Anti-Depressant Properties of Crocin Molecules in Saffron
Abstract
:1. Introduction
2. Depression and Associated Disorders and Role of Natural Products as Adjunct Therapy
3. Saffron: Reported Biologically Active Compounds and Their Pharmacology
4. Role of Saffron Stigma Extract and Crocin in Synaptic Transmission
5. Monoamine-Related Mechanism and Brain Neurotransmitters
6. Neurotransmitter Receptors and Possible Targets for Crocin
6.1. Serotonin
6.2. Dopamine
7. Pharmacological Treatment of Depression with Crocin
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandita, D. Saffron (Crocus sativus L.): Phytochemistry, therapeutic significance and omics-based biology. In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 325–396. [Google Scholar]
- Hosseinzadeh, H.; Nassiri-Asl, M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): A review. Phytother. Res. 2013, 27, 475–483. [Google Scholar] [CrossRef]
- Christodoulou, E.; Kadoglou, N.P.; Kostomitsopoulos, N.; Valsami, G. Saffron: A natural product with potential pharmaceutical applications. J. Pharm. Pharmacol. 2015, 67, 1634–1649. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, T.N.; Rajasekharan, S.; Badola, D.P.; Shah, D.C. Important medicinal plants of jammu and kashmir I. Kesar (saffron). Anc. Sci. Life 1985, 5, 68–73. [Google Scholar]
- Basker, D.; Negbi, M. Uses of saffron. Econ. Bot. 1983, 37, 228–236. [Google Scholar] [CrossRef]
- Dhar, A.K.; Mir, G.M. Saffron in Kashmir-VI: A review of distribution and production. J. Herbs Spices Med. Plants 1997, 4, 83–90. [Google Scholar] [CrossRef]
- Jan, S.; Wani, A.A.; Kamili, A.N.; Kashtwari, M. Distribution, chemical composition and medicinal importance of saffron (Crocus sativus L.). Afr. J. Plant Sci. 2014, 8, 537–545. [Google Scholar]
- Ghaffari, S.M.; Bagheri, A. Stigma variability in saffron (Crocus sativus L.). Afr. J. Biotechnol. 2010, 8, 601–604. [Google Scholar]
- Gambella, F.; Paschino, F.; Bertetto, A.M. Perspectives in the mechanization of saffron (Crocus sativus L.). Int. J. Mech. Control. 2013, 14, 3–8. [Google Scholar]
- Galigani, P.F.; Pegna, F.G. Mechanized Saffron Cultivation, Including Harvesting. In Saffron: Crocus Sativus L.; Megbi, M., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2006; pp. 115–126. [Google Scholar]
- Bathaie, S.Z.; Mousavi, S.Z. Historical uses of saffron: Identifying potential new avenues for modern Research. Avicenna J. Phytomed. 2011, 1, 57–66. [Google Scholar]
- Ait-Oubahou, A.; El-Otmani, M. 8. Saffron Cultivation in Morocco. In Saffron: Crocus sativus L.; Megbi, M., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2006; pp. 87–97. [Google Scholar]
- Shariatifar, N.; Shoeibi, S.; Sani, M.J.; Jamshidi, A.H.; Zarei, A.; Mehdizade, A.; Dadgarnejad, M. Study on diuretic activity of saffron (stigma of Crocus sativus L.) Aqueous extract in rat. J. Adv. Pharm. Technol. 2014, 5, 17–20. [Google Scholar]
- Amin, B.; Hosseinzadeh, H. Analgesic and Anti-Inflammatory Effects of Crocus sativus L. (Saffron). In Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease: Prevention and Therapy; Watson, R.R.P., Victor, R., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 319–324. [Google Scholar]
- Vahidi, A.R.; Bashardost, N.; Akhondi, H. The analgesic effect of saffron extract in rats as compared with morphine sulfate. Planta Med. 2007, 73, 552. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Younesi, H.M. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002, 2, 7. [Google Scholar]
- Khan, A.; Muhamad, N.A.; Ismail, H.; Nasir, A.; Khalil, A.A.K.; Anwar, Y.; Khan, Z.; Ali, A.; Taha, R.M.; Al-Shara, B.; et al. Potential Nutraceutical Benefits of In Vivo Grown Saffron (Crocus sativus L.) As Analgesic, Anti-inflammatory, Anticoagulant, and Antidepressant in Mice. Plants 2020, 9, 1414. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Khosravan, V. Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Arch. Iran. Med. 2002, 5, 44–47. [Google Scholar]
- Boskabady, M.H.; Byrami, G.; Feizpour, A. The effect of safranal, a constituent of Crocus sativus (saffron), on tracheal responsiveness, serum levels of cytokines, total NO and nitrite in sensitized guinea pigs. Pharmacol. Rep. 2014, 66, 56–61. [Google Scholar] [CrossRef]
- Dehghan, F.; Hajiaghaalipour, F.; Yusof, A.; Muniandy, S.; Hosseini, S.A.; Heydari, S.; Salim, L.Z.A.; Azarbayjani, M.A. Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo. Sci. Rep. 2016, 6, 25139. [Google Scholar] [CrossRef] [Green Version]
- Omidi, A.; Riahinia, N.; Montazer Torbati, M.B.; Behdani, M.-A. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats. Avicenna J. Phytomed. 2014, 4, 330–336. [Google Scholar]
- Saleem, N.; Ahmad, M.; Kamran, S.; Riaz, H.; Mehmood, Y.; Raza, S. Hepatoprotective Effect of Crocus sativus on Amiodarone-Induced Liver Toxicity. Br. J. Pharm. Res. 2016, 12, 1–11. [Google Scholar] [CrossRef]
- Mohajeri, D.; Rezaei, A.; Doustar, Y.; Abbasi, M.M. Hepatoprotective effect of ethanolic extract of saffron stigma in comparison with silymarin against rifampin induced hepatotoxicity in rats. Zahedan. J. Res. Med. Sci. 2011, 1, 53–59. [Google Scholar]
- Premkumar, K.; Abraham, S.K.; Santhiya, S.T.; Ramesh, A. Protective effects of saffron (Crocus sativus Linn.) on genotoxins-induced oxidative stress in Swiss albino mice. Phytother. Res. 2003, 17, 614–617. [Google Scholar] [CrossRef]
- Monchaux De Oliveira, C.; Pourtau, L.; Vancassel, S.; Pouchieu, C.; Capuron, L.; Gaudout, D.; Castanon, N. Saffron Extract-Induced Improvement of Depressive-Like Behavior in Mice Is Associated with Modulation of Monoaminergic Neurotransmission. Nutrients 2021, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, T.; Zhang, C.; Ma, Z. RNA-seq based transcriptome analysis of ethanol extract of saffron protective effect against corticosterone-induced PC12 cell injury. BMC Complement. Med. Ther. 2022, 22, 29. [Google Scholar] [CrossRef] [PubMed]
- Kiashemshaki, B.; Safakhah, H.A.; Ghanbari, A.; Khaleghian, A.; Miladi-Gorji, H. Saffron (Crocus sativus L.) stigma reduces symptoms of morphine-induced dependence and spontaneous withdrawal in rats. Am. J. Drug Alcohol Abuse 2021, 47, 170–181. [Google Scholar] [CrossRef] [PubMed]
- VandenBosch, G.R. APA Dictionary of Psychology, 2nd ed.; American Psychological Association: Washington, DC, USA, 2015. [Google Scholar]
- Fava, M.; Kendler, K.S. Major Depressive Disorder. Neuron 2000, 28, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.B.W. Standardizing the Hamilton Depression Rating Scale: Past, present, and future. Eur. Arch. Psychiatry Clin. Neurosci. 2001, 251, 6–12. [Google Scholar] [CrossRef]
