Technological Changes in Wheat-Based Breads Enriched with Hemp Seed Press Cakes and Hemp Seed Grit
Abstract
:1. Introduction
2. Results
2.1. Characterisation of Raw Materials
2.2. Characterisation of Doughs and Breads
3. Discussion
3.1. Characterisation of Raw Materials
3.2. Characterisation of Doughs and Breads
4. Materials and Methods
4.1. Raw Materials
4.2. Dough Preparation and Bread Making
- mWFM: Amount of WFM/g/100 g;
- PWFM: Protein content of WFM/g/100 g;
- WWFM: Energy of WFM/kJ;
- mH: Amount of hemp raw material/g/100 g;
- PH: Protein content of hemp raw material/g/100 g;
- EH: Energy of hemp raw material/kJ;
- F: Factor to convert g protein to kJ (1 g = 17 kJ).
Dough | WFM/% | Dry Yeast/% | Salt/% | Water/% | Respective Hemp Raw Material/% |
---|---|---|---|---|---|
WFM-D | 59.72 | 1 | 1.1 | 38.18 | 0 |
HPF-1-D | 56.72 | 1 | 1.1 | 40.18 | 1 |
HP46-1-D | 56.72 | 1 | 1.1 | 40.18 | 1 |
HP54-1-D | 58.72 | 1 | 1.1 | 38.18 | 1 |
HSG-1-D | 56.72 | 1 | 1.1 | 40.18 | 1 |
HPF-18-D | 39.72 | 1 | 1.1 | 40.18 | 18 |
HP46-14-D | 43.72 | 1 | 1.1 | 40.18 | 14 |
HP54-10-D | 49.72 | 1 | 1.1 | 38.18 | 10 |
4.3. Characterisation of Raw Materials
4.4. Dough Characterisation
4.5. Bread Characterisation
4.6. Statistics and Multivariate Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cauvain, S.P. How much more bread research do we need? In Using Cereal Science and Technology for the Benefit of Consumers, Proceedings of the 12th International ICC Cereal and Bread Congress, Harrogate, UK, 23–26 May 2004; Cauvain, S.P., Salmon, S.S., Young, L.S., Eds.; Woodhead Publishing Limited: Cambridge, UK; Boca Raton, FL, USA, 2005; pp. 127–131. ISBN 9781845690632. [Google Scholar]
- Dewettinck, K.; van Bockstaele, F.; Kühne, B.; van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Dini, C.; García, M.A.; Viña, S.Z. Non-traditional flours: Frontiers between ancestral heritage and innovation. Food Funct. 2012, 3, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Giménez-Bastida, J.; Piskuła, M.; Zieliński, H. Recent Advances in Processing and Development of Buckwheat Derived Bakery and Non-Bakery Products—A Review. Pol. J. Food Nutr. Sci. 2015, 65, 9–20. [Google Scholar] [CrossRef] [Green Version]
- González-Sarrías, A.; Larrosa, M.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. Nutraceuticals for older people: Facts, fictions and gaps in knowledge. Maturitas 2013, 75, 313–334. [Google Scholar] [CrossRef]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT 2019, 102, 164–172. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Evaluation of Protein Concentration, Amino Acid Profile and Antinutritional Compounds in Hempseed Meal from Dioecious and Monoecious Varieties. AJPS 2015, 6, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xiong, Y.L. Processing, Nutrition, and Functionality of Hempseed Protein: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 936–952. [Google Scholar] [CrossRef] [Green Version]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Hayward, L.; McSweeney, M.B. Acceptability of bread made with hemp (Cannabis sativa subsp. sativa) flour evaluated fresh and following a partial bake method. J. Food Sci. 2020, 85, 2915–2922. [Google Scholar] [CrossRef]
- Ni, Q.; Ranawana, V.; Hayes, H.E.; Hayward, N.J.; Stead, D.; Raikos, V. Addition of Broad Bean Hull to Wheat Flour for the Development of High-Fiber Bread: Effects on Physical and Nutritional Properties. Foods 2020, 9, 1192. [Google Scholar] [CrossRef]
- Mariscal-Moreno, R.M.; Chuck-Hernández, C.; Figueroa-Cárdenas, J.D.D.; Serna-Saldivar, S.O. Physicochemical and Nutritional Evaluation of Bread Incorporated with Ayocote Bean (Phaseolus coccineus) and Black Bean (Phaseolus vulgaris). Processes 2021, 9, 1782. [Google Scholar] [CrossRef]
- Raczyk, M.; Kruszewski, B.; Michałowska, D. Effect of Coconut and Chestnut Flour Supplementations on Texture, Nutritional and Sensory Properties of Baked Wheat Based Bread. Molecules 2021, 26, 4641. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Kozak, U.; Drabińska, N.; Bączek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Incorporation of mushroom powder into bread dough-effects on dough rheology and bread properties. Cereal Chem. J. 2018, 95, 418–427. [Google Scholar] [CrossRef]
- Wandersleben, T.; Morales, E.; Burgos-Díaz, C.; Barahona, T.; Labra, E.; Rubilar, M.; Salvo-Garrido, H. Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT 2018, 91, 48–54. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Utilization of chestnut flour in gluten-free bread formulations. J. Food Eng. 2010, 101, 329–336. [Google Scholar] [CrossRef]
