Water Dynamics in Starch Based Confectionery Products including Different Types of Sugar
Abstract
:1. Introduction
2. Results
2.1. NMR Relaxometry
2.2. Water Activity, Moisture Content, Hardness, Thermogravimetric Analysis, and X-ray Diffraction
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Experimental Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Burey, P.; Bhandari, B.R.; Rutgers, R.P.G.; Halley, P.J.; Torley, P.J. Confectionery Gels: A Review on Formulation, Rheological and Structural Aspects. Int. J. Food Prop. 2009, 12, 176–210. [Google Scholar] [CrossRef] [Green Version]
- Tolstoguzov, V. Phase behaviour of macromolecular components in biological and food systems. Food/Nahrung 2000, 44, 299–308. [Google Scholar] [CrossRef]
- Kasapis, S.; Al-Marhoobi, I.M.; Deszczynski, M.; Mitchell, J.R.; Abeysekera, R. Gelatin vs Polysaccharide in Mixture with Sugar. Biomacromolecules 2003, 4, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Poçan, P.; Ilhan, E.; Oztop, M.H. Effect of d-psicose substitution on gelatin based soft candies: A TD-NMR study. Magn. Reson. Chem. 2019, 57, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, E.; Poçan, P.; Ogawa, M.; Oztop, M.H. Role of ‘D-allulose’ in a starch based composite gel matrix. Carbohydr. Polym. 2020, 228, 115373. [Google Scholar] [CrossRef] [PubMed]
- O’Charoen, S.; Hayakawa, S.; Matsumoto, Y.; Ogawa, M. Effect of d-Psicose Used as Sucrose Replacer on the Characteristics of Meringue. J. Food Sci. 2014, 79, E2463–E2469. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhang, X.; Guan, Y.; Sun, Y. Characteristics and Antioxidant Activity of Maillard Reaction Products from Psicose-Lysine and Fructose-Lysine Model Systems. J. Food Sci. 2011, 76, C398–C403. [Google Scholar] [CrossRef]
- Sun, Y.; Hayakawa, S.; Ogawa, M.; Izumori, K. Antioxidant properties of custard pudding dessert containing rare hexose, d-psicose. Food Control 2007, 18, 220–227. [Google Scholar] [CrossRef]
- Chung, M.-Y.; Oh, D.-K.; Lee, K.W. Hypoglycemic Health Benefits of d-Psicose. J. Agric. Food Chem. 2012, 60, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Izumori, K. Effects of Dietary D-Psicose on Diurnal Variation in Plasma Glucose and Insulin Concentrations of Rats. Biosci. Biotechnol. Biochem. 2006, 70, 2081–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granström, T.B.; Takata, G.; Tokuda, M.; Izumori, K. Izumoring: A novel and complete strategy for bioproduction of rare sugars. J. Biosci. Bioeng. 2004, 97, 89–94. [Google Scholar] [CrossRef]
- Mu, W.; Zhang, W.; Feng, Y.; Jiang, B.; Zhou, L. Recent advances on applications and biotechnological production of d-psicose. Appl. Microbiol. Biotechnol. 2012, 94, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, S.; Gohtani, S.; Fukada, K.; Amo, Y. Dielectric Relaxation and Water Activity in Aqueous Solution of d-Psicose. Jpn. J. Food Eng. 2011, 12, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Cheng, Q.; Mu, W.; Hu, X.; Sun, Z.; Qiu, Y.; Liu, X.; Wang, Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021, 10, 2186. [Google Scholar] [CrossRef] [PubMed]
- Kanasaki, A.; Jiang, Z.; Mizokami, T.; Shirouchi, B.; Iida, T.; Nagata, Y.; Sato, M. Dietary d-allulose alters cholesterol metabolism in Golden Syrian hamsters partly by reducing serum PCSK9 levels. J. Funct. Foods 2019, 60, 103429. [Google Scholar] [CrossRef]