- Cuijpers, P.; Reynolds, C.F.; Donker, T.; Li, J.; Andersson, G.; Beekman, A. Personalized Treatment of Adult Depression: Medication, Psychotherapy, or Both? A Systematic Review. Depress. Anxiety 2012, 29, 855–864. [Google Scholar] [CrossRef]
- Blier, P. Neurobiology of Depression and Mechanism of Action of Depression Treatments. J. Clin. Psychiatry 2016, 77, e319. [Google Scholar] [CrossRef]
- Ostadkarampour, M.; Putnins, E.E. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Front. Pharmacol. 2021, 12, 676239. [Google Scholar] [CrossRef]
- Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Wang, Y.; Wang, P.; Li, Y.; Li, B. Herbal Medicine for Anxiety, Depression and Insomnia. Curr. Neuropharmacol. 2015, 13, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of Ginseng species in different regions as a multipurpose herb in traditional Chinese medicine, modern herbology and pharmacological science. J. Med. Plant Res. 2019, 13, 213–226. [Google Scholar]
- Xu, C.; Teng, J.; Chen, W.; Ge, Q.; Yang, Z.; Yu, C.; Yang, Z.; Jia, W. 20 (S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2010, 34, 1402–1411. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Ip, S.P.; Xian, Y.F.; Hu, Z.; Che, C.T. Anti-depressant-like effect of peony: A mini-review. Pharm. Biol. 2012, 50, 72–77. [Google Scholar] [CrossRef]
- Chassagne, F.; Huang, X.; Lyles, J.T.; Quave, C.L. Validation of a 16th century traditional Chinese medicine use of ginkgo biloba as a topical antimicrobial. Front. Microbiol. 2019, 10, 775. [Google Scholar] [CrossRef]
- Kulkarni, S.K.; Bhutani, M.K.; Bishnoi, M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology 2008, 201, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ku, B.S.; Yao, H.Y.; Lin, Y.H.; Ma, X.; Zhang, Y.H.; Li, X.J. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol. Biochem. Behav. 2005, 82, 200–206. [Google Scholar] [CrossRef]
- Rzhepakovsky, I.V.; Areshidze, D.A.; Avanesyan, S.S.; Grimm, W.D.; Filatova, N.V.; Kalinin, A.V.; Kochergin, S.G.; Kozlova, M.A.; Kurchenko, V.P.; Sizonenko, M.N.; et al. Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. Molecules 2022, 27, 762. [Google Scholar] [CrossRef]
- Isemura, M.; Miyoshi, N.; Pervin, M.; Suzuki, T.; Unno, K.; Nakamura, Y. Green tea catechins for well-being and therapy: Prospects and opportunities. Botanics 2015, 5, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.M.; Nanri, A.; Kurotani, K.; Kuwahara, K.; Kume, A.; Sato, M.; Hayabuchi, H.; Mizoue, T. Green tea and coffee consumption is inversely associated with depressive symptoms in a Japanese working population. Public Health Nutr. 2014, 17, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Bandaruk, Y.; Mukai, R.; Kawamura, T.; Nemoto, H.; Terao, J. Evaluation of the Inhibitory Effects of Quercetin-Related Flavonoids and Tea Catechins on the Monoamine Oxidase-A Reaction in Mouse Brain Mitochondria. J. Agric. Food Chem. 2012, 60, 10270–10277. [Google Scholar] [CrossRef]
- Rojas, P.; Serrano-García, N.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Ögren, S.O.; Rojas, C. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: Role of oxidative stress. Neurochem. Int. 2011, 59, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.X.; Hu, C.C.; Shang, Y.S.; Xie, J. Role of Ginkgo biloba extract as an adjunctive treatment of elderly patients with depression and on the expression of serum S100B. Medicine 2018, 97, e12421. [Google Scholar] [CrossRef] [PubMed]
- Bach-Rojecky, L.; Kalodera, Z.; Samaržija, I. The antidepressant activity of Hypericum perforatum L. measured by two experimental methods on mice. Acta Pharm. 2004, 54, 157–162. [Google Scholar] [PubMed]
- Sah, S.P.; Mathela, C.S.; Chopra, K. Antidepressant effect of Valeriana wallichii patchouli alcohol chemotype in mice: Behavioural and biochemical evidence. J. Ethnopharmacol. 2011, 135, 197–200. [Google Scholar] [CrossRef]
- Vanzella, C.; Bianchetti, P.; Sbaraini, S.; Vanzin, S.I.; Melecchi, M.I.S.; Caramão, E.B.; Siqueira, I.R. Antidepressant-like effects of methanol extract of Hibiscus tiliaceus flowers in mice. BMC Complement. Altern. Med. 2012, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.Q.; Ip, S.P.; Tsai, S.H.; Che, C.T. Antidepressant-like effect of peony glycosides in mice. J. Ethnopharmacol. 2008, 119, 272–275. [Google Scholar] [CrossRef]
- Sarris, J.; Kavanagh, D.J.; Byrne, G.; Bone, K.M.; Adams, J.; Deed, G. The Kava Anxiety Depression Spectrum Study (KADSS): A randomized, placebo-controlled crossover trial using an aqueous extract of Piper methysticum. Psychopharmacology 2009, 205, 399–407. [Google Scholar] [CrossRef]
- Kageyama, A.; oshio, M.; Horiuchi, H.; Yokogoshi, H.; ueno, T.; Masuda, H.; Kageyama, A.; Yokogosh, H. Antidepressant-like Effects of an Aqueous Extract of Lavender (Lavandula angustifolia Mill.) in Rats. Food Sci. Technol. Res. 2012, 18, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Santhosh, P.; Venugopal, R.; Nilakash, S.; Kunjbihari, S.; Mangala, L. Antidepressant activity of methanolic extract of Passiflora foetida leaves in mice. Int. J. Pharm. Pharm. 2010, 3, 112–115. [Google Scholar]
- Kabiri, M.; Rezadoost, H.; Ghassempour, A. A comparative quality study of saffron constituents through HPLC and HPTLC methods followed by isolation of crocins and picrocrocin. LTW 2017, 84, 1–9. [Google Scholar] [CrossRef]
- Moratalla-López, N.; Bagur, M.J.; Lorenzo, C.; Martínez-Navarro, M.E.; Rosario Salinas, M.; Alonso, G.L. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019, 24, 2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinzadeh, H.; Sadeghnia, H.R. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm. Pharm. Sci. 2005, 8, 394–399. [Google Scholar] [PubMed]
- Hosseinzadeh, H.; Talebzadeh, F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005, 76, 722–724. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Sadeghnia, H.R. Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: Involvement of GABAergic and opioids systems. Phytomedicine 2007, 14, 256–262. [Google Scholar] [CrossRef]
- Karimi, G.R.; Hosseinzadeh, H.; Hosseinzadeh, H.; Khaleghpanah, P. Study of antidepressant effect of aqueous and ethanol extract of Crocus sativus in mice. Iran. J. Basic Med. Sci. 2001, 4, 11–15. [Google Scholar]
- ChemSpider CSID:55000. Available online: http://www.chemspider.com/Chemical-Structure.55000.html (accessed on 17 March 2022).
