Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples
Abstract
:1. Introduction
2. Results
2.1. UV Identification
2.2. Determining the BSA and Cr(III) Content
2.3. Selection for Potential Cell Fusion in Immunized Mice
2.4. Screening of Positive Clones and Establishment of Hybridoma Cell Lines
2.5. Analysis of Isotype and Stability of Hybridoma Cell Lines
2.6. Determining the Affinity of Three Cr(III)-EDTA mAbs
2.7. IcELISA Optimization and Establishment of IcELISA Standard Curve
2.7.1. IcELISA Optimization
2.7.2. IcELISA Standard Curve
2.8. Validation of IcELISA
2.8.1. Sensitivity
2.8.2. Specificity
2.8.3. Accuracy and Precision
2.8.4. Reliability
3. Discussion
3.1. The Synthesis Method of Cr(III) Immunogen
3.2. The Sensitivity of IcELISA for Cr(III)-EDTA
3.3. The Specificity of IcELISA for Cr(III)-EDTA
3.4. The Selection of ELISA Format
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Buffer and Hybridoma Culture Medium
4.3. Experimental Animals and Cells
4.4. Equipment and Instruments
4.5. Immunogen Synthesis
4.6. Immunogen Identification
4.6.1. UV Identification
4.6.2. Determining the Mass Concentration of BSA and Cr(III)
4.7. Preparation of Cr(III)-EDTA mAb
4.7.1. Potential Mouse Selection for Cell Fusion
4.7.2. Cell Fusion and Screening of Positive Hybridoma Cell Lines
4.7.3. Production and Purification of Cr(III)-EDTA mAb
4.8. Assessment of Cr(III)-EDTA mAb
4.8.1. Analysis of Isotype and Stability of Hybridoma Cell Lines
4.8.2. Identifying the Affinity, Sensitivity and Specificity of Cr(III)-EDTA mAbs
4.9. Development and Optimization of IcELISA
4.9.1. IcELISA Procedures
4.9.2. IcELISA Optimization
4.9.3. IcELISA Standard Curve
4.10. Validation of IcELISA
4.10.1. Sensitivity
4.10.2. Specificity
4.10.3. Accuracy and Precision
4.10.4. Reliability
4.11. Preparation of Standard Solution and Sample Solution
4.11.1. Standard Solution
4.11.2. Sample Solution
4.12. Statistical Analysis and Image Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pushkar, B.; Sevak, P.; Parab, S.; Nilkanth, N. Chromium pollution and its bioremediation mechanisms in bacteria: A review. J. Environ. Manag. 2021, 287, 112279. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Ma, J.; Liu, Q.; Shi, T.; Gong, Y.; Yang, S.; Wu, Y. Status of chromium accumulation in agricultural soils across China (1989–2016). Chemosphere 2020, 256, 127036. [Google Scholar] [CrossRef] [PubMed]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium Bioaccumulation and Its Impacts on Plants: An Overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, X.; Wan, L.; Liang, P.; Zheng, R.; Lin, Z.; Chen, R.; Pei, M.; Shen, Y. The acute toxic effects of hexavalent chromium on the liver of marine medaka (Oryzias melastigma). Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2020, 231, 108734. [Google Scholar] [CrossRef]
- Mohamed, A.A.; El-Houseiny, W.; El-Murr, A.E.; Ebraheim, L.L.M.; Ahmed, A.I.; El-Hakim, Y.M.A. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicol. Environ. Saf. 2020, 188, 109890. [Google Scholar] [CrossRef]
