Dissipation Behavior and Acute Dietary Risk Assessment of Thiamethoxam and Its Metabolite Clothianidin on Spinach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction and Purification
2.2. Dissipation Study
2.3. Terminal Residues
2.4. Acute Dietary Exposure Risk Assessment
3. Material and Methods
3.1. Reagents and Chemicals
3.2. Field Trial and Sample Collection
3.3. Sample Preparation
3.4. LC-MS/MS Analysis
3.5. Method Validation
3.6. Theoretical Calculations
3.6.1. Matrix Effect (ME)
3.6.2. Dissipation Kinetic
3.6.3. Acute Dietary Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nishihara, E.; Inoue, M.; Kondo, K.; Takahashi, K.; Nakata, N. Spinach yield and nutritional quality affected by controlled soil water matric head. Agric. Water Manag. 2001, 51, 217–229. [Google Scholar] [CrossRef]
- Xu, C.; Jiao, C.; Sun, H.; Cai, X.; Wang, X.; Ge, C.; Zheng, Y.; Liu, W.; Sun, X.; Xu, Y.; et al. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat. Commun. 2017, 8, 15275. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Farha, W.; Abd El-Aty, A.M.; Kabir, M.H.; Im, S.J.; Jung, D.I.; Choi, J.H.; Kim, S.W.; Son, Y.W.; Kwon, C.H.; et al. Dynamic behaviour and residual pattern of thiamethoxam and its metabolite clothianidin in Swiss chard using liquid chromatography–tandem mass spectrometry. Food Chem. 2015, 174, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Shi, X. Characterization of the metabolic transformation of thiamethoxam to clothianidin in Helicoverpaarmigera larvae by SPE combined UPLC–MS/MS and its relationship with the toxicity of thiamethoxam to Helicoverpaarmigera larvae. J. Chromatogr. B 2017, 1061, 349–355. [Google Scholar] [CrossRef]
- Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Phys. 2003, 76, 55–69. [Google Scholar] [CrossRef]
- de Oliveira, I.M.; Nunes, B.V.F.; Barbosa, D.R.; Pallares, A.M.; Faro, L.R.F. Effects of the neonicotinoids thiamethoxam and clothianidin on in vivo dopamine release in rat striatum. Toxicol. Lett. 2010, 192, 294–297. [Google Scholar] [CrossRef]
- Meng, B.; Yu, Y.; Zhang, Q.; Wang, S.; Hu, D.; Zhang, K. Simultaneous determination of residues of thiamethoxam and its metabolite clothianidin in tobacco leaf and soil using liquid chromatography−tandem masss pectrometry. Biomed. Chromatogr. 2018, 32, 4225. [Google Scholar] [CrossRef]
- Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. 2010. Available online: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report10/Thiamethoxam.pdf (accessed on 24 June 2020).
- Li, W.; Shen, S.; Chen, H.Y.; Guo, Q.Y. Simultaneous determination of thiamethoxam and its metabolite clothianidin by LC-MS/MS in goji berry and soil. Int. J. Environ. Anal. Chem. 2019, 99, 767–775. [Google Scholar] [CrossRef]
- Chen, L.; Li, F.; Jia, C.; Yu, P.; Zhao, E.; He, M.; Jing, J. Determination of thiamethoxam and its metabolite clothianidin residue and dissipation in cowpea by QuEChERS combining with ultrahigh-performance liquid chromatography–tandem mass spectrometry. Environ. Sci. Pollut. R. 2021, 28, 8844–8852. [Google Scholar] [CrossRef]
- Reddy, B.K.K.; Paul, A. Dissipation and risk assessment of ready-mix formulation volium flexi (Chlorantraniliprole and thiamethoxam) residues in cowpea. IJCS 2019, 7, 2505–2508. [Google Scholar]
- Liu, N.; Pan, X.; Yang, Q.; Ji, M.; Zhang, Z. The dissipation of thiamethoxam and its main metabolite clothianidin during strawberry growth and jam-making process. Sci. Rep. 2018, 8, 15242. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhao, S.; Hu, J. Dissipation behavior and dietary risk assessment of lambda-cyhalothrin, thiamethoxam and its metabolite clothianidin in apple after open field application. Regul. Toxicol. Pharm. 2019, 101, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.X.; Yang, B.D.; Zhang, Z.Y.; Cui, G.F.; Li, Y.F.; Sun, S.L.; Wang, J.Z. Degradation Dynamics and dietary risk assessment of thiamethoxam in apple. Agrochemicals 2015, 54, 115–118. [Google Scholar]