- ChemSpider CSID:4444644. Available online: https://www.chemspider.com/Chemical-Structure.4444644.html (accessed on 17 March 2022).
- ChemSpider CSID:115678. Available online: https://www.chemspider.com/Chemical-Structure.115678.html (accessed on 17 March 2022).
- ChemSpider CSID:4444645. Available online: https://www.chemspider.com/Chemical-Structure.4444645.html (accessed on 17 March 2022).
- Suchareau, M.; Bordes, A.; Lemée, L. Improved quantification method of crocins in saffron extract using HPLC-DAD after qualification by HPLC-DAD-MS. Food. Chem. 2021, 362, 130199. [Google Scholar] [CrossRef]
- Zhao, C.; Kam, H.-T.; Chen, Y.; Gong, G.; Hoi, M.P.-M.; Skalicka-Woźniak, K.; Dias, A.C.P.; Lee, S.M.-Y. Crocetin and Its Glycoside Crocin, Two Bioactive Constituents From Crocus sativus L. (Saffron), Differentially Inhibit Angiogenesis by Inhibiting Endothelial Cytoskeleton Organization and Cell Migration Through VEGFR2/SRC/FAK and VEGFR2/MEK/ERK Signaling Pathways. Front. Pharmacol. 2021, 12, 675359. [Google Scholar]
- Gutheil, W.G.; Reed, G.; Ray, A.; Anant, S.; Dhar, A. Crocetin: An Agent Derived from Saffron for Prevention and Therapy for Cancer. Curr. Pharm. Biotechnol. 2012, 13, 173–179. [Google Scholar] [CrossRef]
- Escribano, J.; Alonso, G.-L.; Coca-Prados, M.; Fernández, J.-A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 1996, 100, 23–30. [Google Scholar] [CrossRef]
- Xu, G.-L.; Li, G.; Ma, H.-P.; Zhong, H.; Liu, F.; Ao, G.-Z. Preventive Effect of Crocin in Inflamed Animals and in LPS-Challenged RAW 264.7 Cells. J. Agric. Food Chem. 2009, 57, 8325–8330. [Google Scholar] [CrossRef]
- Godugu, C.; Pasari, L.P.; Khurana, A.; Anchi, P.; Saifi, M.A.; Bansod, S.P.; Annaldas, S. Crocin, an active constituent of Crocus sativus ameliorates cerulein induced pancreatic inflammation and oxidative stress. Phytother. Res. 2020, 34, 825–835. [Google Scholar] [CrossRef]
- Georgiadou, G.; Grivas, V.; Tarantilis, P.A.; Pitsikas, N. Crocins, the active constituents of Crocus sativus L. counteracted ketamine–induced behavioural deficits in rats. Psychopharmacology 2014, 231, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Motamedshariaty, V.; Hadizadeh, F. Antidepressant effect of keamperol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline 2007, 2, 367–370. [Google Scholar]
- Hosseinzadeh, H.; Karimi, G.; Niapoor, M. Antidepressant Effect of Crocus sativus L. Stigma Extracts and Their Constituents, Crocin and Safranal, in Mice. Acta Hortic. 2004, 650, 435–445. [Google Scholar] [CrossRef]
- Xi, L.; Qian, Z. Pharmacological properties of crocetin and crocin (digentiobiosyl ester of crocetin) from saffron. Nat. Prod. Commun. 2006, 1, 1934578X0600100112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Geng, J.; Hong, Y.; Jiao, L.; Li, S.; Sun, R.; Xie, Y.; Yan, C.; Aa, J.; Wang, G. Orally Administered Crocin Protects Against Cerebral Ischemia/Reperfusion Injury Through the Metabolic Transformation of Crocetin by Gut Microbiota. Front. Pharmacol. 2019, 10, 440. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, A.; Razavi, B.M.; Hosseinzadeh, H. Pharmacokinetic Properties of Saffron and its Active Components. Eur. J. Drug. Metab. Pharmacokinet. 2018, 43, 383–390. [Google Scholar] [CrossRef]
- Rahaiee, S.; Moini, S.; Hashemi, M.; Shojaosadati, S.A. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): A review. J. Food Sci. Technol. 2015, 52, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Kumar, H.; Kaushik, P.; Mirza, R.; Awasthi, R.; Kulkarni, G.T. Therapeutic Benefits of Saffron in Brain Diseases: New Lights on Possible Pharmacological Mechanisms. In Saffron: The Age-Old Panacea in a New Light; Sarwat, M., Sumaiya, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 117–130. [Google Scholar]
- Rao, S.V.; Muralidhara; Yenisetti, S.C.; Rajini, P.S. Evidence of neuroprotective effects of saffron and crocin in a Drosophila model of parkinsonism. Neurotoxicology 2016, 52, 230–242. [Google Scholar] [CrossRef]
- Moragrega, I.; Ríos, J.L. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. Planta Med. 2021, 87, 656–685. [Google Scholar] [CrossRef]
- Mokhtari-Zaer, A.; Saadat, S.; Ghorani, V.; Memarzia, A.; Boskabady, M.H. The Effects of Saffron (Crocus sativus) and its Constituents on Immune System. In Saffron: The Age-Old Panacea in a New Light; Sarwat, M., Sumaiya, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 193–217. [Google Scholar]
- Fatehi, M.; Rashidabady, T.; Hassanabad, Z.F. Effects of Petals Extracts of Saffron on Rat Blood Pressure and on Responses Induced by Electrical Field Stimulation in the Rat Isolated Vas Deferens and Guinea-Pig Ileum. Acta Hortic. 2007, 84, 347–350. [Google Scholar] [CrossRef]
- Papandreou, M.A.; Tsachaki, M.; Efthimiopoulos, S.; Cordopatis, P.; Lamari, F.N.; Margarity, M. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav. Brain Res. 2011, 219, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.H.; Tayarani, N.Z.; Parsaee, H. Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in pc12 cells. Cell. Mol. Neurobiol. 2010, 30, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Noorbala, A.A.; Akhondzadeh, S.; Tahmacebi-Pour, N.; Jamshidi, A.H. Hydro-alcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: A double-blind, randomized pilot trial. J. Ethnopharmacol. 2005, 97, 281–284. [Google Scholar] [CrossRef]
- Akhondzadeh, S.; Fallah-Pour, H.; Afkham, K.; Jamshidi, A.H.; Khalighi-Cigaroudi, F. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial [ISRCTN45683816]. BMC Complement. Altern. Med. 2004, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Akhondzadeh Basti, A.; Moshiri, E.; Noorbala, A.A.; Jamshidi, A.H.; Abbasi, S.H.; Akhondzadeh, S. Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: A pilot double-blind randomized trial. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2007, 31, 439–442. [Google Scholar] [CrossRef]
