (min) | Pasting Temperature (°C) |
---|---|---|---|---|---|---|---|
C | 3177 ± 53 a | 2976 ± 45 d | 200 ± 20 a | 4813 ± 68 a | 1837 ± 44 a | 6.10 ± 0.83 a | 50 ± 0.05 |
5PF | 2711 ± 62 b | 2639 ± 37 c | 72 ± 15 b | 4361 ± 61 b | 1722 ± 46 b | 6.56 ± 0.27 b | 50 ± 0.10 |
10PF | 2574 ± 63 c | 2496 ± 48 b | 78 ± 11 b | 3989 ± 28 c | 1493 ± 40 c | 6.22 ± 0.21 a | 50 ± 0.11 |
15PF | 2355 ± 45 d | 2278 ± 39 a | 77 ± 17 b | 3607 ± 58 d | 1329 ± 32 d | 6.62 ± 0.26 b | 50 ± 0.12 |
Properties of Bread | Control Bread (0%PF) | Bread with 5% PF | Bread with 10% PF | Bread with 15% PF |
---|---|---|---|---|
Moisture of Bread (%) | 55.1 ± 0.22 | 54.8 ± 0.34 | 55.1 ± 0.23 | 55.4 ± 0.33 |
Baking Loss (%) | 14.8 ± 0.45 b | 13.1 ± 0.48 a | 13.3 ± 0.33 a | 13.6 ± 0.49 a |
Volume of 100 g of Bread (cm3) | 145.5 ± 1.82 a | 147.6 ± 0.93 a | 155.7 ± 0.44 c | 153.1 ± 1.67 b |
pH (−) | 5.4 ± 0.03 a | 5.3 ± 0.02 b | 5.3 ± 0.02 b | 5.3 ± 0.02 b |
Color L* Value | 41.7 ± 0.24 a | 39.7 ± 0.13 b | 39.6 ± 0.22 b | 38.4 ± 0.33 b |
Color a* Value | 5.4 ± 0.04 a | 5.7 ± 0.04 b | 5.5 ± 0.07 a | 5.3 ± 0.06 a |
Color b* Value | 20.1 ± 0.15 a | 20.3 ± 0.12 a | 20.1 ± 0.20 a | 19.2 ± 0.25 b |
Color C* Value | 20.7 ± 0.21 | 20.8 ± 0.18 | 20.8 ± 0.20 | 19.9 ± 0.21 |
Color h° Value | 74.5 ± 0.02 | 74.4 ± 0.08 | 74.7 ± 0.07 | 74.6 ± 0.05 |
Color ∆E | ─ | 2.0 ± 0.07 a | 2.0 ± 0.02 a | 3.4 ± 0.23 b |
Addition of Poppy Flour (%) | Taste | Odour | Color | Texture | Overall Acceptability |
---|---|---|---|---|---|
0 | 5.6 ± 0.29 a | 5.6 ± 0.19 | 6.0 ± 0.34 | 5.3 ± 0.21 a | 5.7 ± 0.32 a |
5 | 5.9 ± 0.43 a | 6.0 ± 0.22 | 6.3 ± 0.31 | 5.3 ± 0.27 a | 5.9 ± 0.24 a |
10 | 5.8 ± 0.24 a | 5.8 ± 0.21 | 6.3 ± 0.23 | 5.3 ± 0.21 a | 5.9 ± 0.29 a |
15 | 5.3 ± 0.31 b | 5.7 ± 0.17 | 6.0 ± 0.21 | 4.7 ± 0.17 b | 5.4 ± 0.25 b |
Fat (%) | Fibre (%) | Carbohydrates (%) | Protein (%) | Energy (kcal/100g) | |
0 | 3.3 ± 0.05 a | 12.3 ± 0.10 a | 16.9 ± 0.10 a | 17.5 ± 0.03 a | 192.3 a |
10 | 4.0 ± 0.09 b | 10.2 ± 0.09 b | 14.6 ± 0.12 b | 16.3 ± 0.08 b | 176.9 b |
Sample | TPC [mg GAE/g d.m.] | EC50 ABTS [mg d.m./mL] | EC50 DPPH [mg d.m./mL] |
---|---|---|---|
Control Flour | 1.45 ± 0.13 d | 34.6 ± 2.03 a | 85.2 ± 5.28 a |
Poppy Flour | 0.42 ± 0.06 c | 204.1 ± 15.61 e | 211.3 ± 18.72 e |
0% | 1.29 ± 0.15 b | 40.4 ± 3.26 b | 97.0 ± 4.31 b |
5% | 1.21 ± 0.11 b | 44.7 ± 2.89 bc | 101.5 ± 6.13 bc |
10% | 1.19 ± 0.09 ab | 48.2 ± 3.03 cd | 105.7 ± 5.97 c |
