Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach
Abstract
:1. Introduction
2. Results
2.1. Efficient Antiviral Inhibitory Compounds Screened against SARS-CoV-2 RBD
2.2. Binding Interactions of Potential Antiviral Plant Compounds in the Active Site of the Wild-Type Spike Protein
2.3. Binding Interactions of Potential Antiviral Plant Compounds in the Active Site of the Delta Spike Protein
2.4. Validation of Docking by MD Simulation
2.5. Wild-Type Spike RBD-Lupeol Complex
2.6. Delta Spike RBD-Betulin Complex
2.7. Biological Activity, Drug-Likeness, and Pharmacokinetic Profiles of the Identified Lead Compounds
3. Discussion
4. Materials and Methods
4.1. Viral Proteins
4.2. Superimposition of Spike RBD in SARS-CoV-2 Wild-Type and the Delta Variant
4.3. Secondary Structure Prediction of S RBD ofthe Wild-Type and Delta SARS-CoV Strains
4.4. Antiviral Phytochemical Compounds
4.5. Virtual Screening of Potential Antiviral Plant Compounds
4.6. Molecular Docking
4.7. Molecular Dynamics (MD) Simulation in Water
4.8. Prediction of Biological Activity for the Screened Natural Compounds
4.9. Prediction of Drug-Likeness Parameters and ADMET Properties for the Identified Plant Compounds with Antiviral Inhibitory Potential
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mallavarpu Ambrose, J.; Priya Veeraraghavan, V.; Kullappan, M.; Chellapandiyan, P.; Krishna Mohan, S.; Manivel, V.A. Comparison of Immunological Profiles of SARS-CoV-2 Variants in the COVID-19 Pandemic Trends: An Immunoinformatics Approach. Antibiotics 2021, 10, 535. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.L.; Wang, J.; Maruthamuthu, M.K.; Dextre, A.; Pascual-Garrigos, A.; Mohan, S.; Putikam, S.V.S.; Osman, F.O.I.; McChesney, D.; Seville, J.; et al. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. Biosens. Bioelectron. X 2021, 9, 100076. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Gao, Q.; Gao, F.; Wang, Q.; He, Q.; Wu, X.; Mao, Q.; Xu, M.; Liang, Z. Impact of the Delta variant on vaccine efficacy and response strategies. Expert Rev. Vaccines 2021, 20, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Shaman, J. COVID-19 pandemic dynamics in India and impact of the SARS-CoV-2 Delta (B. 1.617. 2) variant. medRxiv 2021, 1. [Google Scholar] [CrossRef]
- Roshdy, W.H.; Rashed, H.A.; Kandeil, A.; Mostafa, A.; Moatasim, Y.; Kutkat, O.; Shama, N.M.A.; Gomaa, M.R.; El-Sayed, I.H.; El Guindy, N.M.; et al. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS ONE 2020, 15, e0241739. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zheng, Q.; Zhang, H.; Niu, Y.; Lou, Y.; Wang, H. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Front. Immunol. 2020, 11, 576622. [Google Scholar] [CrossRef]
- Martínez-Flores, D.; Zepeda-Cervantes, J.; Cruz-Reséndiz, A.; Aguirre-Sampieri, S.; Sampieri, A.; Vaca, L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front. Immunol. 2021, 12, 701501. [Google Scholar] [CrossRef]
- Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016, 3, 237–261. [Google Scholar] [CrossRef] [Green Version]
- Schibli, D.J.; Weissenhorn, W. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion (Review). Mol. Membr. Biol. 2004, 21, 361–371. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saputri, D.S.; Li, S.; Van Eerden, F.J.; Rozewicki, J.; Xu, Z.; Ismanto, H.S.; Davila, A.; Teraguchi, S.; Katoh, K.; Standley, D.M. Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). SARS-CoV-2 Variant Classifications and Definitions. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html (accessed on 24 August 2021).
- Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. eClinicalMedicine 2020, 26, 100495. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef]
- Deng, X.; Evdokimova, M.; O’Brien, A.; Rowe, C.L.; Clark, N.M.; Harrington, A.; Reid, G.E.; Uprichard, S.L.; Baker, S.C. Breakthrough Infections with Multiple Lineages of SARS-CoV-2 Variants Reveals Continued Risk of Severe Disease in Immunosuppressed Patients. Viruses 2021, 13, 1743. [Google Scholar] [CrossRef]
- Transmission Dynamics by Age Group in COVID-19 Hotspot Counties—United Sates, April-September 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/mm6941e1.htm (accessed on 21 October 2021).
- Clinical Trials N.S.; National Library of Medicine USA. COVID-19 and SARS-CoV-2. 2021. Available online: https://www.clinicaltrials.gov/ct2/results?cond=Covid19&term=&cntry=&state=&city=&dist (accessed on 9 October 2021).
- Bobay, L.-M.; O’Donnell, A.C.; Ochman, H. Recombination events are concentrated in the spike protein region of Betacoronaviruses. PLoS Genet. 2020, 16, e1009272. [Google Scholar] [CrossRef]
- Sironi, M.; Hasnain, S.E.; Rosenthal, B.; Phan, T.; Luciani, F.; Shaw, M.-A.; Sallum, M.A.; Mirhashemi, M.E.; Morand, S.; González-Candelas, F. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infect. Genet. Evol. 2020, 84, 104384. [Google Scholar] [CrossRef]
- Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020, 19, 410–417. [Google Scholar]
- Ortiz, G.X.; Lenhart, G.; Becker, M.W.; Schwambach, K.H.; Tovo, C.V.; Blatt, C.R. Drug-induced liver injury and COVID-19: A review for clinical practice. World, J. Hepatol. 2021, 13, 1143–1153. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Imran, M. The SARS-CoV-2 Spike Glycoprotein as a Drug and Vaccine Target: Structural Insights into Its Complexes with ACE2 and Antibodies. Cells 2020, 9, 343. [Google Scholar] [CrossRef]
- Ahmad, S.; Zahiruddin, S.; Parveen, B.; Basist, P.; Parveen, A.; Gaurav; Parveen, R.; Ahmad, M. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19–Preclinical and Clinical Research. Front. Pharmacol. 2021, 11, 578970. [Google Scholar] [CrossRef] [PubMed]
- Kothandan, S.; Swaminathan, R. Evaluation of in vitro antiviral activity of Vitex Negundo L., Hyptis suaveolens (L) poit., Decalepis hamiltonii Wight & Arn., to Chikungunya virus. Asian Pac. J. Trop. Dis. 2014, 4, S111–S115. [Google Scholar] [CrossRef]
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Medicinal plants of the genus Betula—Traditional uses and a phytochemical–pharmacological review. J. Ethnopharmacol. 2014, 159, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Muhammad, I.; Zhang, Y.; Ren, Y.; Zhang, R.; Huang, X.; Diao, L.; Liu, H.; Li, X.; Sun, X.; et al. Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L. Front. Pharmacol. 2019, 10, 1272. [Google Scholar] [CrossRef]
- Murthy, T.K.; Joshi, T.; Gunnan, S.; Kulkarni, N.; Pryanka, V.; Kumar, S.B.; Gowrishankar, B. In silico analysis of Phyllanthus amarus phytochemicals as potent drugs against SARS-CoV-2 main protease. Curr. Res. Green Sustain. Chem. 2021, 4, 100159. [Google Scholar] [CrossRef]