- Moosavi, S.M.; Ahmadi, M.; Amini, M.; Vazirzadeh, B. The effects of 40 and 80 mg hydro- alcoholic extract of Crocus sativus in the treatment of mild to moderate depression. J. Maz. Univ. Med. Sci. 2014, 24, 47–53. [Google Scholar]
- Pietikainen, P. The Medical Management of Madness. In Madness: A History; Pietikainen, P., Ed.; Routledge: London, UK, 2018; pp. 106–133. [Google Scholar]
- De Monte, C.; Carradori, S.; Chimenti, P.; Secci, D.; Mannina, L.; Alcaro, F.; Petzer, A.; N’Da, C.I.; Gidaro, M.C.; Costa, G.; et al. New insights into the biological properties of Crocus sativus L.: Chemical modifications, human monoamine oxidases inhibition and molecular modeling studies. Eur. J. Med. Chem. 2014, 82, 164–171. [Google Scholar] [CrossRef]
- Dai, L.; Chen, L.; Wang, W. Safety and Efficacy of Saffron (Crocus sativus L.) for Treating Mild to Moderate Depression: A Systematic Review and Meta-analysis. J. Nerv. Ment. Dis. 2020, 208, 269–276. [Google Scholar] [CrossRef]
- Srivastava, R.; Ahmed, H.; Dixit, R.; Dharamveer; Saraf, S. Crocus sativus L.: A comprehensive review. Pharmacogn. Rev. 2010, 4, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.; Arekhi, S.; Omranzadeh, A.; Sahebkar, A. Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action. J. Affect. Disord. 2018, 227, 330–337. [Google Scholar] [CrossRef]
- Kawabata, K.; Tung, N.H.; Shoyama, Y.; Sugie, S.; Mori, T.; Tanaka, T. Dietary crocin inhibits colitis and colitis-associated colorectal carcinogenesis in male ICR mice. Evid. Based Complement. Altern. 2012, 2012, 820415. [Google Scholar] [CrossRef]
- Dwivedi, Y. Brain-derived neurotrophic factor: Role in depression and suicide. Neuropsychiatr. Dis. Treat. 2009, 5, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Q.; Mao, L. The ERK Pathway: Molecular Mechanisms and Treatment of Depression. Mol. Neurobiol. 2019, 56, 6197–6205. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Fibuch, E.E.; Mao, L. Regulation of mitogen-activated protein kinases by glutamate receptors. J. Neurochem. 2007, 100, 1–11. [Google Scholar] [CrossRef]
- Lu, L.; Wu, D.; Wang, K.; Tang, J.; Chen, G. Beneficial Effects of Crocin against Depression via Pituitary Adenylate Cyclase-Activating Polypeptide. Biomed. Res. Int. 2020, 2020, 3903125. [Google Scholar] [CrossRef]
- Hausenblas, H.A.; Saha, D.; Dubyak, P.J.; Anton, S.D. Saffron (Crocus sativus L.) and major depressive disorder: A meta-analysis of randomized clinical trials. J. Integr. Med. 2013, 11, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Ettehadi, H.; Mojabi, S.N.; Ranjbaran, M.; Shams, J.; Sahraei, H.; Hedayati, M.; Asefi, F. Aqueous Extract of Saffron (Crocus sativus) Increases Brain Dopamine and Glutamate Concentrations in Rats. Behav. Brain Sci. 2013, 3, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Mohajeri, S.A.; Sepahi, S.; Azam, A.G. Chapter 27—Antidepressant and antianxiety properties of saffron. In Saffron Science, Technology and Health; Koocheki, A., Khajeh-Hosseini, M., Eds.; Woodhead Publishing: Cambridgeshire, UK, 2020; pp. 431–444. [Google Scholar]
- Lechtenberg, M.; Schepmann, D.; Niehues, M.; Hellenbrand, N.; Wünsch, B.; Hensel, A. Quality and functionality of saffron: Quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and σ1 (Sigma-1) receptors. Planta Med. 2008, 74, 764–772. [Google Scholar] [CrossRef]
- Izquierdo, I.; da Cunha, C.; Rosat, R.; Jerusalinsky, D.; Ferreira, M.B.C.; Medina, J.H. Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Neurosci. Biobehav. Rev. 1992, 58, 16–26. [Google Scholar] [CrossRef]
- Pitsikas, N.; Sakellaridis, N. Crocus sativus L. extracts antagonize memory impairments in different behavioural tasks in the rat. Behav. Brain Res. 2006, 173, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Ghadami, M.R.; Pourmotabbed, A. The effect of crocin on scopolamine induced spatial learning and memory deficits in rats. Physiol. Pharmacol. 2009, 12, 287–295. [Google Scholar]
- Khaksarian, M.; Behzadifar, M.; Behzadifar, M.; Alipour, M.; Jahanpanah, F.; Re, T.S.; Firenzuoli, F.; Zerbetto, R.; Bragazzi, N.L. The efficacy of Crocus sativus (Saffron) versus placebo and Fluoxetine in treating depression: A systematic review and meta-analysis. Psychol. Res. Behav. Manag. 2019, 12, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghajar, A.; Neishabouri, S.M.; Velayati, N.; Jahangard, L.; Matinnia, N.; Haghighi, M.; Ghaleiha, A.; Afarideh, M.; Salimi, S.; Meysamie, A.; et al. Crocus sativus L versus Citalopram in the Treatment of Major Depressive Disorder with Anxious Distress: A Double-Blind, Controlled Clinical Trial. Pharmacopsychiatry 2017, 50, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Jafarnia, N.; Ghorbani, Z.; Nokhostin, M.; Manayi, A.; Nourimajd, S.; Razeghi Jahromi, S. Effect of Saffron (Crocus Satious L.) as an Add-On Therapy to Sertraline in Mild to Moderate Generalized Anxiety Disorder: A Double Blind Randomized Controlled Trial. Arch. Neurosci. 2017, 4, e14332. [Google Scholar] [CrossRef] [Green Version]
- Moshiri, E.; Basti, A.A.; Noorbala, A.A.; Jamshidi, A.H.; Hesameddin Abbasi, S.; Akhondzadeh, S. Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: A double-blind, randomized and placebo-controlled trial. Phytomedicine 2006, 13, 607–611. [Google Scholar] [CrossRef]
