Preparation of Thioaminals in Water
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Information
3.2. General Procedure for Cu(II)-Catalyzed Preparation of Thioaminals in Water
3.3. Characterization Data for Thioaminals
3.4. General Procedure for the Thiol Exchange
3.5. General Procedure for UV Stabilities Experiments of Thioaminals 9, 11 and 14
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lowe, A.B. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: A first update. Polym. Chem. 2014, 5, 4820–4870. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: Advances from synthesis to applications. Chem. Soc. Rev. 2015, 44, 4091–4130. [Google Scholar] [CrossRef] [PubMed]
- Summonte, S.; Racaniello, G.F.; Lopedota, A.; Denora, N.; Bernkop-Schnurch, A. Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J. Control. Release 2021, 330, 470–482. [Google Scholar] [CrossRef]
- Boyd, D.A. Sulfur and Its Role In Modern Materials Science. Angew. Chem. Int. Ed. 2016, 55, 15486–15502. [Google Scholar] [CrossRef]
- Bottecchia, C.; Noël, T. Photocatalytic Modification of Amino Acids, Peptides, and Proteins. Chem. A Eur. J. 2018, 25, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Gunnoo, S.B.; Madder, A. Chemical Protein Modification through Cysteine. Chembiochem 2016, 17, 529–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravasco, J.; Faustino, H.; Trindade, A.; Gois, P.M.P. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry 2019, 25, 43–59. [Google Scholar] [CrossRef]
- Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 2014, 57, 2832–2842. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. [Google Scholar] [CrossRef] [PubMed]
- Beno, B.R.; Yeung, K.S.; Bartberger, M.D.; Pennington, L.D.; Meanwell, N.A. A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. J. Med. Chem. 2015, 58, 4383–4438. [Google Scholar] [CrossRef] [PubMed]
- Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem. 2017, 75, 406–423. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.S.; Vora, D.K.; Ramaa, C.S. Thiazolidine-2,4-diones: Progress towards multifarious applications. Bioorg. Med. Chem. 2013, 21, 1599–1620. [Google Scholar] [CrossRef]
- Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019, 180, 486–508. [Google Scholar] [CrossRef]
- Biswas, S.; Kubota, K.; Orlandi, M.; Turberg, M.; Miles, D.H.; Sigman, M.S.; Toste, F.D. Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. Angew. Chem. Int. Ed. Engl. 2018, 57, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandran, G.; Karthikeyan, N.S.; Giridharan, P.; Sathiyanarayanan, K.I. Efficient iodine catalyzed three components domino reaction for the synthesis of 1-((phenylthio)(phenyl)methyl)pyrrolidin-2-one derivatives possessing anticancer activities. Org. Biomol. Chem. 2012, 10, 5343–5346. [Google Scholar] [CrossRef] [PubMed]
- Ingle, G.K.; Mormino, M.G.; Wojtas, L.; Antilla, J.C. Chiral Phosphoric Acid-Catalyzed Addition of Thiols to N-Acyl Imines: Access to Chiral N,S-Acetals. Org. Lett. 2011, 13, 4822–4825. [Google Scholar] [CrossRef] [PubMed]
- Chikashita, H.; Komazawa, S.I.; Ishimoto, N.; Inoue, K.; Itoh, K. Nonacidic and Highly Chemoselective Protection of the Carbonyl Function. 3-Methylbenzothiazolines as a Base- and Acid.Resistant Protected Form for the Carbonyl Groyups. Bull. Chem. Soc. Jpn. 1989, 62, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- JVoß, J.; Wiegand, G.; Hülsmeyer, K. Elektroreduktion organischer Verbindungen. Chem. Ber. 1985, 118, 4806–4820. [Google Scholar]
- Ratner, S.; Clarke, H.T. The Action of Formaldehyde upon Cysteine. J. Am. Chem. Soc. 1937, 59, 200–206. [Google Scholar] [CrossRef]
- Dey, A.; Hajra, A. Metal-Free Synthesis of 2-Arylbenzothiazoles from Aldehydes, Amines, and Thiocyanate. Org. Lett. 2019, 21, 1686–1689. [Google Scholar] [CrossRef] [PubMed]
- Alper, K.K.A.H. Novel, Metal-Catalyzed Carbonylation of Acyclic Organic. Compounds. The Regiospecific Carbonylation of N,S-Acetals. J. Org. Chem. 1994, 59, 1414–1417. [Google Scholar]
- Bolognese, A.; Correale, G.; Manfra, M.; Lavecchia, A.; Novellino, E.; Barone, V. Thiazolidin-4-one formation. Mechanistic and synthetic aspects of the reaction of imines and mercaptoacetic acid under microwave and conventional heating. Org. Biomol. Chem. 2004, 2, 2809–2813. [Google Scholar] [CrossRef] [PubMed]
- Alan, R.; Katritzky, M.S.; Bayyuk, S. The preparation of some N- and S-acetals of benzaldehyde and terephtaldehyde. Synthesis 1986, 10, 804–807. [Google Scholar]
- Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev. 2012, 41, 1437–1451. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014, 16, 950–963. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Werpy, T.A.; Holladay, J.; White, J.F. Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential. Candidates from Sugars and Synthesis Gas. US Dep. Energy 2004. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Liu, Y.; Wan, J.P. Metal-Free Synthesis of 1, 2, 3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide. Chin. J. Org. Chem. 2021, 41, 2700–2706. [Google Scholar] [CrossRef]
- Casalta, C.; Gourlaouen, C.; Bouzbouz, S. Iridium(III) Catalyzed Z-Selective Allylic Arylation of alpha-Fluoro But-1-enoic Acid Amides via beta-F-Elimination in Water. Org. Lett. 2021, 23, 8122–8126. [Google Scholar] [CrossRef] [PubMed]
- Peramo, A.; Abdellah, I.; Pecnard, S.; Mougin, J.; Martini, C.; Couvreur, P.; Huc, V.; Desmaële, D.J.M. A self-assembling NHC-Pd-loaded calixarene as a potent catalyst for the Suzuki-Miyaura cross-coupling reaction in water. Molecules 2020, 25, 1459. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Wei, L.; Wan, J.P.J.C. Catalyst-Free Synthesis of α-Diazoketones in Water by Microwave Promoted Enaminone C= C Double Bond Cleavage. ChemistrySelect 2020, 5, 7822–7825. [Google Scholar] [CrossRef]
- Fu, L.; Cao, X.; Wan, J.P.; Liu, Y. Synthesis of Enaminone-Pd (II) Complexes and Their Application in Catalysing Aqueous Suzuki-Miyaura Cross Coupling Reaction. Chin. J. Chem. 2020, 38, 254–258. [Google Scholar] [CrossRef]
- Gilcher, E.B.; Chang, H.; Huber, G.W.; Dumesic, J.A. Controlled hydrogenation of a biomass-derived platform chemical formed by aldol-condensation of 5-hydroxymethyl furfural (HMF) and acetone over Ru, Pd, and Cu catalysts. Green Chem. 2022. [Google Scholar] [CrossRef]
- Gomes, R.F.A.; Coelho, J.A.S.; Afonso, C.A.M. Direct Conversion of Activated 5-Hydroxymethylfurfural into delta-Lactone-Fused Cyclopentenones. ChemSusChem 2019, 12, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.F.A.; Mitrev, Y.N.; Simeonov, S.P.; Afonso, C.A.M. Going Beyond the Limits of the Biorenewable Platform: Sodium Dithionite-Promoted Stabilization of 5-Hydroxymethylfurfural. ChemSusChem 2018, 11, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.F.A.; Esteves, N.R.; Coelho, J.A.S.; Afonso, C.A.M. Copper(II) Triflate As a Reusable Catalyst for the Synthesis of trans-4,5-Diamino-cyclopent-2-enones in Water. J. Org. Chem. 2018, 83, 7509–7513. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.G.; António, J.P.M.; Mendonça, R.; Gomes, R.F.A.; Afonso, C.A.M. Rediscovering aminal chemistry: Copper(ii) catalysed formation under mild conditions. Green Chem. 2020, 22, 7484–7490. [Google Scholar] [CrossRef]
- Nardi, M.; Costanzo, P.; De Nino, A.; Di Gioia, M.L.; Olivito, F.; Sindona, G.; Procopio, A. Water excellent solvent for the synthesis of bifunctionalized cyclopentenones from furfural. Green Chem. 2017, 19, 5403–5411. [Google Scholar] [CrossRef]
- Alan, R.; Katritzky, W.-Q.F.; Long, Q.-H. A Convenient Synthesis of N-(alpha-Alkoxyalkyl)- and N-[alpha-(Alkylthio)alkyl]amines. Synthesis 1992, 1993, 229–232. [Google Scholar]
- Sakai, H.; Ito, K.; Sekiya, M. Reaction of N-(Dialkylaminomethyl)amides and N-(alpha-Dialkylaminobenzyl)amides with Sulfides and Cyanide. Chem. Pharm. Bull. 1973, 21, 2257–2264. [Google Scholar] [CrossRef] [Green Version]
- Fawwaz, M.; Mishiro, K.; Nishii, R.; Sawazaki, I.; Shiba, K.; Kinuya, S.; Ogawa, K. Synthesis and Fundamental Evaluation of Radioiodinated Rociletinib (CO-1686) as a Probe to Lung Cancer with L858R/T790M Mutations of Epidermal Growth Factor Receptor (EGFR). Molecules 2020, 25, 2914. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst | Solvent | Conversion (%) | Yield of 1 (%) |
---|---|---|---|---|
1 | no catalyst | H2O | 0 | 0 |
2 | Cu(OTf)2 (10 mol%) | H2O | 100 | 0 |
3 | Cu(OTf)2 (1 mol%) | H2O | 100 | 100 (84)a |
4 | Cu(OTf)2 (1 mol%) | neat | 93 | 66a,b |
5 | Cu(OTf)2 (1 mol%) | EtOH | 64 | 29a,b |
6 | Cu(OTf)2 (1 mol%) | MeCN | 93 | 56a,b |
7 | CuSO4 (1 mol%) | H2O | 100 | 35 |
8 | FeCl3 (1 mol%) | H2O | 100 | 0 |
9 | AlCl3 (1 mol%) | H2O | 100 | 12 |
10 | ZnCl2 (1 mol%) | H2O | 100 | 70 |
11 | TfOH (2 mol%) | H2O | 87 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavaca, L.A.S.; Gomes, R.F.A.; Afonso, C.A.M. Preparation of Thioaminals in Water. Molecules 2022, 27, 1673. https://doi.org/10.3390/molecules27051673
Cavaca LAS, Gomes RFA, Afonso CAM. Preparation of Thioaminals in Water. Molecules. 2022; 27(5):1673. https://doi.org/10.3390/molecules27051673
Chicago/Turabian StyleCavaca, Lídia A. S., Rafael F. A. Gomes, and Carlos A. M. Afonso. 2022. "Preparation of Thioaminals in Water" Molecules 27, no. 5: 1673. https://doi.org/10.3390/molecules27051673
APA StyleCavaca, L. A. S., Gomes, R. F. A., & Afonso, C. A. M. (2022). Preparation of Thioaminals in Water. Molecules, 27(5), 1673. https://doi.org/10.3390/molecules27051673