Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking
Abstract
:1. Introduction
2. Results
2.1. Analytical Methods Comparison
2.2. Fining Trials in Model Wine Solution
2.3. Fining Trials on Sangiovese Red Wine
2.4. Measurement of Adsorption Isotherms of Tannins
3. Discussion
3.1. Analytical Methods Comparison
3.2. Fining Trials and Adsorption Isotherms
3.3. Practical Implication on Red Wine Properties
4. Materials and Methods
4.1. Wines
4.2. Chemicals and Fining Agents
4.3. Enological Tannins
4.4. Fining Trials
4.5. Spectrophotometric Determinations
4.6. HPLC Analysis
4.7. Measurement of Adsorption Isotherms of Tannin
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Cravero, M.C. Wine traceability. Beverages 2019, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. The fining and clarification of wines. In Principles and Practices of Winemaking; Springer: Boston, MA, USA, 1999; pp. 279–315. [Google Scholar]
- Fernandes, J.P.; Neto, R.; Centeno, F.; De Fátima Teixeira, M.; Gomes, A.C. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization. Front. Chem. 2015, 3, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, L.M.; Machado, A.; Coutinho, R.; Sousa, S.; Santos, R.; Xavier, A.; Figueiredo, M.; Teixeira, M.d.F.; Centeno, F.; Simões, J. Development of potential yeast protein extracts for red wine clarification and stabilization. Front. Microbiol. 2019, 10, 2310. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Jiménez-Martínez, M.D.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Effect of the use of purified grape pomace as a fining agent on the volatile composition of Monastrell wines. Molecules 2019, 24, 2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. A simple method to improve cork powder waste adsorption properties: Valorization as a new sustainable wine fining agent. ACS Sustain. Chem. Eng. 2019, 7, 1105–1112. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Alves, A.J.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Holistic and sustainable approach for recycling and valorization of Polyvinylpolypyrrolidone used in wine fining. ACS Sustain. Chem. Eng. 2018, 6, 14599–14606. [Google Scholar] [CrossRef]
- Río Segade, S.; Paissoni, M.A.; Vilanova, M.; Gerbi, V.; Rolle, L.; Giacosa, S. Phenolic composition influences the effectiveness of fining agents in vegan-friendly red wine production. Molecules 2020, 25, 120. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Fining. In Understanding Wine Chemistry; Waterhouse, A.L., Sacks, G.L., Jeffery, D.W., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 332–345. [Google Scholar]
- Maury, C.; Sarni-Manchado, P.; Cheynier, V. Highlighting protein fining residues in a model red wine. Food Chem. 2019, 279, 272–278. [Google Scholar] [CrossRef]
- Maury, C.; Sarni-Manchado, P.; Lefebvre, S.; Cheynier, V.; Moutounet, M. Influence of fining with plant proteins on proanthocyanidin composition of red wines. Am. J. Enol. Vitic. 2003, 54, 105–111. [Google Scholar]
- Cheynier, V.; Dueñas-Paton, M.; Salas, E.; Maury, C.; Souquet, J.-M.; Sarni-Manchado, P.; Fulcrand, H. Structure and properties of wine pigments and tannins. Am. J. Enol. Vitic. 2006, 57, 298–305. [Google Scholar]
- Scollary, G.R.; Pásti, G.; Kállay, M.; Blackman, J.; Clark, A.C. Astringency response of red wines: Potential role of molecular assembly. Trends Food Sci. Technol. 2012, 27, 25–36. [Google Scholar] [CrossRef]