- Kashani, L.; Esalatmanesh, S.; Eftekhari, F.; Salimi, S.; Foroughifar, T.; Etesam, F.; Safiaghdam, H.; Moazen-Zadeh, E.; Akhondzadeh, S. Efficacy of Crocus sativus (saffron) in treatment of major depressive disorder associated with post-menopausal hot flashes: A double-blind, randomized, placebo-controlled trial. Arch. Gynecol. Obstet. 2018, 297, 717–724. [Google Scholar] [CrossRef]
- Tabeshpour, J.; Sobhani, F.; Sadjadi, S.A.; Hosseinzadeh, H.; Mohajeri, S.A.; Rajabi, O.; Taherzadeh, Z.; Eslami, S. A double-blind, randomized, placebo-controlled trial of saffron stigma (Crocus sativus L.) in mothers suffering from mild-to-moderate postpartum depression. Phytomedicine 2017, 36, 145–152. [Google Scholar] [CrossRef]
- Shahmansouri, N.; Farokhnia, M.; Abbasi, S.H.; Kassaian, S.E.; Noorbala Tafti, A.A.; Gougol, A.; Yekehtaz, H.; Forghani, S.; Mahmoodian, M.; Saroukhani, S.; et al. A randomized, double-blind, clinical trial comparing the efficacy and safety of Crocus sativus L. with fluoxetine for improving mild to moderate depression in post percutaneous coronary intervention patients. J. Affect. Disord. 2014, 155, 216–222. [Google Scholar] [CrossRef]
- Abedimanesh, N.; Ostadrahimi, A.; Bathaie, S.Z.; Abedimanesh, S.; Motlagh, B.; Jafarabadi, M.A.; Sadeghi, M.T. Effects of saffron aqueous extract and its main constituent, crocin, on health-related quality of life, depression, and sexual desire in coronary artery disease patients: A double-blind, placebo-controlled, randomized clinical trial. Iran. Red Crescent Med. J. 2017, 19, e13676. [Google Scholar] [CrossRef]
- Agha-Hosseini, M.; Kashani, L.; Aleyaseen, A.; Ghoreishi, A.; Rahmanpour, H.; Zarrinara, A.R.; Akhondzadeh, S. Crocus sativus L. (saffron) in the treatment of premenstrual syndrome: A double-blind, randomised and placebo-controlled trial. BJOG Int. J. Obstet. 2008, 115, 515–519. [Google Scholar] [CrossRef]
- Jam, I.N.; Sahebkar, A.H.; Eslami, S.; Mokhber, N.; Nosrati, M.; Khademi, M.; Foroutan-Tanha, M.; Ghayour-Mobarhan, M.; Hadizadeh, F.; Ferns, G.; et al. The effects of crocin on the symptoms of depression in subjects with metabolic syndrome. Adv. Clin. Exp. Med. 2017, 26, 925–930. [Google Scholar]
- Jelodar, G.; Javid, Z.; Sahraian, A.; Jelodar, S. Saffron improved depression and reduced homocysteine level in patients with major depression: A Randomized, double-blind study. Avicenna J. Phytomed. 2018, 8, 43–50. [Google Scholar]
- Lopresti, A.L.; Drummond, P.D.; Inarejos-García, A.M.; Prodanov, M. Affron®, a standardised extract from saffron (Crocus sativus L.) for the treatment of youth anxiety and depressive symptoms: A randomised, double-blind, placebo-controlled study. J. Affect. Disord. 2018, 232, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Shemshian, M.; Mousavi, S.H.; Norouzy, A.; Kermani, T.; Moghiman, T.; Sadeghi, A.; Mokhber, N.; Ghayour-Mobarhan, M.; Ferns, G.A.A. A double-blind, randomized and placebo-controlled trial of Saffron (Crocus sativus L.) in the treatment of anxiety and depression. J. Complement. Integr. 2016, 13, 195–199. [Google Scholar] [CrossRef]
- Modabbernia, A.; Sohrabi, H.; Nasehi, A.A.; Raisi, F.; Saroukhani, S.; Jamshidi, A.H.; Tabrizi, M.; Ashrafi, M.; Akhondzadeh, S. Effect of saffron on fluoxetine-induced sexual impairment in men: Randomized double-blind placebo-controlled trial. Psychopharmacology 2012, 223, 381–388. [Google Scholar] [CrossRef]
- Sahraian, A.; Jelodar, S.; Javid, Z.; Mowla, A.; Ahmadzadeh, L. Study the effects of saffron on depression and lipid profiles: A double blind comparative study. Asian. J. Psychiatr. 2016, 22, 174–176. [Google Scholar] [CrossRef]
- Talaei, A.; Hassanpour Moghadam, M.; Sajadi Tabassi, S.A.; Mohajeri, S.A. Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: A randomized, double-blind, placebo-controlled, pilot clinical trial. J. Affect. Disord. 2014, 174, 51–56. [Google Scholar] [CrossRef]
- Khalatbari-Mohseni, A.; Banafshe, H.R.; Mirhosseini, N.; Asemi, Z.; Ghaderi, A.; Omidi, A. The effects of crocin on psychological parameters in patients under methadone maintenance treatment: A randomized clinical trial. Subst. Abuse Treat. Prev. Policy 2019, 14, 9. [Google Scholar] [CrossRef]
- Moghadam, B.H.; Bagheri, R.; Roozbeh, B.; Ashtary-Larky, D.; Gaeini, A.A.; Dutheil, F.; Wong, A. Impact of saffron (Crocus sativus Linn) supplementation and resistance training on markers implicated in depression and happiness levels in untrained young males. Physiol. Behav. 2021, 233, 113352. [Google Scholar] [CrossRef]
- Asai, A.; Nakano, T.; Takahashi, M.; Nagao, A. Orally Administered Crocetin and Crocins Are Absorbed into Blood Plasma as Crocetin and Its Glucuronide Conjugates in Mice. J. Agric. Food Chem. 2005, 53, 7302–7306. [Google Scholar] [CrossRef]
- Xi, L.; Qian, Z.; Du, P.; Fu, J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine 2007, 14, 633–636. [Google Scholar] [CrossRef]
- Karkoula, E.; Lemonakis, N.; Kokras, N.; Dalla, C.; Gikas, E.; Skaltsounis, A.-L.; Tsarbopoulos, A. Trans-crocin 4 is not hydrolyzed to crocetin following i.p. administration in mice, while it shows penetration through the blood brain barrier. Fitoterapia 2018, 129, 62–72. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Blinov, A.V.; Serov, A.V.; Gvozdenko, A.A.; Kravtsov, A.A.; Nagdalian, A.A.; Raffa, V.V.; Maglakelidze, D.G.; Blinova, A.A.; Kobina, A.V.; et al. Effect of Selenium Nanoparticles on Germination of Hordéum Vulgáre Barley Seeds. Coatings 2021, 11, 862. [Google Scholar] [CrossRef]
- Rahaiee, S.; Hashemi, M.; Shojaosadati, S.A.; Moini, S.; Razavi, S.H. Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties. Int. J. Biol. Macromol. 2017, 99, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Kyriakoudi, A.; Tsimidou, M.Z. Properties of encapsulated saffron extracts in maltodextrin using the Büchi B-90 nano spray-dryer. Food Chem. 2018, 266, 458–465. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J. Food Eng. 2015, 165, 149–155. [Google Scholar] [CrossRef]