- Singh, R.S.; Singh, A.; Kaur, H.; Batra, G.; Sarma, P.; Kaur, H.; Bhattacharyya, A.; Sharma, A.R.; Kumar, S.; Upadhyay, S.; et al. Promising traditional Indian medicinal plants for the management of novel Coronavirus disease: A systematic review. Phytother. Res. 2021, 35, 4456–4484. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.; Lei, Z.; Dicker, J.; Cao, Y.; Zhang, X.F.; Im, W. Differential interactions between human ACE2 and spike RBD of SARS-CoV-2 variants of concern. bioRxiv 2021. [Google Scholar] [CrossRef]
- Parvez, M.K.; Rehman, T.; Alam, P.; Al-Dosari, M.S.; Alqasoumi, S.I.; Alajmi, M.F. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharm. J. 2018, 27, 389–400. [Google Scholar] [CrossRef]
- Siddique, H.R.; Saleem, M. Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Sci. 2011, 88, 285–293. [Google Scholar] [CrossRef]
- Flekhter, O.B.; Boreko, E.I.; Nigmatullina, L.R.; Pavlova, N.I.; Medvedeva, N.; Nikolaeva, S.N.; Ashavina, O.A.; Savinova, O.V.; Baltina, L.; Galin, F.Z.; et al. Synthesis and Antiviral Activity of Lupane Triterpenoids and Their Derivatives. Pharm. Chem. J. 2004, 38, 355–358. [Google Scholar] [CrossRef]
- Kazakova, O.B.; Giniyatullina, G.V.; Yamansarov, E.Y.; Tolstikov, G.A. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus. Bioorganic Med. Chem. Lett. 2010, 20, 4088–4090. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.F. Angiotensin-I-converting enzyme and its relatives. Genome Biol. 2003, 4, 225. [Google Scholar] [CrossRef] [Green Version]
- Carino, A.; Moraca, F.; Fiorillo, B.; Marchianò, S.; Sepe, V.; Biagioli, M.; Finamore, C.; Bozza, S.; Francisci, D.; Distrutti, E.; et al. Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain. Front. Chem. 2020, 8, 846. [Google Scholar] [CrossRef]
- Gong, Y.; Raj, K.M.; Luscombe, C.A.; Gadawski, I.; Tam, T.; Chu, J.; Gibson, D.; Carlson, R.; Sacks, S.L. The synergistic effects of betulin with acyclovir against herpes simplex viruses. Antivir. Res. 2004, 64, 127–130. [Google Scholar] [CrossRef]
- Navid, M.H.; Laszczyk-Lauer, M.; Reichling, J.; Schnitzler, P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine 2014, 21, 1273–1280. [Google Scholar] [CrossRef]
- Shikov, A.N.; Djachuk, G.I.; Sergeev, D.V.; Pozharitskaya, O.N.; Esaulenko, E.V.; Kosman, V.M.; Makarov, V.G. Birch bark extract as therapy for chronic hepatitis C—A pilot study. Phytomedicine 2011, 18, 807–810. [Google Scholar] [CrossRef]
- Umashankar, V.; Deshpande, S.H.; Hegde, H.V.; Singh, I.; Chattopadhyay, D. Phytochemical Moieties from Indian Traditional Medicine for Targeting Dual Hotspots on SARS-CoV-2 Spike Protein: An Integrative in-silico Approach. Front. Med. 2021, 8, 672629. [Google Scholar] [CrossRef]
- A Structural View of Biology. Available online: http://www.rcsb.org/ (accessed on 30 May 2020).
- DeepView––Swiss-PdbViewer. Available online: http://spdbv.vital-it.ch/ (accessed on 13 February 2013).
- UCSF Chimera. Available online: https://www.cgl.ucsf.edu/chimera/ (accessed on 1 September 2021).
- PyMOL. Pymol.Org. Available online: https://pymol.org/2/ (accessed on 11 November 2021).
- PSIPRED. Available online: http://bioinf.cs.ucl.ac.uk/psipred/ (accessed on 15 September 2021).