- Nickens, K.P.; Patierno, S.R.; Ceryak, S. Chromium genotoxicity: A double-edged sword. Chem.-Biol. Interact. 2010, 188, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, S.; Woo, S.Y.; Chung, J.Y.; Hong, Y.S.; Oh, S.Y.; Choi, S.J.; Oh, S.Y.; Kim, K.W.; Shin, Y.H.; et al. Prenatal Exposure to Lead and Chromium is Associated with IL-13 Levels in Umbilical Cord Blood and Severity of Atopic Dermatitis: COCOA Study. Immune Netw. 2019, 19, e42. [Google Scholar] [CrossRef]
- Yatera, K.; Morimoto, Y.; Ueno, S.; Noguchi, S.; Kawaguchi, T.; Tanaka, F.; Suzuki, H.; Higashi, T. Cancer Risks of Hexavalent Chromium in the Respiratory Tract. J. UOEH 2018, 40, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Chappell, G.A.; Wikoff, D.S.; Thompson, C.M. Assessment of Mechanistic Data for Hexavalent Chromium-Induced Rodent Intestinal Cancer Using the Key Characteristics of Carcinogens. Toxicol. Sci. 2021, 180, 38–50. [Google Scholar] [CrossRef]
- Liu, X.; Xiang, J.J.; Tang, Y.; Zhang, X.L.; Fu, Q.Q.; Zou, J.H.; Lin, Y. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal. Chim. Acta 2012, 745, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, F.; Wang, Y.; Fang, Y.; Li, P.; Yang, W.; Ma, N.; Ma, G.; Hu, Q. Concentrations of heavy metals in muscle and edible offal of pork in Nanjing city of China and related health risks. J. Food Sci. 2020, 85, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, W.C.; Nagai, H.; Ohira, S.I.; Toda, K. Semi-continuous Monitoring of Cr(VI) and Cr(III) during a Soil Extraction Process by Means of an Ion Transfer Device and Graphite Furnace Atomic Absorption Spectroscopy. Anal. Sci. 2020, 36, 617–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divrikli, U.; Soylak, M.; Elci, L. Determination of total chromium by flame atomic absorption spectrometry after coprecipitation by cerium (IV) hydroxide. Environ. Monit. Assess. 2008, 138, 167–172. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Zhao, L.Y.; Sheng, D.; Chen, Y.J.; Hu, X.; Lian, H.Z.; Mao, L.; Cui, X.B. Speciation analysis of chromium by carboxylic group functionalized mesoporous silica with inductively coupled plasma mass spectrometry. Talanta 2019, 195, 173–180. [Google Scholar] [CrossRef]
- Neiva, A.M.; Sperança, M.A.; Costa, V.C.; Jacinto, M.A.C.; Pereira-Filho, E.R. Determination of toxic metals in leather by wavelength dispersive X-ray fluorescence (WDXRF) and inductively coupled plasma optical emission spectrometry (ICP OES) with emphasis on chromium. Environ. Monit. Assess. 2018, 190, 618. [Google Scholar] [CrossRef]
- Yao, C.; Yu, S.; Li, X.; Wu, Z.; Liang, J.; Fu, Q.; Xiao, W.; Jiang, T.; Tang, Y. A plasmonic ELISA for the naked-eye detection of chromium ions in water samples. Anal. Bioanal. Chem. 2017, 409, 1093–1100. [Google Scholar] [CrossRef]
- Kohl, T.O.; Ascoli, C.A. Indirect Competitive Enzyme-Linked Immunosorbent Assay (ELISA). Cold Spring Harb. Protoc. 2017, 7, 569-574. [Google Scholar] [CrossRef]
- Huang, J.X.; Yao, C.Y.; Yang, J.Y.; Li, Z.F.; He, F.; Tian, Y.X.; Wang, H.; Xu, Z.L.; Shen, Y.D. Design of Novel Haptens and Development of Monoclonal Antibody-Based Immunoassays for the Simultaneous Detection of Tylosin and Tilmicosin in Milk and Water Samples. Biomolecules 2019, 9, 770. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.; Zhao, Q.; Iqbal, M.N.; Dong, M.; Li, X.; Lin, M.; Wang, R.; Lei, F.; He, C.; Wang, S. Development of immunoassay methods based on monoclonal antibody and its application in the determination of cadmium ion. J. Hazard. Mater. 2021, 411, 124992. [Google Scholar] [CrossRef]