- Rajabi, H.; Jafari, S.M.; Rajabzadeh, G.; Sarfarazi, M.; Sedaghati, S. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 578, 123644. [Google Scholar] [CrossRef]
- Naderi, R.; Pardakhty, A.; Abbasi, M.F.; Ranjbar, M.; Iranpour, M. Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia–reperfusion injuries in rat kidney. Sci. Rep. 2021, 11, 23525. [Google Scholar] [CrossRef] [PubMed]
- Abba, M.; Ibrahim, Z.; Chong, C.S.; Zawawi, N.A.; Kadir, M.R.A.; Yusof, A.H.M.; Razak, S.I.A. Transdermal Delivery of Crocin Using Bacterial Nanocellulose Membrane. Fibers Polym. 2019, 20, 2025–2031. [Google Scholar] [CrossRef]
- Nasrpour, S.; Yousefi, G.; Niakosari, M.; Aminlari, M. Nanoencapsulation of saffron crocin into chitosan/alginate interpolyelectrolyte complexes for oral delivery: A Taguchi approach to design optimization. J. Food Sci. 2022, 87, 1148–1160. [Google Scholar] [CrossRef]
- Puglia, C.; Santonocito, D.; Musumeci, T.; Cardile, V.; Graziano, A.C.E.; Salerno, L.; Raciti, G.; Crasci, L.; Panico, A.M.; Puglisi, G. Nanotechnological Approach to Increase the Antioxidant and Cytotoxic Efficacy of Crocin and Crocetin. Planta Med. 2019, 85, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Mary, T.A.; Shanthi, K.; Vimala, K.; Soundarapandian, K. PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Adv. 2016, 6, 22936–22949. [Google Scholar] [CrossRef]
- Khan, I.; Joshi, G.; Sarkar, B.; Nakhate, K.T.; Ajazuddin; Mantha, A.K.; Kumar, R.; Kaul, A.; Chaturvedi, S.; Mishra, A.K.; et al. Doxorubicin and Crocin Co-delivery by Polymeric Nanoparticles for Enhanced Anticancer Potential In Vitro and In Vivo. ACS Appl. Bio Mater. 2020, 3, 7789–7799. [Google Scholar] [CrossRef]
Function | Experimental Findings | Reference |
---|---|---|
Diuretic agent | Doses of 120 and 240 mg/kg BW have been shown to have diuretic activity in rats, however, at lower activity than hydrochlorothiazide. | [13] |
Analgesic agent | Safranal, ethanolic, and aqueous saffron extracts acted as analgesic agents in animal models. | [14] |
Aqueous saffron extracts reduced pain in rats during the chronic phase of formalin test, in a dose-dependant manner | [15] | |
Anti-nociceptive | Aqueous and ethanolic extracts of stigmas and petals reduced pain signaling from acetic acid-induced writhing. | [16] |
Anti-inflammatory | Ethanolic saffron stigma extracts exhibited edema inhibition, with similar coagulation time to aspirin. | [17] |
Stigma extracts showed weak to moderate effect against acute xylene inflammation in mice. However, both stigmas and petal extracts exerted anti-inflammatory effects in edema-induced chronic inflammation in rats. | [16] | |
Anti-convulsant | Aqueous and ethanolic extracts of stigmas retarded the initiation and duration of tonic convulsions in mice. | [18] |
Bronchodilatory | Concentrations varying between 4 and 16 mg/mL of saffranal had a preventive effect on the tracheal responses in guinea pigs | [19] |
Secretagogues/anti-diabetes | A combination of resistance exercise and 40 mg/kg/day of saffron administration improved diabetes’ parameters, including insulin release and glucose uptake, in rats. | [20] |
Hepatoprotective | 20 mg/kg doses of saffron petal hydroalcoholic extracts reduced acetaminophen-induced liver toxicity in rats. | [21] |
100 mg/kg doses of saffron hydro- and alcoholic extracts prevented liver injury in rabbits with prolonged exposure to amiodarone. | [22] | |
80 mg/kg ethanolic extracts of saffron significantly reduced hepathic injury biomarkers during exposure to rifampin. | [23] | |
Anti-carcinogenic | Aqueous saffron extracts achieved a chemopreventive effect in mice. However, this was not consistently dose dependant. | [24] |
Neuroprotecive | A 6.5 mg/kg per os saffron extract reduced depressive-like behavior in mice during forced swimming. This was suggested to be related to increased monoaminergic neurotransmission activity. | [25] |
The 20, 40, and 80 μg/mL ethanolic saffron extracts increasingly significantly reversed 500-μM corticosterone-induced PC12 cell death. At 1280 μg/mL, extracts progressively increased cytotoxicity. | [26] | |
Withdrawal management | Daily doses of 60 mg/kg i.p. saffron extract reduced serverity of withdrawal manifestations in adult male rats. | [27] |
Plant | Organisms | Dose | Tests | Parameters | Results | Reference |
---|---|---|---|---|---|---|
Ginkgo biloba | Male BALB/c mice | 17-day dose of 5, 10, 20, 40 mg/kg | Forced swimming | Immobility period, locomotor activity, and monoamines | Mice exposed to 10 mg/kg/day of G. biloba extract showed a decline of 39% immobility time after forced swimming test. Reduced lipid peroxidation and radicals were associated with the extract. | [46] |
Ginkgo biloba | 136 Elderly humans with depression | Thrice 19.2 mg/day | Placebo-controlled trial | HAM-D * and serum S100B levels | Those exposed to G. biloba scored better on the HAM-D and showed lower expression of serum S100B, a brain injury marker. | [47] |
Hypericum perforatum | 20 Male mice (strain BlC57) | Single dose of 7, 35, 70 mg/kg | Forced swimming and tail suspension | Immobility period | Mice displayed a negative correlation between dose (7, 35, and 70 mg/kg b.m.) of St. John’s Wort extract and immobility time after forced swimming and tail suspension. | [48] |