- Chandrasekaran, M. Valorization of Food Processing By-Products; Chandrasekaran, M., Ed.; CRC Press: Hoboken, NJ, USA, 2012; ISBN 978-1-4398-4887-6. [Google Scholar]
- Pojić, M.; Dapčević Hadnađev, T.; Hadnađev, M.; Rakita, S.; Brlek, T. Bread Supplementation with Hemp Seed Cake: A By-Product of Hemp Oil Processing. J. Food Qual. 2015, 38, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Parry, J.W.; Cheng, Z.; Moore, J.; Yu, L.L. Fatty Acid Composition, Antioxidant Properties, and Antiproliferative Capacity of Selected Cold-Pressed Seed Flours. J. Am. Oil. Chem. Soc. 2008, 85, 457–464. [Google Scholar] [CrossRef]
- Rusu, I.E.; Marc Vlaic, R.A.; Mureşan, C.C.; Mureşan, A.E.; Mureşan, V.; Pop, C.R.; Chiş, M.S.; Man, S.M.; Filip, M.R.; Onica, B.-M.; et al. Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product. Plants 2021, 10, 1558. [Google Scholar] [CrossRef]
- European Union. Regulation (EC) No 1924/2006 on Nutrition and Health Claims Made on Foods; The European Parliament: Brussels, Belgium, 2006. [Google Scholar]
- Oulton, D.P.; Porat, I.; Boston, C.; Walsby, R. Imagemaster: Precision colour communication based on CIE calibrated monitor screens. In Proceedings of the 5th International Conference on High Technology, Chiba, Japan, 11–14 September 1996; pp. 270–279. Available online: https://www.research.manchester.ac.uk/portal/files/47693885/ICHT_09_16.pdf (accessed on 8 January 2022).
- Hernández-Carrión, M.; Sanz, T.; Hernando, I.; Llorca, E.; Fiszman, S.M.; Quiles, A. New formulations of functional white sauces enriched with red sweet pepper: A rheological, microstructural and sensory study. Eur. Food Res. Technol. 2015, 240, 1187–1202. [Google Scholar] [CrossRef]
- Witzel, R.F.; Burnham, R.W.; Onley, J.W. Threshold and suprathreshold perceptual color differences. J. Opt. Soc. Am. 1973, 63, 615–625. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R.; Chiang, E. How Fresh Is Your Bread? Quantifying How Fast Bread Will Get Stale. Available online: https://www.foodqualityandsafety.com/article/how-fast-bread-stale-fresh/1/ (accessed on 8 January 2022).
- U.S. Department of Agriculture. Food Data Central: Flour, Whole Wheat, Unenriched; U.S. Department of Agriculture: Washington, DC, USA, 2020. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/790085/nutrients (accessed on 8 January 2022).
- Schultz, C.J.; Lim, W.L.; Khor, S.F.; Neumann, K.A.; Schulz, J.M.; Ansari, O.; Skewes, M.A.; Burton, R.A. Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. J. Agric. Food Res. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Malomo, S.A.; He, R.; Aluko, R.E. Structural and functional properties of hemp seed protein products. J. Food Sci. 2014, 79, C1512–C1521. [Google Scholar] [CrossRef] [PubMed]
- Sakhare, S.D.; Inamdar, A.A.; Soumya, C.; Indrani, D.; Rao, V.G. Effect of flour particle size on microstructural, rheological and physico-sensory characteristics of bread and south Indian parotta. J. Food Sci. Technol. 2014, 51, 4108–4113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Moore, W.R. Effect of wheat bran particle size on dough rheological properties. J. Sci. Food Agric. 1997, 74, 490–496. [Google Scholar] [CrossRef]
- Švec, I.; Hrušková, M. Crumb evaluation of bread with hemp products addition by means of image analysis. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 1867–1872. [Google Scholar] [CrossRef] [Green Version]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Consumer Acceptance of Bread Enriched with Alternative Proteins. Foods 2020, 9, 933. [Google Scholar] [CrossRef]
- Ziobro, R.; Witczak, T.; Juszczak, L.; Korus, J. Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocoll. 2013, 32, 213–220. [Google Scholar] [CrossRef]
- Gellynck, X.; Kühne, B.; van Bockstaele, F.; van de Walle, D.; Dewettinck, K. Consumer perception of bread quality. Appetite 2009, 53, 16–23. [Google Scholar] [CrossRef] [Green Version]
- EU. Commission Regulation (EU) No 271/2010; The European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Sathe, S.K.; Deshpande, S.S.; Salunkhe, K.K. Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J. Food Sci. 1982, 47, 491–498. [Google Scholar] [CrossRef]
- ISO 712:2009; Cereals and Cereal Products—Determination of Moisture Content—Reference Method, 11th ed. ISO: Geneva, Switzerland, 2009.