- Suriyakala, G.; Sathiyaraj, S.; Devanesan, S.; AlSalhi, M.S.; Rajasekar, A.; Maruthamuthu, M.K.; Babujanarthanam, R. Phytosynthesis of silver nanoparticles from Jatropha integerrima Jacq. flower extract and their possible applications as antibacterial and antioxidant agent. Saudi J. Biol. Sci. 2021, 29, 680–688. [Google Scholar] [CrossRef]
- Devi, T.A.; Sivaraman, R.M.; Thavamani, S.S.; Amaladhas, T.P.; AlSalhi, M.S.; Devanesan, S.; Kannan, M.M. Green synthesis of plasmonic nanoparticles using Sargassum ilicifolium and application in photocatalytic degradation of cationic dyes. Environ. Res. 2022, 208, 112642. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, I.; Maruthamuthu, M.K.; Yoo, I.-K.; Hong, S.H. Modification of the dynamic nature of the chimeric fumarate two-component system in Escherichia coli via positive feedback loop. Biotechnol. Bioprocess Eng. 2015, 20, 844–848. [Google Scholar] [CrossRef]
- Yildirim, A.; Grant, J.C.; Es-Haghi, S.S.; Lee, W.; Maruthamuthu, M.K.; Verma, M.; Sutherland, J.W.; Cakmak, M. Roll-to-Roll (R2R) Production of Large-Area High-Performance Piezoelectric Films Based on Vertically Aligned Nanocolumn Forests. Adv. Mater. Technol. 2020, 5, 2000553. [Google Scholar] [CrossRef]
- Narenkumar, J.; Ananthaselvam, A.; Alsalhi, M.S.; Devanesan, S.; Kadier, A.; Kannan, M.M.; Rajasekar, A. Effect of crude methanolic extract of Lawsonia inermis for anti-biofilm on mild steel 1010 and its effect on corrosion in a re-circulating wastewater system. J. King Saud Univ.—Sci. 2021, 33, 101611. [Google Scholar] [CrossRef]
- Maruthamuthu, M.K.; Raffiee, A.H.; De Oliveira, D.M.; Ardekani, A.M.; Verma, M.S. Raman spectra-based deep learning: A tool to identify microbial contamination. MicrobiologyOpen 2020, 9, e1122. [Google Scholar] [CrossRef]
- PubChem Open Chemistry Database at the National Institutes of Health (NIH), U.S. National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 7 January 2021).
- OpenBabel. Available online: http://www.cheminfo.org/Chemistry/Cheminformatics/FormatConverter/index.html (accessed on 20 September 2021).
- Tolo, F.M.; Rukunga, G.W.; Muli, F.W.; Ochora, J.M.; Irungu, B.N.; Muthaura, C.N.; Wanjiku, C.K.; Mungai, G.M.; Ngoc, Q.; Hashimoto, K.; et al. The antiviral activity of compounds isolated from Kenyan Carissa edulis (Forssk). Vahl. J. Med. Plant Res. 2010, 4, 1517–1522. [Google Scholar] [CrossRef]
- Silva, F.C.; Rodrigues, V.G.; Duarte, L.P.; Lula, I.S.; Sinisterra, R.; Vieira-Filho, S.A.; Rodrigues, R.A.; Kroon, E.G.; Oliveira, P.L.; Farias, L.M.; et al. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol. An. acad. Bras. Ciênc. 2017, 89, 1555–1564. [Google Scholar] [CrossRef]
- Flekhter, O.B.; Boreko, E.I.; Nigmatullina, L.R.; Pavlova, N.I.; Nikolaeva, S.N.; Savinova, O.V.; Eremin, V.F.; Baltina, L.; Galin, F.Z.; Tolstikov, G.A. Synthesis and antiviral activity of hydrazides and substituted benzalhydrazides of betulinic acid and its derivatives. Fitoterapia 2003, 29, 296–302. [Google Scholar] [CrossRef]
- Alhadrami, H.; Sayed, A.; Sharif, A.; Azhar, E.; Rateb, M. Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics. Molecules 2021, 26, 2654. [Google Scholar] [CrossRef]
- Hudson, J.; Lopez-Bazzocchi, I.; Towers, G. Antiviral activities of hypericin. Antivir. Res. 1991, 15, 101–112. [Google Scholar] [CrossRef]
