Aromas Influencing the GABAergic System
Abstract
:1. Introduction
1.1. Anxiety Assessment: Animal Behavioural Models
1.2. Anxiety Assessment: Human Testing
1.3. Neurochemical and Pharmacological Testing
2. Aromas and Their Constituents
2.1. Acorus gramineus
2.2. Alpinia zerumbet
2.3. Anthriscus nemorosa (Beaked/Rough Chervil, Beaked Parsley)
2.4. Aquilaria spp. (Agarwood)
2.5. Cananga odorata (Ylang-Ylang)
2.6. Chamaecyparis obtusa
2.7. Citrus bergamia
2.8. Citrus limon (Lemon)
2.9. Citrus spp. (Orange/Sweet Orange)
2.10. Human Examples of Orange Essential Oil in Reducing Stress and Anxiety
2.11. Coffea spp. (Coffee)
2.12. Compound Anshen
2.13. Coriander sativium (Coriander)
2.14. Cryptomeria japonica (Japanese Cedar)
2.15. Cymbopogon citratus (Lemon Grass)
2.16. Eucalyptus globulus
2.17. Forest Abies sachalinensis
2.18. Fragrant Compounds from Oolong Tea
2.19. Heracleum afghanicum
2.20. Hypericum scabrum
2.21. Illicium verum (Star Anise)
2.22. Jasminum grandiflorum (Jasmine)
2.23. Lantana camara
2.24. Lavandula spp. (Lavender)
2.25. Matricaria chamomilla
2.26. Microtoena patchouli (Patchoulii)
2.27. Nardostachys chinensis (Spikenard)
2.28. Ocimum spp. (Basil)
2.29. Pelargonium graveolens (geranium)
2.30. Phytoncides
2.31. Pimpinella peregrine (Aniseed)
2.32. Piper guineense
2.33. Rosa damascene (Rose)
2.34. Santalum spp. (Sandalwood)
2.35. Sideritis Species
2.36. Thymus vulgaris (Thyme)
2.37. Valeriana officinalis (Valerian)
2.38. Whisky Fragrance and Components
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.J.; Heinbockel, T. Essential Oils and Their Constituents Targeting the Gabaergic System and Sodium Channels as Treatment of Neurological Diseases. Molecules 2018, 23, 1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagappan, P.G.; Subramaniam, S.; Wang, D.Y. Olfaction as a Soldier—A Review of the Physiology and Its Present and Future Use in the Military. In Military Medical Research; BioMed Central Ltd.: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Lawless, J. The Encyclopedia of Essential Oils: The Complete Guide to the Use of Aromatic Oils in Aromatherapy, Herbalism, Health, and Well-Being; Conari Press: San Francisco, CA, USA, 2013. [Google Scholar]
- Sowndhararajan, K.; Kim, S. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response. Sci. Pharm. 2016, 84, 724–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Sousa, D.P.; de Almeida Soares Hocayen, P.; Andrade, L.N.; Andreatini, R. A Systematic Review of the Anxiolytic-like Effects of Essential Oils in Animal Models. Molecules 2015, 20, 18620–18660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiasi, A.; Bagheri, L.; Haseli, A. A Systematic Review on the Anxiolytic Effect of Aromatherapy during the First Stage of Labor. J. Caring Sci. 2019, 8, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Krusemark, E.A.; Novak, L.R.; Gitelman, D.R.; Li, W. When the Sense of Smell Meets Emotion: Anxiety-State-Dependent Olfactory Processing and Neural Circuitry Adaptation. J. Neurosci. 2013, 33, 15324–15332. [Google Scholar] [CrossRef]
- Nuss, P. Anxiety Disorders and GABA Neurotransmission: A Disturbance of Modulation. Neuropsychiatr. Dis. Treat. 2015, 11, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Forster, G.L.; Novick, A.M.; Scholl, J.L.; Watt, M.J. The Role of the Amygdala in Anxiety Disorders. Neuropsychiatr. Dis. Treat. 2015, 11, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Anand, K.S.; Dhikav, V. Review: Progress in Medicine (Update on Advances in Pathophysiology) Hippocampus in Health and Disease: An Overview. Annu. Indian Acad. Neurol. 2012, 15, 239–246. [Google Scholar] [CrossRef]