- Marangon, M.; Vincenzi, S.; Curioni, A. Wine fining with plant proteins. Molecules 2019, 24, 2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagtap, S.; Bhatt, C.; Thik, J.; Rahimifard, S. Monitoring potato waste in food manufacturing using image processing and internet of things approach. Sustainability 2019, 11, 3173. [Google Scholar] [CrossRef] [Green Version]
- Gambuti, A.; Rinaldi, A.; Moio, L. Use of patatin, a protein extracted from potato, as alternative to animal proteins in fining of red wine. Eur. Food Res. Technol. 2012, 235, 753–765. [Google Scholar] [CrossRef]
- Kang, W.; Muhlack, R.A.; Bindon, K.A.; Smith, P.A.; Niimi, J.; Bastian, S.E.P. Potato protein fining of phenolic compounds in red wine: A study of the kinetics and the impact of wine matrix components and physical factors. Molecules 2019, 24, 4578. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, A.; Errichiello, F.; Moio, L. Alternative fining of Sangiovese wine: Effect on phenolic substances and sensory characteristics. Aust. J. Grape Wine Res. 2021, 27, 128–137. [Google Scholar] [CrossRef]
- Sun, L.; Srinivas, A.; Runnebaum, R.C. Understanding the impact of key wine components on the use of a non-swelling Ion-Exchange resin for wine protein fining treatment. Molecules 2019, 26, 3905. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Ricci, A.; Nedelkovski, D.; Dimovska, V.; Parpinello, G.P.; Versari, A. Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Food Chem. 2015, 171, 412–420. [Google Scholar] [CrossRef]
- Berg, J.C. The Role of Surfactants. In Absorbent Technology; Chatterjee, P.K., Gupta, B.S., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2002; Volume 13, pp. 149–198. [Google Scholar]
- Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 1989, 15, 1795–1810. [Google Scholar] [CrossRef]
- Smith, P.A. Precipitation of tannin with methyl cellulose allows tannin quantification in grape and wine samples. Tech. Rev. AWRI 2005, 158, 3–7. [Google Scholar]
- Mercurio, M.D.; Smith, P.A. Tannin quantification in red grapes and wine: Comparison of polysaccharide- and protein-based tannin precipitation techniques and their ability to model wine astringency. J. Agric. Food Chem. 2008, 56, 5528–5537. [Google Scholar] [CrossRef] [PubMed]
- Harbertson, J.F.; Kilmister, R.L.; Kelm, M.A.; Downey, M.O. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation. Food Chem. 2014, 160, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, B.; Salminen, J.-P.; Smolander, A.; Kitunen, V. Precipitation of proteins by tannins: Effects of concentration, protein/tannin ratio and pH. Int. J. Food Sci. 2012, 47, 875–878. [Google Scholar] [CrossRef]
- Løkra, S.; Helland, M.H.; Strætkvern, K.O.; Egelandsdal, B. Chemical characterization and functional properties of a potato protein concentrate prepared by large scale expanded bed absorption chromatography. LWT Food Sci. Technol. 2008, 41, 1089–1099. [Google Scholar] [CrossRef]
- Wang, X.; Ho, C.-T.; Huang, Q. Investigation of adsorption behavior of (−)- epigallocatechin gallate on Bovine Serum Albumin surface using quartz crystal microbalance with dissipation monitoring. J. Agric. Food Chem. 2007, 55, 4987–4992. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.J. All about Albumin; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Dong, Z.-B.; Liang, Y.-R.; Fan, F.-Y.; Ye, J.-H.; Zheng, X.-Q.; Lu, J.-L. Adsorption behavior of the catechins and caffeine onto polyvinylpolypyrrolidone. J. Agric. Food Chem. 2011, 59, 4238–4247. [Google Scholar] [CrossRef] [PubMed]
- Mennett, R.H.; Nakayama, T.O.M. The adsorption of hydroxybenzoic acids by Poly-N-Vinyl Pyrrolidinone. Am J. Enol. Vitic. 1969, 20, 169–175. [Google Scholar]