- Yeo, S.-G.; Song, J.H.; Hong, E.-H.; Lee, B.-R.; Kwon, Y.S.; Chang, S.-Y.; Kim, S.H.; Lee, S.W.; Park, J.-H.; Ko, H.-J. Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and Coxsackievirus A16 in vitro. Arch. Pharmacal Res. 2014, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, S.; Kumar, H.D.V.; Nandan, M.; Mantesh, M.; Shankarappa, K.S.; Venkataravanappa, V.; Basha, C.R.J.; Reddy, C.N.L. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech 2021, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, L.; Fan, X.; Qin, C.; Liu, J. Antiviral effect of geraniin on human enterovirus 71 in vitro and in vivo. Bioorganic Med. Chem. Lett. 2012, 22, 2209–2211. [Google Scholar] [CrossRef] [PubMed]
- Notka, F.; Meier, G.; Wagner, R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antivir. Res. 2004, 64, 93–102. [Google Scholar] [CrossRef]
- Loaiza-Cano, V.; Monsalve-Escudero, L.M.; Filho, C.D.S.M.B.; Martinez-Gutierrez, M.; de Sousa, D.P. Antiviral Role of Phenolic Compounds against Dengue Virus: A Review. Biomolecules 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020, 295, 4773–4779. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Zuo, X.; Meng, F.; Han, C.; Ouyang, W.; Han, Y.; Gu, Y.; Zhao, X.; Xu, F.; Qin, F.X. Direct inhibitory effect on viral entry of influenza A and SARS-CoV-2 viruses by azithromycin. Cell Prolif. 2020, 54, e12953. [Google Scholar] [CrossRef]
- PyRx. Available online: https://sourceforge.net/projects/pyrx/ (accessed on 23 September 2021).
- AutoDock—Scripps Research. Available online: http://autodock.scripps.edu/ (accessed on 3 September 2021).
- Wong, F.-C.; Ong, J.-H.; Chai, T.-T. SARS-CoV-2 spike protein-, main protease- and papain-like-protease-targeting peptides from seed proteins following gastrointestinal digestion: An in silico study. Phytomed. Plus 2020, 1, 100016. [Google Scholar] [CrossRef]
- Gromacs. 2020.1. Available online: http://www.gromacs.org/ (accessed on 8 October 2021).
- Atom Typing and Assignment of Parameters and Charges in Fully Automated Fashion. Available online: https://cgenff.umaryland.edu (accessed on 1 March 2021).
- da Silva, T.U.; Pougy, K.D.C.; Albuquerque, M.G.; Lima, C.H.D.S.; Machado, S.D.P. Development of parameters compatible with the CHARMM36 force field for [Fe4S4]2+ clusters and molecular dynamics simulations of adenosine-5’-phosphosulfate reductase in GROMACS 2019. J. Biomol. Struct. Dyn. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Baskar, G.; Balaji, S.; Kullappan, M.; Mohan, S.K. Machine learning modeling to identify affinity improved biobetter anticancer drug trastuzumab and the insight of molecular recognition of trastuzumab towards its antigen HER2. J. Biomol. Struct. Dyn. 2021, 29, 1–15. [Google Scholar] [CrossRef]
- Vora, J.; Patel, S.; Athar, M.; Sinha, S.; Chhabria, M.T.; Jha, P.C.; Shrivastava, N. Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. J. Biomol. Struct. Dyn. 2019, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Al-Karmalawy, A.A.; Dahab, M.A.; Metwaly, A.M.; Elhady, S.S.; Elkaeed, E.B.; Eissa, I.H.; Darwish, K.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Front. Chem. 2021, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Xmgrace 5.1. Available online: https://sourceforge.net/projects/graceplot/ (accessed on 15 October 2021).
- PASS Online Server. Available online: http://www.way2drug.com/passonline/predict.php (accessed on 4 October 2021).