15% | 1.05 ± 0.06 a | 50.9 ± 4.16 d | 116.9 ± 6.07 d |
Amino Acids | Amount of Amino Acid (mg∙g−1) | |
---|---|---|
Control (0%PF) | Bread with 10% PF | |
Asparagine | 36.4 ± 0.85 | 38.1 ± 0.99 |
Threonine | 13.1 ± 0.25 | 13.5 ± 0.30 |
Serine | 17.6 ± 0.71 | 18.4 ± 0.68 |
Glutamic Acid | 63.5 ± 1.39 | 67.0 ± 1.10 |
Proline | 18.5 ± 0.37 | 19.2 ± 0.38 |
Glycine | 16.1 ± 0.31 | 16.6 ± 0.24 |
Alanine | 15.7 ± 0.46 | 16.8 ± 0.61 |
Cysteic Acid | 6.2 ± 0.23 | 5.9 ± 0.30 |
Valine | 15.6 ± 0.44 | 18.4 ± 0.46 |
Methionine Sulfone | 5.8 ± 0.38 | 5.7 ± 0.43 |
Isoleucine | 14.3 ± 0.31 | 14.6 ± 0.39 |
Leucine | 23.5 ± 0.53 | 24.3 ± 0.64 |
Tyrosine | 9.3 ± 0.19 | 9.7 ± 0.21 |
Phenylalanine | 17.2 ± 0.41 | 17.4 ± 0.48 |
Histidine | 8.5 ± 0.31 | 8.7 ± 0.35 |
Lysine | 20.1 ± 0.42 | 20.6 ± 0.41 |
Arginine | 31.4 ± 0.87 | 32.1 ± 0.95 |
Tryptophan | 8.7 ± 0.32 | 7.3 ± 0.41 |
Fatty Acids | Amount of Fatty Acids (g/100 g) | |
---|---|---|
Control (0%PF) | Bread with 10% PF | |
Caprylic Acid (C8:0) | 0.01 ± 0.00 | 0.01 ± 0.00 |
Capric Acid (C10:0) | 0.01 ± 0.00 | — |
Lauric Acid (C12:0) | 0.03 ± 0.01 | 0.01 ± 0.00 |
Myristic Acid (C14:0) | 0.02 ± 0.00 | 0.01 ± 0.00 |
cis-9-Tetradecenoic Acid (C14:ln5) | — | — |
Pentadecanoic Acid (C15:0) | 0.002 ± 0.00 | 0.003 ± 0.00 |
Palmitic Acid (C16:0) | 0.39 ± 0.01 | 0.65 ± 0.01 |
cis-9-Hexadecenoic Acid (C16:ln7) | 0.01 ± 0.00 | 0.02 ± 0.00 |
Heptadecanoic Acid (C17:0) | 0.003 ± 0.00 | 0.01 ± 0.00 |
cis-10-heptadecanoic Acid (C17:ln7) | 0.001 ± 0.00 | 0.003 ± 0.00 |
Octadecanoic Acid (C18:0) | 0.15 ± 0.01 | 0.23 ± 0.01 |
Oleic acid (C18:1n9c) + elaidic Acid (C18:1n9t) | 1.51 ± 0.01 | 1.71 ± 0.01 |
Linoleic acid (C18:2n6c) + trans-9,12-Octadecadienoic Acid (C18:2n6t) | 1.01 ± 0.00 | 2.84 ± 0.01 |
α-Linolenic Acid (C18:3n3(alpha)) | 1.36 ± 0.02 | 1.24 ± 0.01 |
Eicosanoic Acid (C20:0) | 0.02 ± 0.00 | 0.03 ± 0.00 |
cis-11-Eicosenoic Acid (C20:1n9) | 0.04 ± 0.00 | 0.03 ± 0.00 |
cis-11,14-Eicosadienoic Acid (C20:2n6) | 0.003 ± 0.00 | 0.003 ± 0.00 |
Heneicosanoic Acid (C21:0) | 0.001 ± 0.00 | 0.002 ± 0.00 |
cis-11,14,17-Eicosatrienoic Acid (C20:3n3) | 0.001 ± 0.00 | — |
Behenic Acid (C22:0) | 0.024 ± 0.01 | 0.026 ± 0.01 |
Erucic Acid (C22:1n9) | 0.005 ± 0.00 | 0.005 ± 0.00 |
cis-13,16-Docosadienoic Acid (C22:2n6) | 0.001 ± 0.00 | — |
Tricosanoic Acid (C23:0) | 0.002 ± 0.00 | 0.003 ± 0.00 |
Lignoceric Acid (C24:0) | 0.02 ± 0.00 | 0.02 ± 0.00 |