- Fu, X.; Chen, E.; Ma, B.; Xu, Y.; Hao, P.; Zhang, M.; Ye, Z.; Yu, X.; Li, C.; Ji, Q. Establishment of an Indirect Competitive Enzyme-Linked Immunosorbent Method for the Detection of Heavy Metal Cadmium in Food Packaging Materials. Foods 2021, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; He, R.; Ju, X.; Zhang, J.; Wang, M.; Xing, C.; Yuan, J. Development and optimization of an immunoassay for the detection of Hg(II) in lake water. Food Sci. Nutr. 2019, 7, 1615–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, P.; Chu, Y.; Liu, C.; Guo, X.; Zhao, K.; Li, J.; Du, H.; Zhang, X.; Wang, H.; Deng, A. A competitive immunoassay for ultrasensitive detection of Hg2+ in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering. Anal. Chim. Acta 2016, 906, 139–147. [Google Scholar] [CrossRef]
- Xiang, J.J.; Zhai, Y.F.; Tang, Y.; Wang, H.; Liu, B.; Guo, C.W. A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the lead-DTPA complex. Environ. Pollut. 2010, 158, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Oguma, S.; Namiki, Y.; Ohmura, N. Monoclonal antibody to trivalent chromium chelate complex and its application to measurement of the total chromium concentration. Anal. Chem. 2009, 81, 4005–4009. [Google Scholar] [CrossRef]
- Zou, J.; Tang, Y.; Zhai, Y.; Zhong, H.; Song, J. A competitive immunoassay based on gold nanoparticles for the detection of chromium in water samples. Anal. Methods 2013, 5, 2720–2726. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J. Nanobiotechnol. 2021, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.A.; Chakrabarti, P.; Khosraviani, M.; Hatcher, F.M.; Westhoff, C.M.; Goebel, P.; Wylie, D.E.; Blake, R.C., II. Metal binding properties of a monoclonal antibody directed toward metal-chelate complexes. J. Biol. Chem. 1996, 271, 27677–27685. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Hu, B.; Lou, Y.; Xu, L.; Yang, F.; Yu, H.; Blake, D.A.; Liu, F. Characterization of monoclonal antibodies for lead-chelate complexes: Applications in antibody-based assays. J. Agric. Food Chem. 2007, 55, 4993–4998. [Google Scholar] [CrossRef]
- Liu, F.; Lou, Y.; Shi, X.; Wang, H.; Zhu, X. Preparation and characterization of monoclonal antibody specific for copper-chelate complex. J. Immunol. Methods 2013, 387, 228–236. [Google Scholar] [CrossRef]
- Leopold, K.; Foulkes, M.; Worsfold, P. Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta 2010, 663, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Velanki, S.; Kelly, S.; Thundat, T.; Blake, D.A.; Ji, H.F. Detection of Cd(II) using antibody-modified microcantilever sensors. Ultramicroscopy 2007, 107, 1123–1128. [Google Scholar] [CrossRef]
- Alzari, P.M.; Lascombe, M.B.; Poljak, R.J. Three-dimensional structure of antibodies. Annu. Rev. Immunol. 1988, 6, 555–580. [Google Scholar] [CrossRef] [PubMed]