- Holland, S.; Foster, T.; MacNaughtan, W.; Tuck, C. Design and characterisation of food grade powders and inks for microstructure control using 3D printing. J. Food Eng. 2018, 220, 12–19. [Google Scholar] [CrossRef]
- Ionescu, A.; Aprodu, I.; Zara, M. Functional characterization of lupin protein concentrate treated with bacterial transglutaminase. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2009, 3, 9–19. [Google Scholar]
- Badar, H. Functional Properties of Maize Flour and its Blends with Wheat Flour: Optimization of Preparation Conditions by Response Surface Methodology. Pak. J. Bot. 2013, 45, 2027–2035. [Google Scholar] [CrossRef]
- Grausgruber, H.; Hatzenbichler, E.; Ruckenbauer, P. Analysis of repeated stickiness measures of wheat dough using a texture analyzer. J. Texture Stud. 2003, 34, 69–82. [Google Scholar] [CrossRef]
- Kadan, R.S.; Robinson, M.G.; Thibodeaux, D.P.; Pepperman, A.B. Texture and other Physicochemical Properties of Whole Rice Bread. J. Food Sci. 2001, 66, 940–944. [Google Scholar] [CrossRef]
Raw Material | DM/% | WBC/% | LGC/% | d(0.1)/µm | d(0.5)/µm | d(0.9)/µm | RR |
---|---|---|---|---|---|---|---|
HSG | 94.4 | 1.9 ± 0.4 * | 16 | 397 | 879 | 1506 | 1.3 |
HPF | 92.8 | 1.4 ± 0.1 * | 18 | 17 | 177 | 521 | 2.9 |
HP46 | 93.8 | 1.5 ± 0.1 * | 15 | 42 | 174 | 361 | 1.8 |
HP54 | 96.8 | 1.2 ± 0.1 | 22 | 13 | 52 | 205 | 3.7 |
WFM | 92.6 | 1.2 ± 0.1 | 15 | 19 | 109 | 790 | 7.0 |
Sample | L* | a* | b* | ΔE* |
---|---|---|---|---|
HSG | 55.6 ± 0.14 | 3.1 ± 0.02 | 12.7 ± 0.06 | 33.7 ± 0.12 |
HPF | 60.0 ± 0.03 | 5.2 ± 0.01 | 17.9 ± 0.02 | 30.3 ± 0.01 |
HP46 | 55.2 + ±0.01 | 5.4 ± 0.03 | 18.7 ± 0.04 | 35.2 ± 0.03 |
HP54 | 73.0 ± 0.01 | 9.4 ± 0.01 | 25.2 ± 0.03 | 23.0 ± 0.02 |
WFM | 89.2 ± 0.02 | 3.4 ± 0.01 | 10.0 ± 0.01 | |
HSG-1-D | 71.5 ± 0.22 | 8.0 ± 0.08 | 18.3 ± 0.09 | 1.0 ± 0.43 |
HPF-1-D | 68.8 ± 0.24 | 7.9 ± 0.09 | 19.3 ± 0.19 | 2.4 ± 0.40 |
HP46-1-D | 69.2 ± 0.39 | 7.9 ± 0.16 | 19.3 ± 0.23 | 2.1 ± 0.27 |
HP54-1-D | 70.9 ± 0.46 | 8.6 ± 0.06 | 19.5 ± 0.20 | 0.5 ± 0.20 |
HPF-18-D | 51.4 ± 0.18 | 5.4 ± 0.12 | 17.0 ± 0.16 | 20.1 ± 0.32 |
HP46-14-D | 54.2 ± 0.68 | 5.6 ± 0.17 | 19.1 ± 0.48 | 17.2 ± 0.35 |
HP54-10-D | 67.2 ± 0.33 | 9.3 ± 0.04 | 23.8 ± 0.15 | 6.2 ± 0.46 |
WFM-D | 71.1 ± 0.64 | 8.6 ± 0.12 | 19.0 ± 0.14 | |
HSG-1-B | 64.7 ± 0.94 | 8.0 ± 0.03 | 17.3 ± 0.07 | 1.3 ± 0.80 |
HPF-1-B | 59.3 ± 0.38 | 8.3 ± 0.07 | 17.9 ± 0.26 | 4.7 ± 0.24 |
HP46-1-B | 59.7 ± 0.44 | 7.7 ± 0.13 | 17.3 ± 0.25 | 4.5 ± 0.31 |
HP54-1-B | 63.0 ± 0.33 | 9.1 ± 0.19 | 19.3 ± 0.36 | 1.5 ± 0.30 |