- Gui, T.; Jia, G.F.; Xu, J.; Ge, S.J.; Long, X.F.; Zhang, Y.P.; Hu, Y. Determination of the residue dynamics anddietary risk of thiamethoxam and its metabolite clothianidin in citrus and soil by LC-MS/MS. J. Environ. Sci. Health B 2019, 54, 326–335. [Google Scholar] [CrossRef]
- Bhattacherjee, A.K.; Dikshit, A. Dissipation kinetics and risk assessment of thiamethoxam and dimethoate in mango, Environ. Monit. Assess. 2016, 188, 165. [Google Scholar] [CrossRef]
- Pang, N.N.; Fan, X.Q.; Fantke, P.; Zhao, S.M.; Hu, J.Y. Dynamics and dietary risk assessment of thiamethoxam in wheat, lettuce and tomato using field experiments and computational simulation. Environ. Pollut. 2020, 256, 113285. [Google Scholar] [CrossRef]
- Zhao, L.; Shen, G.M.; Ma, L. Residue decline study and safe use of thiamethoxam in green house and open field spinach. Chin. J. Pestic. Sci. 2014, 16, 457–461. [Google Scholar]
- Liu, B.; Guo, D.L.; Mao, J.S.; Zhao, S.C.; Wang, Y.T. Residue detection and degradation of thiamethoxam in spinach. Agrochemicals 2009, 48, 667–668. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. NY/T 788-2018 Guideline for the Testing of Pesticide Residues in Crops. Available online: https://www.sdtdata.com/fx/fmoa/tsLibCard/169332.html (accessed on 8 March 2021).
- Chen, X.X.; He, S.; Gao, Y.M.; Ma, Y.C.; Hu, J.Y.; Liu, X.L. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique. Food Chem. 2019, 274, 291–297. [Google Scholar] [CrossRef]
- Wang, W.; Teng, P.; Liu, F.; Fan, T.; Peng, Q.; Wang, Z.; Hou, T. Residue analysis and risk assessment of oxathiapiprolin and its metabolites in cucumbers under field conditions. J. Agric. Food Chem. 2019, 67, 12904–12910. [Google Scholar] [CrossRef] [PubMed]
- Malhat, F.M.; Watanabe, H.; Loutfy, N.M.; Ahmed, M.T. Hazard assessment of the neonicotinoid insecticide thiamethoxam residues in tomato: A prelude to risk assessment profile. Toxicol. Environ. Chem. 2014, 96, 318–327. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.D.; Liu, Y.M.; Ward, T.J. Photodegradation of clothianidin and thiamethoxam in agricultural soils. Environ. Sci. Pollut. R. 2018, 25, 31318–31325. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.; Dorrian, S.J.; Russell, R.J.; Oakeshott, J.G. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp 1G. Biochem. Biophys. Res. Commun. 2009, 380, 710–714. [Google Scholar] [CrossRef]
- Angioni, A.; Aguilera Del Real, A.; Russo, M.; Melis, M.; Cabitza, F.; Cabras, P. Triazole fungicide degradation in peaches in the field and in model systems. Food Addit. Contam. 2003, 20, 368–374. [Google Scholar] [CrossRef]
- Tewary, D.K.; Kumar, V.; Ravindranath, S.D.; Shanker, A. Dissipation behavior of bifenthrin residues in tea and its brew. Food Control 2005, 16, 231–237. [Google Scholar] [CrossRef]
- Ambrus, Á.; Zhen, Y.Y. Global harmonization of maximum residue limits (MRLs) for pesticides. J. Agric. Food Chem. 2016, 64, 30–35. [Google Scholar] [CrossRef]
- Horváth, Z.; Sali, J.; Zentai, A.; Dorogházi, E.; Farkas, Z.; Kerekes, K.; Ambrus, Á. Limitations in the determination of maximum residue limits and highest residues of pesticides: Part I. J. Environ. Sci. Health B 2014, 49, 143–152. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. GB 2763-2021 National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. Available online: https://www.sdtdata.com/fx/fmoa/tsLibCard/183688.html (accessed on 8 March 2022).
- GEMS/Food. Unit Weight of Commodities [DB/OL]. Available online: http://www.who.int/foodsafety/chem/acute_hazard_db3.pdf (accessed on 23 August 2021).
- Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. 2010. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report2014/5.05_CLOTHIANIDIN__238_.pdf (accessed on 24 June 2020).