Curcuma longa | Male Sprague–Dawley rats | 14-day dose of 2.5, 5, 10 mg/kg | Forced swimming, olfactory bulbectomy, open field, and passive avoidance test | Various levels of monoamines and metabolites, immobility, and behavioral abnormalities | Curcumin administration reversed neurotransmitter deficits induced by olfactory bulbectomy tests in rats. Behavior after olfactory bulbectomy and forced swimming tests was improved. | [41] |
Valeriana officinalis | Albino Laca mice | Single- and 14-day admission of 10, 20, 40 mg/kg | Forced swimming | Immobility period, locomotor activity, norepinephrine and dopamine levels | Single administration of dichloromethane extracted from valerian significantly inhibited forced swimming-induced immobility in mice. Additionally, sustained administration decreased immobility and increased norepinephrine and dopamine levels. | [49] |
Hibiscus tiliaceus | >40 Male Swiss albino mice | Single dose of 3, 10, 30 mg/kg | Forced swimming, tail suspension, and elevated plus-maze | Immobility, maze arm entry | Methanolic hibiscus flower extracts decreased the period of immobility times. | [50] |
Paeonia lactiflora | 80 Male ICR mice | 80 and 160 mg/kg, 7 days | Forced swimming and tail suspension | Immobility period and MAO A and B activity | Peony extracts inhibited MAO A and B activity in mouse brains, significantly reduced inmobility times. | [51] |
Piper methysticum | 60 adult Humans | 5 doses of 250 mg/day for 3 weeks | Placebo-controlled, double-blind, crossover trial | Hamilton Anxiety Scale, Beck Anxiety Inventory, and Montgomery–Asberg Depression Rating Scale | Aqueous kava extracts reduced all assessed parameters. Additionally, no clinical hepatotoxicity was observed, which has been reason for P. methysticum’s withdrawal in some countries. | [52] |
Lavandula angustifolia | 35 Wistar rats | Thrice administered 3428 mg/kg | Forced swimming | Immobility period | Aqueous lavender extracts significantly reduced immobility periods after forced swimming in rats, which was comparable to imipramine (30 mg/kg). | [53] |
Passiflora foetida | 30 Male Swiss albino mice | Single dosage of 100, 200, 300 mg/kg | Forced swimming, tail suspension, and open field | Immobility and locomotor activity | Methanolic passionflower extracts decreased immobility time in a dose-dependent manner in mice after tail suspension and forced swimming. Results were comparable to fluoxetine (20 mg/kg) and imipramine (15 mg/kg). No significant effects were observed on locomotor activity. | [54] |
Aim of the Research | Type of Study | No. of Patients | Treatment | Time of Treatment (Weeks) | Results | References |
---|---|---|---|---|---|---|
Comparison of saffron and imipramine | Double-blind, randomized trial | 30 | Stigma of saffron, 30 mg/day | 6 | The effect of stigma of saffron was similar to imipramine in the treatment of mild to moderate depression. | [86] |
Hydro-alcoholic extract of saffron versus fluoxetine | Double-blind, randomized pilot trial | 40 | Stigma of saffron, 30 mg/day | 6 | The effect of stigma of saffron was similar to fluoxetine in the treatment of mild to moderate depression. | [85] |
Saffron (petal) in the treatment of mild to moderate depression | Double-blind, randomized, and placebo-controlled trial | 40 | Petal of saffron, 30 mg/day | 6 | The outcome on the HAM-D showed that the petal of saffron could produce a significantly better effect than the placebo. | [109] |
Comparison of petal of saffron and fluoxetine | Double-blind, randomized trial | 40 | Petal of saffron, 15 mg/day (morning and evening) | 8 | Petal of saffron was found to be similarly effective to fluoxetine in the treatment of mild to moderate depression. | [87,110] |
40 and 80 mg HAE of saffron against fluoxetine | Double-blind, randomized, clinical trial | 60 | Saffron, 40 and 80 mg/day + fluoxetine (30 mg) | 6 | Effective in treatment of mild to moderate depressive disorders. | [88,111] |
Saffron with fluoxetine in PCI patients | Double-blind, randomized, clinical trial | 40 | Saffron (30mg/day) | 6 | Effective as fluoxetine (40 mg/day) in improving depressive symptoms of patients who were suffering from major depressive disorder (MDD). | [112] |
Saffron and crocin in improving mental and sexual health in CAD patients | Double-blind, placebo-controlled, randomized, clinical trial | 58 | Stigma of saffron, 30 mg/day OR | 8 | The outcome of BDI-II scores significantly decreased after 8 weeks of intervention. | [113] |
Saffron in the treatment of PMS | Double-blind, randomized, and placebo-controlled trial | 50 | 30 mg, saffron petal during pre-menstrual syndrome | 8 | The depression measured significantly decreased. | [114] |
Saffron versus citalopram in the major depressive disorder with anxious distress | Double-blind, controlled, clinical trial | 66 | 30 mg, saffron stigma | 6 | Effective against moderate to major depression. | [107] |
Saffron as an add-on therapy to sertraline in mild to moderate generalized anxiety disorder | Double-blind, randomized, controlled trial | 40 | 500-mg capsule containing 450 mg of saffron (type not recorded) | 6 | Decreased mild to moderate generalized anxiety disorder with saffron as well as with sertraline. | [108] |
Crocin on depression in subjects with metabolic syndrome | Randomized, double-blind, controlled, clinical trial | 33 | 30 mg, saffron (crocin) | 8 | Decreased depressive symptoms in patients with metabolic syndrome. | [115] |
Saffron improved depression and reduced homocysteine level in patients with major depression | Randomized, double-blind study | 40 | 30 mg, saffron (stigma) and 20 mg, fluoxetine | 4 | The BDI score decreased in patients with major depression. | [116] |