HPF-18-B | 43.6 ± 0.48 | 4.2 ± 0.07 | 8.3 ± 0.08 | 23.1 ± 0.34 |
HP46-14-B | 47.6 ± 0.65 | 5.2 ± 0.07 | 11.7 ± 0.47 | 18.0 ± 0.58 |
HP54-10-B | 56.9 ± 0.24 | 9.5 ± 0.43 | 20.0 ± 1.00 | 7.4 ± 0.92 |
WFM-B | 64.0 ± 0.15 | 8.6 ± 0.05 | 18.2 ± 0.17 |
Sample | Stickiness /N | Hardness/N | Cohesion | Elasticity | Gumminess /N | Chewiness /N |
---|---|---|---|---|---|---|
D | B | B | B | B | B | |
HSG-1 | −0.67 ± 0.09 * | 7.60 ± 0.67 * | 0.97 ± 0.02 * | 1.06 ± 0.01 * | 7.39 ± 0.60 * | 7.81 ± 0.67 * |
HPF-1 | −0.37 ± 0.12 * | 8.79 ± 1.17 * | 0.92 ± 0.03 * | 1.06 ± 0.01 * | 8.10 ± 1.13 * | 8.57 ± 1.22 * |
HP46-1 | −0.54 ± 0.09 | 6.24 ± 0.75 | 0.96 ± 0.03 * | 1.05 ± 0.01 * | 5.99 ± 0.60 * | 6.28 ± 0.61 |
HP54-1 | −0.26 ± 0.10 * | 13.45 ± 1.39 * | 0.89 ± 0.02 * | 1.06 ± 0.01 * | 11.94 ± 1.21 * | 12.67 ± 1.33 * |
HPF-18 | −0.69 ± 0.03 * | 14.77 ± 1.18 * | 0.90 ± 0.02 * | 1.09 ± 0.01 | 13.25 ± 0.87 * | 14.45 ± 1.00 * |
HP46-14 | −0.70 ± 0.02 * | 15.71 ± 1.14 * | 0.92 ± 0.02 * | 1.10 ± 0.02 * | 14.44 ± 1.15 * | 15.91 ± 1.45 * |
HP54-10 | −0.42 ± 0.04 * | 7.64 ± 0.99 * | 1.07 ± 0.12 | 1.13 ± 0.02 * | 8.12 ± 1.21 * | 9.19 ± 1.46 * |
WFM | −0.56 ± 0.04 | 5.84 ± 0.47 | 1.05 ± 0.0.2 | 1.08 ± 0.01 | 6.13 ± 0.57 | 6.63 ± 0.65 |
Raw Material | Energy/kJ/100 g | Protein/g/100 g | Fat/g/100 g | Carbohydrates/g/100 g | Dietary Fibre/g/100 g |
---|---|---|---|---|---|
HSG | 2380 | 28 | 46 | 4.8 | 14 |
HPF | 1200 | 33 | 6.8 | 3.3 | 42 |
HP46 | 1374 | 46 | 8.7 | 1.6 | 31 |
HP54 | 1341 | 54 | 4.5 | 8.2 | 16 |
WF | 1453 | 12 | 1.7 | 68 | 3.7 |
WWF | 1422 | 13 | 3 | 58 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiedemair, V.; Gruber, K.; Knöpfle, N.; Bach, K.E. Technological Changes in Wheat-Based Breads Enriched with Hemp Seed Press Cakes and Hemp Seed Grit. Molecules 2022, 27, 1840. https://doi.org/10.3390/molecules27061840
Wiedemair V, Gruber K, Knöpfle N, Bach KE. Technological Changes in Wheat-Based Breads Enriched with Hemp Seed Press Cakes and Hemp Seed Grit. Molecules. 2022; 27(6):1840. https://doi.org/10.3390/molecules27061840
Chicago/Turabian StyleWiedemair, Verena, Kathrin Gruber, Nataly Knöpfle, and Katrin E. Bach. 2022. "Technological Changes in Wheat-Based Breads Enriched with Hemp Seed Press Cakes and Hemp Seed Grit" Molecules 27, no. 6: 1840. https://doi.org/10.3390/molecules27061840
APA StyleWiedemair, V., Gruber, K., Knöpfle, N., & Bach, K. E. (2022). Technological Changes in Wheat-Based Breads Enriched with Hemp Seed Press Cakes and Hemp Seed Grit. Molecules, 27(6), 1840. https://doi.org/10.3390/molecules27061840