- Marzilli, M.; Merz, C.N.B.; Boden, W.E.; Bonow, R.O.; Capozza, P.G.; Chilian, W.M.; DeMaria, A.N.; Guarini, G.; Huqi, A.; Morrone, D.; et al. Obstructive Coronary Atherosclerosis and Ischemic Heart Disease: An Elusive Link! J. Am. Coll. Cardiol. 2012, 60, 951–956. [Google Scholar] [CrossRef]
- de Kruif, C.; Tuinier, R. Polysaccharide protein interactions. Food Hydrocoll. 2001, 15, 555–563. [Google Scholar] [CrossRef]
- Grinberg, V.; Tolstoguzov, V. Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocoll. 1997, 11, 145–158. [Google Scholar] [CrossRef]
- Tolstoguzov, V.B. Protein-polysaccharide interactions. Food Proteins Appl. 2017, 5, 171–198. [Google Scholar] [CrossRef]
- Ates, E.G.; Ozvural, E.B.; Oztop, M.H. Understanding the role of d-Allulose and soy protein addition in pectin gels. J. Appl. Polym. Sci. 2021, 138, 49885. [Google Scholar] [CrossRef]
- Gu, J.; Ahn-Jarvis, J.H.; Vodovotz, Y. Development and Characterization of Different Black Raspberry Confection Matrices Designed for Delivery of Phytochemicals. J. Food Sci. 2015, 80, E610–E618. [Google Scholar] [CrossRef] [PubMed]
- Marfil, P.H.M.U.; Anhê, A.C.B.M.; Telis, V.R.N.U. Texture and Microstructure of Gelatin/Corn Starch-Based Gummy Confections. Food Biophys. 2012, 7, 236–243. [Google Scholar] [CrossRef]
- Ong, M.H.; Whitehouse, A.; Abeysekera, R.; Al-Ruqaie, I.M.; Kasapis, S. Glass transition-related or crystalline forms in the structural properties of gelatin/oxidised starch/glucose syrup mixtures. Food Hydrocoll. 1998, 12, 273–281. [Google Scholar] [CrossRef]
- Sessler, T.; Weiss, J.; Vodovotz, Y. Influence of pH and soy protein isolate addition on the physicochemical properties of functional grape pectin confections. Food Hydrocoll. 2013, 32, 294–302. [Google Scholar] [CrossRef]
- Siegwein, A.M.; Vodovotz, Y.; Fisher, E.L. Concentration of Soy Protein Isolate Affects Starch-Based Confections’ Texture, Sensory, and Storage Properties. J. Food Sci. 2011, 76, E422–E428. [Google Scholar] [CrossRef]
- Kruk, D.; Florek-Wojciechowska, M.; Oztop, M.; Ilhan, E.; Wieczorek, Z. Water dynamics in eggs by means of Nuclear Magnetic Resonance relaxometry. J. Magn. Reson. 2021, 327, 106976. [Google Scholar] [CrossRef]
- Ozel, B.; Kruk, D.; Wojciechowski, M.; Osuch, M.; Oztop, M.H. Water Dynamics in Whey-Protein-Based Composite Hydrogels by Means of NMR Relaxometry. Int. J. Mol. Sci. 2021, 22, 9672. [Google Scholar] [CrossRef] [PubMed]
- Steele, R.M.; Korb, J.-P.; Ferrante, G.; Bubici, S. New applications and perspectives of fast field cycling NMR relaxometry. Magn. Reson. Chem. 2015, 54, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Rachocki, A.; Tritt-Goc, J. Novel application of NMR relaxometry in studies of diffusion in virgin rape oil. Food Chem. 2014, 152, 94–99. [Google Scholar] [CrossRef]
- Baroni, S.; Consonni, R.; Ferrante, G.; Aime, S. Relaxometric Studies for Food Characterization: The Case of Balsamic and Traditional Balsamic Vinegars. J. Agric. Food Chem. 2009, 57, 3028–3032. [Google Scholar] [CrossRef] [PubMed]
- Kruk, D.; Masiewicz, E.; Budny, J.; Stankiewicz, A.; Lotarska, S.; Oztop, M.; Wieczorek, Z. Diffusion in oils versus their viscosity —Insight from Nuclear Magnetic Resonance relaxometry. J. Food Eng. 2022, 317, 110848. [Google Scholar] [CrossRef]
- Pocan, P.; Ilhan, E.; Florek–Wojciechowska, M.; Masiewicz, E.; Kruk, D.; Oztop, M.H. Exploring the water mobility in gelatin based soft candies by means of Fast Field Cycling (FFC) Nuclear Magnetic Resonance relaxometry. J. Food Eng. 2021, 294, 110422. [Google Scholar] [CrossRef]