Comparison of saffron versus fluoxetine in treatment of mild to moderate post-partum depression | Double-blind, randomized, clinical trial | 60 | 30 mg, saffron (stigma) | 6 | Significantly decreased mild to moderate depression and post-menopausal hot flashes. | [110] |
Affron®, a standardized extract from saffron | Randomised, double-blind, placebo-controlled study | 80 | 14 mg, saffron (stigma) | 8 | Significant reduction in mild to moderate depression. | [117] |
Saffron in the treatment of anxiety and depression | Double-blind, randomized, and placebo- controlled trial | 60 | 100 mg, saffron (stigma) | 12 | Significant decrease in mild to moderate depression. | [118] |
Saffron (petal) in the treatment of mild to moderate depression | Double-blind, randomized, and placebo-controlled trial | 36 | 30 mg, saffron (stigma) and 40 mg, fluoxetine | 4 | No significant decrease. | [119] |
Effects of saffron on depression and lipid profile | Double-blind comparative study | 40 | 30 mg, saffron (petal) | 6 | Decrease in major depression of those who met DSM-IV criteria. | [109] |
Saffron stigma in mothers suffering from mild to moderate post-partum depression | Double-blind, randomized, placebo-controlled trial | 40 | 30 mg, saffron (type not recorded) and 20 mg, fluoxetine | 4 | Significant decrease in major depression. | [120] |
Crocin in major depressive disorder | Randomized, double-blind, placebo-controlled, pilot clinical trial | 78 | 30 mg, saffron (stigma) | 8 | Significant decrease in mild to moderate depression. | [111] |
Crocin on psychological parameters in patients under MMT | Randomized clinical trial | 46 | 30 mg, saffron (crocin) and 20 mg, fluoxetine | 4 | Significant decrease in major depression. | [121] |
Crocin on psychological parameters in patients under MMT | Randomized, double-blind, placebo-controlled trial | 50 | 30 mg per day, saffron (crocin) | 8 | Improved depression symptoms during methadone maintenance treatment (MMT). | [122] |
Double-blind, randomized, and placebo- controlled trial | 28 | 150 mg per day, saffron | 6 | Increased serotonin and happiness were further heightened in supplemented group. Anandamide, dopamine, and β-endorphin were significantly increased under suplementeation, whereas placebo remained unchanged. | [123] |
Matrix | Results | Reference |
---|---|---|
Chitosan-alginate nanoparticles | Highest crocin loading achieved at pH 1.2 with a biphasic release in simulated gastric fluids. The loaded nanoparticles were equivalent in DPPH free radical scavenging and ferric-reducing ability of plasma as free crocin and exhibited an anti-cancer effect. | [128] |
Maltodextrin nanoencapsulates | Nanoencapsulated crocin was more stable at simulated gastrointestinal conditions. While encapsulation increased bioaccessibility (from 61% to 72%), the combination of caffeic acid with encapsulation increased the bioaccessibility to almost 80%. | [129] |
Maltodextrin/pectin/whey protein concentrate nanoencapsulates | Combinations of whey protein concentrate and pectin yielded the highest crocin encapsulation efficiencies, exceeding 95%. Thus, minimal amounts of crocins were exposed at the particles’ surfaces. Furthermore, an improved stability against stressors was suggested. | [130] |
Chitosan-gum arabic nanoencapsulates | Crocin was encapsulated with an efficiency of 29 to 52%. The release profiles showed an oscillatory relationship with time at pH 1 and 2. This oscillatory relation was suggested to be a result of rapid degradation of released crocin. | [131] |
Cholesterol-Tween 40 nanoniosomes | Encapsulation efficiency was 46%, and 61% of crocin was released after 6 h in mice. Intra-arterially injected crocin-laden niosomes decreased ischemic indicator molecules in rats and mitigated I/R tissue damages. | [132] |
Bacterial nanocellulose membrane | The nanocellulose membrane exhibited a stable and prolonged transdermal release through mice skin in a Franz diffusion cell. | [133] |
Chitosan-alginate | An encapsulation efficiency of 92% was attained. The resulting nanoparticles stabilized crocin degradation at pH 2, enhanced bioavailability, and showed a pH-mediated release. | [134] |
Solid lipid nanoparticles | Increased stability, high encapsulation efficiency. | [135] |
Selenium nanoparticles | Crocin release rate was pH dependant, with 91% released after 48 h at pH 5.3, whereas just a mere 35% was released at pH 7.4 during the same time. The administration of loaded nanoparticles resulted in enhanced cytotoxicity in lung cancer cells and inhibited tumor growth in a mice model. | [136] |
Poly(lactic-co-glycolic acid) nanoparticles | Entrapment efficiency reached 59%, and 78% of crocin was released after 24 h at pH 7.4, sustaining release throughout 48 h. Release was increased at pH 6.5 to 84% after 24 h. | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, S.A.; Ali Redha, A.; Snoeck, E.R.; Singh, S.; Simal-Gandara, J.; Ibrahim, S.A.; Jafari, S.M. Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules 2022, 27, 2076. https://doi.org/10.3390/molecules27072076
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM. Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules. 2022; 27(7):2076. https://doi.org/10.3390/molecules27072076
Chicago/Turabian StyleSiddiqui, Shahida Anusha, Ali Ali Redha, Edgar Remmet Snoeck, Shubhra Singh, Jesus Simal-Gandara, Salam A. Ibrahim, and Seid Mahdi Jafari. 2022. "Anti-Depressant Properties of Crocin Molecules in Saffron" Molecules 27, no. 7: 2076. https://doi.org/10.3390/molecules27072076
APA StyleSiddiqui, S. A., Ali Redha, A., Snoeck, E. R., Singh, S., Simal-Gandara, J., Ibrahim, S. A., & Jafari, S. M. (2022). Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules, 27(7), 2076. https://doi.org/10.3390/molecules27072076