- Delehanty, J.B.; Jones, R.M.; Bishop, T.C.; Blake, D.A. Identification of important residues in metal-chelate recognition by monoclonal antibodies. Biochemistry 2003, 42, 14173–14183. [Google Scholar] [CrossRef] [PubMed]
- Hornbeck, P.V. Enzyme-Linked Immunosorbent Assays. Curr. Protoc. Immunol. 2015, 110, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhang, Q.; Fang, L.; Akash, M.S.; Rehman, K.; Liu, Z.; Shi, W.; Chen, S. Development and comparison of two competitive ELISAs for estimation of cotinine in human exposed to environmental tobacco smoke. Drug Test. Anal. 2014, 6, 1020–1027. [Google Scholar] [CrossRef]
- Kohl, T.O.; Ascoli, C.A. Direct Competitive Enzyme-Linked Immunosorbent Assay (ELISA). Cold Spring Harb. Protoc. 2017, 7, 564-568. [Google Scholar] [CrossRef]
- Wang, C.J.; Luo, J.Y.; Qin, J.A.; Zhang, L.; Yang, S.H.; Yang, M.H. [Rapid detection of aflatoxin B_1 in Chinese herbal medicines by indirect and direct competitive enzyme-linked immunosorbent assays: A comparative analysis]. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 2021, 46, 5861–5866. [Google Scholar] [CrossRef]
- Lu, Y.; Peterson, J.R.; Gooding, J.J.; Lee, N.A. Development of sensitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol-A in canned foods and beverages. Anal. Bioanal. Chem. 2012, 403, 1607–1618. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, H.; Li, G.; Yang, X.; Li, R.; Wang, Z.; Wang, J. Establishment and optimization of monoclonal antibody-based heterologous dcELISA for 19-nortestosterone residue in bovine edible tissue. J. Food Sci. 2012, 77, T63–T69. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.S.; Meng, X.Y.; Zhang, Y.Y.; Yang, L.; Li, Z.H.; Zhang, J.H.; Wang, X.R.; Liu, J.Q.; Lu, S.Y.; et al. Production of a monoclonal antibody and development of an immunoassay for detection of Cr(III) in water samples. Chemosphere 2013, 93, 2467–2472. [Google Scholar] [CrossRef] [PubMed]
- Xi, T.; Xing, H.; Shi, W.; Wu, Y.; Zhou, P. Preparation and characterization of artificial antigens for cadmium and lead. Biol. Trace Elem. Res. 2012, 150, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, X.; Zhu, Y.; Lv, Z. A brief review of monoclonal antibody technology and its representative applications in immunoassays. J. Immunoass. Immunochem. 2018, 39, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, P.; Wang, J.; He, S.; Ren, Z.; Zhang, Y.; Xiong, J.; Jiang, H. Indirect competitive enzyme-linked immunosorbent assay based on a broad-spectrum monoclonal antibody for tropane alkaloids detection in pig urine, pork and cereal flours. Food Chem. 2021, 337, 127617. [Google Scholar] [CrossRef]
- Imtiaz, N.; Yunus, A.W. Comparison of Some ELISA Kits for Aflatoxin M1 Quantification. J. AOAC Int. 2019, 102, 677–679. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhang, H.; Jiang, J.; Fotina, H. Synthesis of Zearalenone Immunogen and Comparative Analysis of Antibody Characteristics. Int. J. Anal. Chem. 2021, 2021, 7109383. [Google Scholar] [CrossRef]
- Beatty, J.D.; Beatty, B.G.; Vlahos, W.G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J. Immunol. Methods 1987, 100, 173–179. [Google Scholar] [CrossRef]
- Darwish, I.A.; Blake, D.A. One-step competitive immunoassay for cadmium ions: Development and validation for environmental water samples. Anal. Chem. 2001, 73, 1889–1895. [Google Scholar] [CrossRef]