- McMurrough, I.; Madigan, D.; Smyth, M.R. Adsorption by Polyvinylpolypyrrolidone of catechins and proanthocyanidins from beer. J. Agric. Food Chem. 1995, 43, 2687–2691. [Google Scholar] [CrossRef]
- Mitchell, A.E.; Hong, Y.-J.; May, J.C.; Wright, C.A.; Bamforth, C.W. A comparison of Polyvinylpolypyrrolidone (PVPP), silica xerogel and a Polyvinylpyrrolidone (PVP)−Silica co-product for their ability to remove polyphenols from beer. J. Inst. Brew. 2005, 111, 20–25. [Google Scholar] [CrossRef]
- Gil, M.; Avila-Salas, F.; Santos, L.S.; Iturmendi, N.; Moine, V.; Cheynier, V.; Saucier, C. Rosé wine fining using Polyvinylpolypyrrolidone: Colorimetry, targeted polyphenomics, and molecular dynamics simulations. J. Agric. Food Chem. 2017, 65, 10591–10597. [Google Scholar] [CrossRef]
- Durán-Lara, E.F.; López-Cortés, X.A.; Castro, R.I.; Avila-Salas, F.; González-Nilo, F.D.; Laurie, V.F.; Santos, L.S. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices. Food Chem. 2015, 168, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Forino, M.; Blaiotta, G.; Moine, V.; Moio, L. New insights into the formation of precipitates of quercetin in Sangiovese wines. J. Food Sci. Technol. 2020, 57, 2602–2611. [Google Scholar] [CrossRef] [PubMed]
- OIV. Code of Good Fining Practices for Wine to Be Applied in the Use of Proteinaceous Wine Fining Agents with Allergenic Potential (Casein and Egg White); Resolution Oeno 5202014; International Organisation of Vine and Wine-OIV: Paris, France, 2014. [Google Scholar]
- Ficagna, E.; Gava, A.; Rossato, S.B.; Rombaldi, C.V.; Borsato, D. Effect on Merlot red wine of fining agents mixture: Application of the simplex centroid design. Food Sci. Technol. 2020, 40, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Parpinello, G.P.; Ricci, A.; Rombolà, A.D.; Nigro, G.; Versari, A. Comparison of Sangiovese wines obtained from stabilized organic and biodynamic vineyard management systems. Food Chem. 2019, 283, 499–507. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Teslić, N.; Kilmartin, P.A.; Versari, A. Suitability of the cyclic voltammetry measurements and DPPH− spectrophotometric assay to determine the antioxidant capacity of food-grade oenological tannins. Molecules 2019, 24, 2925. [Google Scholar] [CrossRef] [Green Version]
- Glories, Y. La couleur des vins rouges. 2e partie: Mesure, origine et interprétation. OENO One 1984, 18, 253–271. (In French) [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Harbertson, J.F.; Kennedy, J.A.; Adams, D.O. Tannin in skins and seeds of Cabernet Sauvignon, Syrah, and Pinot noir berries during ripening. Am. J. Enol. Vitic. 2002, 53, 54–59. [Google Scholar]
- Sarneckis, C.; Dambergs, R.G.; Jones, P.; Mercurio, M.; Herderich, M.J.; Smith, P. Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Aust. J. Grape Wine Res. 2006, 12, 39–49. [Google Scholar] [CrossRef]
- Blade, W.H.; Boulton, R. Adsorption of protein by bentonite in a model wine solution. Am. J. Enol. Vitic. 1988, 39, 193–199. [Google Scholar]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
1A. Total Phenolics | OD 280 nm (g/L GAE) | FC (g/L GAE) | AH (g/L CE) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tannin Powder (g/L) | SKN | PIP | GAL | ELL | SKN | PIP | GAL | ELL | SKN | PIP | GAL | ELL |
0.1 | 0.00 c | 0.00 C | 0.01 c | 0.01 C | 0.07 a | 0.05 A | 0.09 b | 0.06 A | 0.03 b | 0.03 B | 0.10 a | 0.02 B |
0.2 | 0.01 c | 0.01 C | 0.03 c | 0.01 C | 0.11 a | 0.12 A | 0.16 b | 0.10 A | 0.07 b | 0.07 B | 0.27 a | 0.06 B |
0.4 | 0.01 c | 0.01 C | 0.6 b | 0.02 C | 0.19 a | 0.20 A | 0.28 c | 0.18 A | 0.16 b | 0.18 B | 0.62 a | 0.16 B |