- Ren, P.C.; Wang, X.; Gao, J.; Lv, Y.; Jin, J.; Qin, S. Dietary exposure and risk assessment of boscalid residue in pumpkin, asparagus, hawthorn, mango, and papaya. Chin. J. Pestic. Sci. 2020, 22, 693–699. [Google Scholar]
- Chang, J.L.; Wang, Y. Comprehensive Report of Nutrition and Health Status for China Residents of 2010–2013, 1st ed.; Peking University Medical Press: Beijing, China, 2016; pp. 61–68. [Google Scholar]
- Zhang, J.; Zhao, L.Y. The Twelfth Report of Nutrition and Health Status for China Residents: Nutrition and Health Status of the Elderly (2010–2013), 1st ed.; People’s Medical Publication House: Beijing, China, 2018; pp. 9–16. [Google Scholar]
- World Health Organization (WHO). The Food Safety Collaborative Platform. Available online: https://apps.who.int/foscollab/Download/DownloadConso (accessed on 23 August 2021).
- Guo, J.; Li, M.M.; Liu, Y.G.; Wang, F.Z.; Kong, Z.Q.; Sun, Y.F.; Lu, J.; Jin, N.; Huang, Y.T.; Liu, J.M.; et al. Residue and Dietary Risk Assessment of Chiral Cyflumetofen in Apple. Molecules 2018, 23, 1060. [Google Scholar] [CrossRef] [Green Version]
- You, X.W.; Li, Y.Q.; Wang, X.G.; Xu, J.L.; Zheng, X.; Sui, C.C. Residue analysis and risk assessment of tebuconazole in jujube (Ziziphus jujube Mill). Biomed. Chromatogr. 2017, 31, 3917. [Google Scholar] [CrossRef] [PubMed]
- European Commission Directorate General for Health and Food Safety. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. N. SANTE 11312/2021. Available online: https://ec.europa.eu/food/system/files/2022-02/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 8 March 2022).
- Food and Agriculture Organization of the United Nations(FAO); World Health Organization (WHO). Guidance for International Estimated Short-term Intake (IESTI). Available online: https://cdn.who.int/media/docs/default-source/food-safety/gems-food/guidance-iesti-2014.pdf?sfvrsn=9b24629a_2 (accessed on 8 March 2022).
- IPCS (The International Programme on Chemical Safety). Principles and Methods for the Risk Assessment of Chemicals in Food: Environmental Health Criteria 240. In Chapter 6: Dietary Exposure Assessment of Chemicals in Food; Sheffer, M., Ed.; EPublishing, Inc.: Stuttgart, Germany, 2009; pp. 68–95. [Google Scholar]
Analyte | Spiked Level (mg kg−1) | Intra-Day (n = 5) | Inter-Day (n = 15) | ||
---|---|---|---|---|---|
Accuracy (%) | Precision (% RSDs) | Accuracy (%) | Precision (% RSDs) | ||
Thiamethoxam | 0.01 | 94.5 | 8.4 | 102.4 | 8.6 |
0.1 | 97.3 | 10.9 | 96.8 | 8.1 | |
2 | 98.8 | 8.8 | 100.7 | 9.7 | |
5 | 98.4 | 7.5 | 105.1 | 9.5 | |
Clothianidin | 0.01 | 96.3 | 4.6 | 105.6 | 8.7 |
0.1 | 101.8 | 9.3 | 100.6 | 7.9 | |
2 | 99.1 | 3.8 | 103.9 | 5.9 | |
5 | 105.5 | 6.1 | 109.7 | 7.4 |
Location | Analyte | Equation | R2 | Half-Life (Days) |
---|---|---|---|---|
Shanxi | Thiamethoxam | C = 1.854e−0.44t | 0.914 | 1.6 |
Anhui | Thiamethoxam | C = 0.705e−0.55t | 0.989 | 1.3 |
Guangdong | Thiamethoxam | C = 0.736e−0.55t | 0.987 | 1.3 |
Location | Mean Temperature (°C) | Cultivation Facilities | Residue/ mg kg−1 | Degradation Rate (%) | |
---|---|---|---|---|---|
0 Day | 3 Day | ||||
Shanxi | 19.1 | Greenhouse | 1.3 | 0.42 | 67.7 |
Guangdong | 24.5 | Shade mesh | 0.79 | 0.14 | 82.3 |
Anhui | 18.2 | Open field | 0.81 | 0.11 | 86.4 |