- Han, L.; Li, Y.T.; Jiang, J.Q.; Li, R.F.; Fan, G.Y.; Lv, J.M.; Zhou, Y.; Zhang, W.J.; Wang, Z.L. Development of a Direct Competitive ELISA Kit for Detecting Deoxynivalenol Contamination in Wheat. Molecules 2019, 25, 50. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Z.; Zhao, G.X.; Liu, J.; Zhang, H.C.; Wang, P.; Wang, J.P. Synthesis of novel haptens against ciprofloxacin and production of generic monoclonal antibodies for immunoscreening of fluoroquinolones in meat. J. Sci. Food Agric. 2013, 93, 1370–1377. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Zhang, H.T.; Zhang, H.H.; Wang, Z.L.; Yang, X.F.; Fan, G.Y. Development of an enzyme-linked immunosorbent assay for detection of clopidol residues in chicken tissues. J. Sci. Food Agric. 2014, 94, 2295–2300. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Peng, T.; Zheng, P.; Wang, Z.; Ling, Z.; Jiang, H. One-step icELISA developed with novel antibody for rapid and specific detection of diclazuril residue in animal-origin foods. Food Addit. Contam. Part A 2020, 37, 1633–1639. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Pschenitza, M.; Niessner, R.; Li, Y.; Knopp, D.; Deng, A. Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody. Anal. Bioanal. Chem. 2012, 403, 2519–2528. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sheng, F.; Kong, D.; Wang, Y.; Pan, Y.; Chen, M.; Tao, Y.; Liu, Z.; Ahmed, S.; Yuan, Z.; et al. Broad-spectrum monoclonal antibody and a sensitive multi-residue indirect competitive enzyme-linked immunosorbent assay for the antibacterial synergists in samples of animal origin. Food Chem. 2019, 280, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Ni, T.; Peng, D.; Wang, Y.; Pan, Y.; Xie, S.; Chen, D.; Wang, Y.; Tao, Y.; Yuan, Z. Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the multi-residue detection of avermectins in edible animal tissues and milk. Food Chem. 2019, 286, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Darwish, I.A.; Blake, D.A. Development and validation of a one-step immunoassay for determination of cadmium in human serum. Anal. Chem. 2002, 74, 52–58. [Google Scholar] [CrossRef]
- Aghamohammadi, M.; Faraji, M.; Shahdousti, P.; Kalhor, H.; Saleh, A. Trace determination of lead, chromium and cadmium in herbal medicines using ultrasound-assisted emulsification microextraction combined with graphite furnace atomic absorption spectrometry. Phytochem. Anal. PCA 2015, 26, 209–214. [Google Scholar] [CrossRef]
- Akinyele, I.O.; Shokunbi, O.S. Comparative analysis of dry ashing and wet digestion methods for the determination of trace and heavy metals in food samples. Food Chem. 2015, 173, 682–684. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Kandhro, G.A.; Shah, A.Q.; Baig, J.A.; Wadhwa, S.K.; Khan, S.; Kolachi, N.F.; Shah, F.; et al. Chromium and manganese levels in biological samples of normal and night blindness children of age groups (3–7) and (8–12) years. Biol. Trace Elem. Res. 2011, 143, 103–115. [Google Scholar] [CrossRef]
Cr(III)-EDTA mAbs | Titers of Supernatants | Titers of Ascites | IC50 Values of Supernatants (μg/mL) a | IC50 Values of Ascites (μg/mL) |