cis-15-tetracosenoic Acid (C24:1n9) | — | — |
SFA (Saturated Fatty Acid) | 0.67 ± 0.02 | 0.97 ± 0.02 |
MUFA (Mono Unsaturated Fatty Acid) | 1.56 ± 0.04 | 1.76 ± 0.03 |
PUFA (Poly Unsaturated Fatty Acid) | 2.38 ± 0.06 | 4.10 ± 0.04 |
OMEGA 3 | 1.37 ± 0.05 | 1.23 ± 0.05 |
OMEGA 6 | 1.01 ± 0.07 | 2.85 ± 0.05 |
OMEGA 9 | 1.55 ± 0.05 | 1.74 ± 0.05 |
Maximum Position (cm−1) | Types and Origin of Vibrations | |
---|---|---|
Control Bread | Poppy Flour and Bread with 5, 10, 15 % PF | |
3279 | 3277 | νst.(–OH) and Intermolecular H-Bonded |
3006 | 3003 | νst. (C–H) in CH2 |
2918 | 2919 | |
2850 | 2851 | |
2665 | 2671 | Overtone |
1737 | 1738 | ν (C=O) |
1705 | - | |
1638 | 1638 | δ (O–H) and Amide I |
1539 | 1534 | Amide II |
1453 | 1448 | ν (C–C) |
1407 | 1399 / 1373 | δ (–CH2) + ν (COO) |
1309 | 1309 | ν (C–C) |
1275 | - | |
1234 | 1235 | Amide III |
1153 | 1143 | νm (C–O) and νm (C–C) |
1095 | 1071 | |
1044 | 1015 | ν (C–O–C) |
941 | - | ν (C=C) And Skeletal Vibrations in the Pyranose Ring and Vibrations in the α-1,4-glycoside and α-1,6-glycoside Bonds Present in the Starch Structure |
913 | - | |
772 | 763 | |
712 | 692 | |
662 | 650 | |
598 | 598 | |
510 | 510 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, M.; Różyło, R.; Schönlechner, R.; Matwijczuk, A.; Dziki, D. Low-Carbohydrate, High-Protein, and Gluten-Free Bread Supplemented with Poppy Seed Flour: Physicochemical, Sensory, and Spectroscopic Properties. Molecules 2022, 27, 1574. https://doi.org/10.3390/molecules27051574
Wójcik M, Różyło R, Schönlechner R, Matwijczuk A, Dziki D. Low-Carbohydrate, High-Protein, and Gluten-Free Bread Supplemented with Poppy Seed Flour: Physicochemical, Sensory, and Spectroscopic Properties. Molecules. 2022; 27(5):1574. https://doi.org/10.3390/molecules27051574
Chicago/Turabian StyleWójcik, Monika, Renata Różyło, Regine Schönlechner, Arkadiusz Matwijczuk, and Dariusz Dziki. 2022. "Low-Carbohydrate, High-Protein, and Gluten-Free Bread Supplemented with Poppy Seed Flour: Physicochemical, Sensory, and Spectroscopic Properties" Molecules 27, no. 5: 1574. https://doi.org/10.3390/molecules27051574
APA StyleWójcik, M., Różyło, R., Schönlechner, R., Matwijczuk, A., & Dziki, D. (2022). Low-Carbohydrate, High-Protein, and Gluten-Free Bread Supplemented with Poppy Seed Flour: Physicochemical, Sensory, and Spectroscopic Properties. Molecules, 27(5), 1574. https://doi.org/10.3390/molecules27051574