Shandong | 26.5 | Open field | 0.36 | 0.011 | 96.9 |
Location | Dosage (g a.i.ha−1) | Spray Times | Interval (Days) | Terminal Residue (mg kg−1) | |
---|---|---|---|---|---|
Thiamethoxam | Clothianidin | ||||
Inner Mongolia | 27 | 1 | 5 | 0.17, 0.18 | 0.17, 0.18 |
7 | <0.010, 0.013 | 0.043, 0.073 | |||
Shanxi | 5 | 0.36, 0.41 | 0.42, 0.44 | ||
7 | 0.10, 0.13 | 0.32, 0.32 | |||
Beijing | 5 | 0.041, 0.065 | 0.17, 0.20 | ||
7 | 0.018, 0.028 | 0.12, 0.13 | |||
Shandong | 5 | <0.010, <0.010 | 0.067, 0.068 | ||
7 | <0.010, <0.010 | 0.030, 0.034 | |||
Anhui | 5 | 0.040, 0.041 | 0.20, 0.21 | ||
7 | 0.013, 0.021 | 0.14, 0.19 | |||
Hunan | 5 | 0.18, 0.28 | 0.021, 0.047 | ||
7 | 0.11, 0.20 | 0.011, 0.030 | |||
Guizhou | 5 | 0.18, 0.22 | 0.28, 0.28 | ||
7 | 0.11, 0.16 | 0.17, 0.38 | |||
Guangdong | 5 | 0.029, 0.041 | 0.43, 0.52 | ||
7 | 0.017, 0.018 | 0.33, 0.34 |
Consumer Group | Bw Kg | LP [37] [g (kg bw·Day)−1] | IESTI 1 [μg (kg bw d)−1] | RQa 1 (%) | IESTI 2 [μg (kg bw d)−1] | RQa 2 (%) |
---|---|---|---|---|---|---|
3– Male | 15.8 | 5.7143 | 7.0137 | 0.70 | 8.8955 | 1.48 |
3– Female | 15.3 | 6.0606 | 7.3084 | 0.73 | 9.2692 | 1.54 |
4– Male | 17.9 | 5.7143 | 6.4658 | 0.65 | 8.2005 | 1.37 |
4– Female | 17.2 | 6.0606 | 6.7755 | 0.68 | 8.5934 | 1.43 |
5– Male | 20.2 | 5.7143 | 5.9963 | 0.60 | 7.6051 | 1.27 |
5– Female | 19.4 | 6.0606 | 6.2890 | 0.63 | 7.9763 | 1.33 |
6–8 Male | 25.8 | 4.8077 | 4.8316 | 0.48 | 6.1279 | 1.02 |
6–8 Female | 24.6 | 4.399 | 4.8036 | 0.48 | 6.0924 | 1.02 |
9–11 Male | 35.8 | 4.8077 | 4.0326 | 0.40 | 5.1145 | 0.85 |
9–11 Female | 34.1 | 4.399 | 3.9678 | 0.40 | 5.0323 | 0.84 |
12–14 Male | 48.4 | 4.8077 | 3.4960 | 0.35 | 4.4339 | 0.74 |
12–14 Female | 45.9 | 4.399 | 3.4114 | 0.34 | 4.3267 | 0.72 |
15–17 Male | 57.6 | 2.3885 | 2.2605 | 0.23 | 2.8670 | 0.48 |
15–17 Female | 51.5 | 2.7372 | 2.5553 | 0.26 | 3.2408 | 0.54 |
18–44 Male | 67.0 | 2.3885 | 2.0808 | 0.21 | 2.6390 | 0.44 |
18–44 Female | 56.7 | 2.7372 | 2.4238 | 0.24 | 3.0741 | 0.51 |
60–74 Male | 63.9 | 2.6413 | 2.2379 | 0.22 | 2.8383 | 0.47 |
60–74 Female | 57.3 | 2.5042 | 2.3147 | 0.23 | 2.9357 | 0.49 |
75– Male | 60.5 | 2.8853 | 2.4028 | 0.24 | 3.0475 | 0.51 |
75– Female | 53.0 | 2.4096 | 2.3804 | 0.24 | 3.0190 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Qin, S.; Wang, X.; Cao, J.; Li, J. Dissipation Behavior and Acute Dietary Risk Assessment of Thiamethoxam and Its Metabolite Clothianidin on Spinach. Molecules 2022, 27, 2209. https://doi.org/10.3390/molecules27072209
Yang Y, Qin S, Wang X, Cao J, Li J. Dissipation Behavior and Acute Dietary Risk Assessment of Thiamethoxam and Its Metabolite Clothianidin on Spinach. Molecules. 2022; 27(7):2209. https://doi.org/10.3390/molecules27072209
Chicago/Turabian StyleYang, Yanmei, Shu Qin, Xia Wang, Junli Cao, and Jindong Li. 2022. "Dissipation Behavior and Acute Dietary Risk Assessment of Thiamethoxam and Its Metabolite Clothianidin on Spinach" Molecules 27, no. 7: 2209. https://doi.org/10.3390/molecules27072209
APA StyleYang, Y., Qin, S., Wang, X., Cao, J., & Li, J. (2022). Dissipation Behavior and Acute Dietary Risk Assessment of Thiamethoxam and Its Metabolite Clothianidin on Spinach. Molecules, 27(7), 2209. https://doi.org/10.3390/molecules27072209