---|---|---|---|---|
2A3 | 5.12 × 102 | 5.12 × 105 | 9.26 | 9.04 |
2A11 | 2.56 × 102 | 2.56 × 105 | 16.56 | 16.18 |
3D9 | 2.56 × 102 | 1.28 × 105 | 21.82 | 20.35 |
Cr(III)-EDTA in Buffer | mAb in Buffer | Amax | IC50 | Amax/IC50 |
---|---|---|---|---|
PBS | PBS | 1.82 | 9.34 | 0.1949 |
HBS | HBS | 1.74 | 8.64 | 0.2014 |
PBS | HBS | 1.78 | 8.95 | 0.1989 |
HBS | PBS | 1.79 | 9.12 | 0.1963 |
Metal-Chelates | IC50 (μg/L) a,b | CR (%) c,d |
---|---|---|
Cr(III)-EDTA | 8.64 | 100 |
Fe(III)-EDTA | 771.43 | 1.12 |
Al(III)-EDTA | >3.2 × 103 | <0.5 |
Cd(II)-EDTA | >6.4 × 103 | <0.5 |
Hg(II)-EDTA | >6.4 × 103 | <0.5 |
Pb(II)-EDTA | >6.4 × 103 | <0.5 |
Cu(II)-EDTA | >6.4 × 103 | <0.5 |
Mn(II)-EDTA | >6.4 × 103 | <0.5 |
Mg(II)-EDTA | >6.4 × 103 | <0.5 |
Zn(II)-EDTA | >6.4 × 103 | <0.5 |
EDTA | >6.4 × 103 | <0.5 |
Samples | Cr(III)-EDTA Concerntration (μg/L) | Inner Batch | Among Batches | ||||
---|---|---|---|---|---|---|---|
Measured Value (μg/L) a | Recovery (%) | CV (%) a,b | Measured Value (μg/L) a | Recovery (%) | CV (%) b | ||
Soil | 2 | 2.19 ± 0.37 | 109.5 | 12.7 | 2.16 ± 0.33 | 10.8 | 13.7 |
10 | 9.12 ± 1.65 | 91.2 | 11.3 | 9.04 ± 1.72 | 90.4 | 12.4 | |
50 | 41.62 ± 3.28 | 83.2 | 13.5 | 42.31 ± 3.41 | 84.6 | 11.8 | |
Wheat flour | 2 | 2.08 ± 0.27 | 104 | 12.9 | 2.11 ± 0.24 | 105.5 | 13.3 |
10 | 9.33 ± 1.48 | 93.3 | 11.8 | 9.11 ± 0.1.51 | 91.1 | 11.1 | |
50 | 43.61 ± 3.13 | 87.2 | 9.7 | 44.53 ± 2.51 | 89.1 | 9.6 | |
Rice | 2 | 2.05 ± 0.31 | 102.5 | 13.3 | 2.12 ± 0.15 | 106 | 12.4 |
10 | 9.24 ± 1.56 | 92.4 | 12.4 | 8.91 ± 0.18 | 89.1 | 10.7 | |
50 | 44.25 ± 0.38 | 88.5 | 9.1 | 48.22 ± 2.54 | 96.4 | 10.3 | |
Pig feed | 2 | 1.97 ± 0.32 | 98.5 | 13.8 | 1.95 ± 0.27 | 97.5 | 13.6 |
10 | 8.73 ± 1.74 | 87.3 | 12.6 | 8.82 ± 1.81 | 88.2 | 13.1 | |
50 | 42.12 ± 3.28 | 84.2 | 11.3 | 42.77 ± 3.36 | 85.5 | 11.4 |
Samples | Sample Number | Positive Sample Number | Positive Rate (%) | Positive Sample Content Range (μg/L) | CV (%) | ||
---|---|---|---|---|---|---|---|
IcELISA | ICP-OES | IcELISA | ICP-OES | ||||
Soil | 20 | 4 | 4 | 20 | 1.2~44.2 | 1.1~42.3 | 10.6 |
Rice | 20 | 3 | 3 | 15 | 1.5~23.3 | 1.3~21.4 | 11.7 |
Wheat flour | 20 | 2 | 2 | 10 | 1.4~18.1 | 1.3~16.7 | 11.4 |
Pig feed | 20 | 4 | 4 | 20 | 1.4~36.5 | 1.2~34.8 | 13.3 |
Total | 80 | 13 | 13 | 16.3 | 1.2~44.2 | 1.1~42.3 | 10.6~13.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, Y.; Wang, S.; Hou, J.; Cai, L.; Fan, G. Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples. Molecules 2022, 27, 1585. https://doi.org/10.3390/molecules27051585
Wang X, Wang Y, Wang S, Hou J, Cai L, Fan G. Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples. Molecules. 2022; 27(5):1585. https://doi.org/10.3390/molecules27051585
Chicago/Turabian StyleWang, Xiaofei, Yanan Wang, Shuyun Wang, Jie Hou, Linlin Cai, and Guoying Fan. 2022. "Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples" Molecules 27, no. 5: 1585. https://doi.org/10.3390/molecules27051585
APA StyleWang, X., Wang, Y., Wang, S., Hou, J., Cai, L., & Fan, G. (2022). Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples. Molecules, 27(5), 1585. https://doi.org/10.3390/molecules27051585