- Kullappan, M.; Ambrose, J.M.; Surapaneni, K.M. Understanding the binding conformation of ceftolozane/tazobactam with Metallo-β-lactamases VIM -5 and IMP -7 of Pseudomonas aeruginosa: A molecular docking and virtual screening process. J. Mol. Recognit. 2021, 34, e2898. [Google Scholar] [CrossRef] [PubMed]
- SwissADME. Available online: http://www.swissadme.ch/index.php (accessed on 6 October 2021).
- admetSAR. Available online: http://lmmd.ecust.edu.cn/admetsar2 (accessed on 11 October 2021).
Compound | Binding Energy (kcal/mol) | H-Bond Interactions | Hydrophobic Interactions |
---|---|---|---|
Lupeol | −8.54 | TYR505(2.1 Å) | ARG403, ASP405, GLU406, LYS417, TYR453, LEU455, GLN493, TYR495, GLY496, PHE497, GLN498, ASN501, GLY502 |
Betulin | −8.29 | ARG403(1.8 Å), GLU406(2.1 Å), GLY496(2.1 Å) | ASP405, LYS417, TYR453, LEU455, GLN493, SER494, TYR495, PHE497, GLN498, ASN501, TYR505 |
Hypericin | −8.13 | GLN493(2.1 Å), GLN493(2.2 Å), GLN493(2.8 Å), SER494(2.0 Å), GLN498(2.3 Å), GLN498(2.6 Å), ASN501(2.1 Å) | TYR449, TYR495, GLY496, PHE497, THR500, TYR505 |
Corilagin | −7.21 | TYR453(2.1 Å), GLN493(2.0 Å), GLN493(2.5 Å), SER494(2.3 Å), ASN501(2.5 Å), GLN498(2.3 Å) | ARG403, GLY446, TYR449, TYR451, TYR495, PHE497, THR500, GLY502, TYR505 |
Azithromycin | −7.17 | ARG403(2.0 Å), ASP405(2.0 Å), ASP405(2.2 Å), ASN501(2.1 Å) | GLU406, ARG408, LYS417, TYR453, LEU455, PHE456, GLN493, GLY496, GLN498, THR500, GLY502, VAL503, GLY504, TYR505 |
Remdesivir | −6.69 | ARG403(2.1 Å), ARG403(2.4 Å), TYR453(2.1 Å), GLN493(1.8 Å), GLN493(2.7 Å), SER494(2.9 Å) | GLU406, GLN409, LYS417, ILE418, TYR495, GLY496, PHE497, GLN498, ASN501, GLY502, TYR505 |
Geraniin | −6.03 | TYR453 (2.8 Å), GLY496(2.6 Å), THR500(2.4 Å), ASN501(1.4 Å), ASN501(2.1 Å), ASN501(2.2 Å), GLY502(2.7 Å) | ARG403, GLN493, SER494, TYR495, PHE497, GLN498, TYR505 |
Compound | Binding Energy (kcal/mol) | H-Bond Interactions | Hydrophobic Interactions |
---|---|---|---|
Betulin | −8.83 | THR500(1.7 Å), GLN493(2.1 Å), GLN493(2.6 Å), SER494(1.8 Å) | ARG403, TYR453, TYR495, GLY496, PHE497, GLN498, ASN501, GLY502, TYR505, GLN506 |
Lupeol | −8.68 | GLN493(1.9 Å), SER494(1.9 Å) | ARG403, TYR495, GLY496, PHE497, GLN498, THR500, ASN501, GLY502, TYR505, GLN506 |
Hypericin | −8.59 | TYR453(2.8 Å), GLN493(2.3 Å), SER494(2.4 Å), SER494(2.9 Å), GLY502(2.3 Å), TYR505(2.1 Å), TYR505(2. 3 Å) | ARG403, TYR449, TYR495, GLY496, PHE497, GLN498 |
Corilagin | −7.35 | ARG403(1.8 Å), ARG403(2.1 Å), ARG403(2.6 Å), GLU406(2.2 Å), TYR421(2.3 Å), TYR421(4.3 Å) | GLN409, ASN417, ILE418, TYR453, PHE456, ARG457, GLN493, TYR495 |