0.6 | 0.02 c | 0.02 C | 0.83 b | 0.02 C | 0.23 b | 0.29 B | 0.38 c | 0.22 B | 0.25 a | 0.30 A | 0.93 a | 0.30 A |
0.8 | 0.03 c | 0.02 C | 1.09 b | 0.34 B | 0.33 b | 0.36 B | 0.52 c | 0.30 C | 0.39 a | 0.42 A | 1.28 a | 0.43 A |
1.0 | 0.03 c | 0.03 C | 1.34 b | 0.43 B | 0.38 b | 0.42 B | 0.60 c | 0.37 C | 0.50 a | 0.55 A | 1.62 a | 0.51 A |
R2 | 1.000 | 0.994 | 0.974 | 0.762 | 0.988 | 0.985 | 0.996 | 0.996 | 0.994 | 0.997 | 1.000 | 0.992 |
Slope | 0.031 | 0.029 | 1.549 | 0.492 | 0.344 | 0.407 | 0.570 | 0.337 | 0.532 | 0.582 | 1.685 | 0.574 |
1B. Tannins | AH (g/L CE) | MCP (g/L CE) | ||||||||||
Tannin Powder (g/L) | SKN | PIP | GAL | ELL | SKN | PIP | GAL | ELL | ||||
0.1 | 0.00 b | 0.00 B | 0.00 b | 0.00 A | 0.05 a | 0.00 A | 0.11 a | −0.01 A | ||||
0.2 | 0.05 a | 0.06 A | 0.00 b | 0.00 B | 0.00 b | −0.10 B | 0.29 a | 0.05 A | ||||
0.4 | 0.15 a | 0.18 A | 0.31 b | 0.08 B | 0.13 b | 0.08 B | 0.82 a | 0.15 A | ||||
0.6 | 0.25 b | 0.28 A | 0.60 b | 0.22 A | 0.28 a | 0.20 B | 1.10 a | 0.18 B | ||||
0.8 | 0.35 b | 0.37 A | 0.86 b | 0.33 A | 0.44 a | 0.21 B | 1.50 a | 0.30 B | ||||
1.0 | 0.46 b | 0.50 A | 1.10 b | 0.39 B | 0.57 a | 0.25 B | 1.70 a | 0.55 A | ||||
R2 | 0.999 | 0.999 | 0.984 | 0.978 | 0.969 | 0.937 | 0.993 | 0.948 | ||||
Slope | 0.509 | 0.544 | 1.296 | 0.477 | 0.638 | 0.351 | 1.893 | 0.559 |
Peak n. | Compound | PP (%) | BSA (%) | PVPP (%) | MCP (%) |
---|---|---|---|---|---|
1 | gallic acid | 99.5 | 31.8 | 75.4 | nd |
2 | (+)-catechin | 100.0 | 16.0 | 70.9 | nd |
3 | epicatechin gallate | 100.0 | 22.7 | 60.8 | 1.9 |
4 | syringic acid | 92.7 | 28.2 | 68.0 | nd |
5 | oligomers gallic acid | 84.6 | 22.6 | 63.8 | nd |
6 | oligomers gallic acid | 68.5 | 13.0 | 69.9 | nd |
7 | oligomers gallic acid | 62.1 | 10.2 | 63.9 | nd |
8 | oligomers gallic acid | 82.5 | 13.6 | 100.6 | nd |
9 | polymers hump 1 | 43.7 | nd | 48.9 | nd |
10 | polymers hump 2 | 46.6 | 27.2 | 89.1 | nd |
1 | gallic acid | 100.0 | 46.4 | 67.4 | nd |
2 | (+)-catechin | 91.3 | nd | nd | nd |
3 | flavanol 1 | 94.2 | 18.4 | 19.9 | nd |
4 | flavanol 2 | 39.1 | nd | nd | nd |
5 | flavanol 3 | 100.0 | nd | nd | nd |
6 | flavanol 4 | 80.2 | nd | 15.9 | nd |
7 | (–)-epicatechin | 100.0 | nd | nd | nd |
8 | polymers hump 1 | Nd | 100.0 | nd | nd |
9 | polymers hump 2 | 27.6 | nd | 79.4 | 31.0 |
Peak n. | Compound | PP (%) |
---|---|---|
1 | gallic acid | 85.7 |
2 | caftaric acid | 83.8 |
3 | fertaric acid | 93.4 |
4 | coutaric acid | 82.5 |
5 | (+)-catechin | 95.2 |
6 | epicatechin gallate | 93.9 |
7 | syringic acid | 64.9 |
8 | (–)-epicatechin | 95.7 |
9 | flavanol | 65.3 |
10 | flavonol glucoside-1 | 80.0 |
11 | flavonol glucoside-2 | 56.8 |
12 | rutin | 92.8 |
13 | polymers hump | 65.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Versari, A.; Ricci, A.; Brioni, A.; Galaz Torres, C.; Pavez Moreno, C.A.; Concha García, J.; Parpinello, G.P. Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking. Molecules 2022, 27, 1671. https://doi.org/10.3390/molecules27051671
Versari A, Ricci A, Brioni A, Galaz Torres C, Pavez Moreno CA, Concha García J, Parpinello GP. Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking. Molecules. 2022; 27(5):1671. https://doi.org/10.3390/molecules27051671
Chicago/Turabian StyleVersari, Andrea, Arianna Ricci, Annacarla Brioni, Cristian Galaz Torres, Carolina Alejandra Pavez Moreno, Javiera Concha García, and Giuseppina Paola Parpinello. 2022. "Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking" Molecules 27, no. 5: 1671. https://doi.org/10.3390/molecules27051671