- Sun, Y.; Hayakawa, S.; Izumori, K. Modification of Ovalbumin with a Rare Ketohexose through the Maillard Reaction: Effect on Protein Structure and Gel Properties. J. Agric. Food Chem. 2004, 52, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.L.; Ahn-Jarvis, J.; Gu, J.; Weghorst, C.M.; Vodovotz, Y. Assessment of physicochemical properties, dissolution kinetics and storage stability of a novel strawberry confection designed for delivery of chemopreventive agents. Food Struct. 2014, 1, 171–181. [Google Scholar] [CrossRef]
- Suput, D.Z.; Lazic, V.L.; Popovic, S.Z.; Hromis, N.M. Edible films and coatings: Sources, properties and application. Food Feed Res. 2015, 42, 11–22. [Google Scholar] [CrossRef]
Sample | |||||
---|---|---|---|---|---|
9_R30 (1) | 1.06 × 109 ± 1.02 × 107 | 1.61 × 107 ± 3.67 × 10−8 | 1.67 × 109 ± 4.55 × 107 | 1.97 × 10−8 ± 2.90 × 10−9 | 13.1 |
9_R30 (2) | 1.10 × 109 ± 1.43 × 107 | 1.69 × 10−7 ± 5.18 × 10−8 | 1.67 × 109 ± 6.23 × 107 | 2.06 × 10−8 ± 4.23 × 10−9 | 13.1 |
9_S30 (1) | 1.14 × 109 ± 1.25 × 107 | 1.43 × 10−7 ± 4.02 × 10−8 | 1.29 × 109 ± 1.32 × 108 | 1.32 × 10−8 ± 4.70 × 10−9 | 10.0 |
9_S30 (2) | 1.12 × 109 ± 1.01 × 107 | 1.45 × 10−7 ± 3.33 × 10−8 | 1.30 × 109 ± 9.72 × 107 | 1.37 × 10−8 ± 3.81 × 10−9 | 10.0 |
11_R30 (1) | 4.71 × 108 ± 6.84 × 106 | 1.32 × 10−7 ± 4.52 × 10−8 | 1.42 × 109 ± 1.84 × 107 | 1.88 × 10−8 ± 1.86 × 10−9 | 16.5 |
11_R30 (2) | 4.84 × 108 ± 6.91 × 106 | 1.31 × 10−7 ± 4.45 × 10−8 | 1.46 × 109 ± 1.79 × 107 | 1.86 × 10−8 ± 1.84 × 10−9 | 15.5 |
11_S30 (1) | 1.12 × 109 ± 1.25 × 107 | 1.50 × 10−7 ± 4.35 × 10−8 | 1.36 × 109 ± 1.38 × 108 | 1.33 × 10−8 ± 4.81 × 10−9 | 9.0 |
11_S30 (2) | 1.11 × 109 ± 1.13 × 107 | 1.50 × 10−7 ± 3.89 × 10−8 | 1.31 × 109 ± 1.10 × 108 | 1.40 × 10−8 ± 4.36 × 10−9 | 10.1 |
Sample Name | aw | MC % | Hardness (N) | Peak Temperature (°C) |
---|---|---|---|---|
9_R30 | 0.54 ± 0.00 d | 12.19 ± 0.00 c | 06.07 ± 0.57 b | 133.68 ± 0.71 ab |
9_S30 | 0.66 ± 0.00 b | 14.09 ± 0.01 b | 23.92 ± 0.81 a | 123.15 ± 3.08 bc |
11_R30 | 0.61 ± 0.01 c | 13.85 ± 0.07 b | 02.58 ± 0.24 c | 141.07 ± 0.49 a |
11_S30 | 0.69 ± 0.00 a | 14.94 ± 0.01 a | 06.08 ± 0.11 b | 119.75 ± 5.72 c |
Name | Starch (%) | D-Allulose (%) | Sucrose (%) | Corn Syrup (%) | Soy Protein (%) |
---|---|---|---|---|---|
9_R30 | 9 | 30 | 0 | 30 | 2 |
9_S30 | 9 | 0 | 30 | 30 | 2 |
11_R30 | 11 | 30 | 0 | 30 | 0 |
11_S30 | 11 | 0 | 30 | 30 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İlhan, E.; Poçan, P.; Kruk, D.; Wojciechowski, M.; Osuch, M.; Markiewicz, R.; Jurga, S.; Oztop, M.H. Water Dynamics in Starch Based Confectionery Products including Different Types of Sugar. Molecules 2022, 27, 2216. https://doi.org/10.3390/molecules27072216
İlhan E, Poçan P, Kruk D, Wojciechowski M, Osuch M, Markiewicz R, Jurga S, Oztop MH. Water Dynamics in Starch Based Confectionery Products including Different Types of Sugar. Molecules. 2022; 27(7):2216. https://doi.org/10.3390/molecules27072216
Chicago/Turabian Styleİlhan, Esmanur, Pelin Poçan, Danuta Kruk, Miłosz Wojciechowski, Maciej Osuch, Roksana Markiewicz, Stefan Jurga, and Mecit Halil Oztop. 2022. "Water Dynamics in Starch Based Confectionery Products including Different Types of Sugar" Molecules 27, no. 7: 2216. https://doi.org/10.3390/molecules27072216
APA Styleİlhan, E., Poçan, P., Kruk, D., Wojciechowski, M., Osuch, M., Markiewicz, R., Jurga, S., & Oztop, M. H. (2022). Water Dynamics in Starch Based Confectionery Products including Different Types of Sugar. Molecules, 27(7), 2216. https://doi.org/10.3390/molecules27072216