Azithromycin | −7.31 | GLU484(2.4 Å), PHE490(2.1 Å), GLY496(2.1 Å) | ARG403, GLY446, TYR449, TYR453, LEU455, PHE456, LEU492, GLN493, SER494, TYR495, PHE497, GLN498, THR500, ASN501, GLY502, TYR505 |
Remdesivir | −6.92 | GLN493(2.1 Å), GLN498(2.7 Å), TYR505(2.8 Å) | ILE402, ARG403, TYR449, TYR453, SER494, TYR495, GLY496, PHE497, THR500, ASN501, GLY502, PRO507 |
Geraniin | −5.91 | GLY496(2.2 Å), GLN498(1.6 Å), GLN498(1.9 Å), GLN498(2.2 Å), GLN498(2.6 Å), GLN498(2.8 Å), TYR500(2.1 Å), GLY502(2.6 Å), TYR505(2.2 Å) | ARG403, ASN439, SER443, TYR449, TYR453, PRO499, TYR495, PHE497, ASN501, VAL503, GLN506, PRO507 |
Complex | △EVan der aals(kJ/mol) | △EElectrostatic (kJ/mol) | △Epolar (kJ/mol) | SASA (kJ/mol) | △Gbind (kJ/mol) |
---|---|---|---|---|---|
Delta S RBD-Betulin | −36.13 | 2.14 | 13.28 | −5.02 | −25.73 |
Wild-type S RBD-Lupeol | −26.91 | −5.72 | 15.44 | −7.29 | −24.48 |
S. No. | Compound | Pa | Pi |
---|---|---|---|
1. | Lupeol | 0.667 | 0.008 |
2. | Betulin | 0.647 | 0.001 |
3. | Hypericin | 0.460 | 0.008 |
4. | Corilagin | 0.401 | 0.015 |
5. | Geraniin | 0.71 | 0.003 |
Sl.No. | Descriptor | Lupeol | Betulin | Hypericin | Corilagin | Geraniin | Remdesivir | Azithromycin |
---|---|---|---|---|---|---|---|---|
Drug-likeness | ||||||||
1 | Molecular Weight (<500 Da) | 426.73 | 442.73 | 504.45 | 634.46 | 952.65 | 602.59 | 749.00 |
2 | AlogP (<5) | 8.02 | 7.00 | 5.08 | – 0.30 | – 1.10 | 2.31 | 1.90 |
3 | H-bond Donor (5) | 1 | 2 | 6 | 18 | 14 | 4 | 5 |
4 | H-bond Acceptor (<10) | 1 | 2 | 8 | 11 | 27 | 13 | 14 |
5 | No of Violations | 1 | 1 | 2 | 3 | 3 | 2 | 2 |
6 | Bioavailability Score | 0.55 | 0.55 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
Absorption | ||||||||
7 | Water Solubility (Log S) | Poorly soluble | Poorly soluble | Poorly soluble | Soluble | Moderately soluble | Moderately soluble | Poorly soluble |
8 | HIA | HIA+ | HIA+ | HIA+ | HIA+ | HIA+ | HIA+ | HIA– |
9 | Caco-2 Permeability | Caco-2+ | Caco-2+ | Caco-2+ | Caco-2– | Caco-2– | Caco-2– | Caco-2– |
10 | BBB | BBB– | BBB– | BBB– | BBB– | BBB– | BBB– | BBB– |
11 | PGS | NS | S | S | S | S | S | S |
12 | Renal Organic Cation Transporter | NI | NI | NI | NI | NI | NI | NI |
Distribution | ||||||||
13 | Subcellular Localization | Lysosome | Lysosome | Mitochondria | Mitochondria | Mitochondria | Lysosome | Lysosome |
Metabolism | ||||||||
14 | CYP450 2C9 Substrate | S | S | NS | NS | NS | NS | NS |
15 | CYP450 2D6 Substrate | S | S | NS | NS | S | NS | NS |
16 | CYP450 3A4 Substrate | S | S | NS | NS | NS | S | S |
17 | CYP450 1A2 Inhibitor | NI | NI | NI | NI | NI | NI | NI |
18 | CYP450 2C9 Inhibitor | NI | NI | NI | NI | NI | NI | NI |
19 | CYP450 2D6 Inhibitor | NI | NI | NI | NI | NI | NI | NI |
20 | CYP450 2C19 Inhibitor | NI | NI | I | NI | NI | NI | NI |
21 | CYP450 3A4 Inhibitor | NI | NI | I | NI | NI | NI | NI |
Toxicity | ||||||||
22 | Hepatotoxicity | NHT | NHT | T | T | T | T | NT |
23 | AMES toxicity | NAT | NAT | NAT | NAT | NAT | NAT | NAT |
24 | Carcinogens | NC | NC | NC | NC | NC | NC | NC |
Compound Name | Molecular Formula | Structure | Phytochemical Category | Known Antiviral Effect against | References |
---|---|---|---|---|---|
Lupeol | C30H50O | Pentacyclic triterpenoid | Dengue, Herpes, Ranikhet, Encephalomyocarditis, and Semiliki forest viruses | [56,57] | |
Betulin | C30H50O2 | Pentacyclic triterpenoid | Herpes simplex virus type I and HIV type I viruses | [58,59] | |
Hypericin | C30H16O8 | Anthraquinone | HIV type I, Infectious bronchitis virus, and Murine cytomegalovirus | [28,60] | |
Corilagin | C27H22O18 | Flavonoid | Hepatitis, Human enterococcus, and Coxsackieviruses | [61,62] | |
Geraniin | C41H28O27 | Flavonoid | Influenza A and B, Enterovirus 71 and Dengue virus type 2 | [37,63,64,65] | |
Remdesivir | C27H35N6O8P | - | Hepatitis C, HIV, Ebola, MERS-CoV, and Respiratory syncytial viruses | [66] | |
Azithromycin | C38H72N2O12 | - | Ebola, Zika, influenza H1N1, and rhinoviruses | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrose, J.M.; Kullappan, M.; Patil, S.; Alzahrani, K.J.; Banjer, H.J.; Qashqari, F.S.I.; Raj, A.T.; Bhandi, S.; Veeraraghavan, V.P.; Jayaraman, S.; et al. Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach. Molecules 2022, 27, 1773. https://doi.org/10.3390/molecules27061773
Ambrose JM, Kullappan M, Patil S, Alzahrani KJ, Banjer HJ, Qashqari FSI, Raj AT, Bhandi S, Veeraraghavan VP, Jayaraman S, et al. Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach. Molecules. 2022; 27(6):1773. https://doi.org/10.3390/molecules27061773
Chicago/Turabian StyleAmbrose, Jenifer Mallavarpu, Malathi Kullappan, Shankargouda Patil, Khalid J. Alzahrani, Hamsa Jameel Banjer, Fadi S. I. Qashqari, A. Thirumal Raj, Shilpa Bhandi, Vishnu Priya Veeraraghavan, Selvaraj Jayaraman, and et al. 2022. "Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach" Molecules 27, no. 6: 1773. https://doi.org/10.3390/molecules27061773
APA StyleAmbrose, J. M., Kullappan, M., Patil, S., Alzahrani, K. J., Banjer, H. J., Qashqari, F. S. I., Raj, A. T., Bhandi, S., Veeraraghavan, V. P., Jayaraman, S., Sekar, D., Agarwal, A., Swapnavahini, K., & Krishna Mohan, S. (2022). Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach. Molecules, 27(6), 1773. https://doi.org/10.3390/molecules27061773