- Cominski, T.P.; Jiao, X.; Catuzzi, J.E.; Stewart, A.L.; Pang, K.C.H. The Role of the Hippocampus in Avoidance Learning and Anxiety Vulnerability. Front. Behav. Neurosci. 2014, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Balado, J.; Eich, T.S. GABAergic Dysfunction, Neural Network Hyperactivity and Memory Impairments in Human Aging and Alzheimer’s Disease. In Seminars in Cell and Developmental Biology; Elsevier Ltd.: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Govindpani, K.; Guzmán, B.C.F.; Vinnakota, C.; Waldvogel, H.J.; Faull, R.L.; Kwakowsky, A. Towards a Better Understanding of GABAergic Remodeling in Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1813. [Google Scholar] [CrossRef] [Green Version]
- Lanctôt, K.L.; Herrmann, N.; Mazzotta, P.; Khan, L.R.; Ingber, N. GABAergic Function in Alzheimer’s Disease: Evidence for the Treatment of Behavioural and Psychological Symptoms of Dementia. Can. J. Psychiatry 2004, 49, 439–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieghart, W. Structure, Pharmacology, and Function of GABAA Receptor Subtypes. Adv. Pharmacol. 2006, 54, 231–263. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Aricescu, A.R. A Structural Perspective on GABAA Receptor Pharmacology. Curr. Opin. Struct. Biol. 2019, 54, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Elgarf, A.A.; Siebert, D.C.B.; Steudle, F.; Draxler, A.; Li, G.; Huang, S.; Cook, J.M.; Ernst, M.; Scholze, P. Different Benzodiazepines Bind with Distinct Binding Modes to GABA A Receptors. ACS Chem. Biol. 2018, 13, 2033–2039. [Google Scholar] [CrossRef]
- McLachlan, C.S.; Yi Xing Soh, C. Differences in Anxiety-Related Behavior between Apolipoprotein E-Deficient C57BL/6 and Wild Type C57BL/6 Mice. Physiol. Res. 2005, 54, 701–704. [Google Scholar]
- Walf, A.A.; Frye, C.A. The Use of the Elevated plus Maze as an Assay of Anxiety-Related Behavior in Rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Cioanca, O.; Hritcu, L.; Mihasan, M.; Trifan, A.; Hancianu, M. Inhalation of Coriander Volatile Oil Increased Anxiolytic-Antidepressant-like Behaviors and Decreased Oxidative Status in Beta-Amyloid (1-42) Rat Model of Alzheimer’s Disease. Physiol. Behav. 2014, 131, 68–74. [Google Scholar] [CrossRef]
- Pellow, S.; File, S.E. Anxiolytic and Anxiogenic Drug Effects on Exploratory Activity in an Elevated Plus-Maze: A Novel Test of Anxiety in the Rat. Pharmacol. Biochem. Behav. 1986, 24, 525–529. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Dalvi, A. Anxiety, Defence and the Elevated plus-Maze. Neurosci. Biobehav. Rev. 1997, 21, 801–810. [Google Scholar] [CrossRef]
- Arrant, A.E.; Schramm-Sapyta, N.L.; Kuhn, C.M. Use of the Light/Dark Test for Anxiety in Adult and Adolescent Male Rats. Behav. Brain Res. 2013, 256, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Crawley, J.; Bailey, K. Anxiety-Related Behaviours in Mice; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2008; pp. 77–101. [Google Scholar] [CrossRef]
- Gould, T.D.; Dao, D.T.; Kovacsics, C.E. The Open Field Test. Neuromethods 2009, 42, 1–20. [Google Scholar] [CrossRef]
- Pisula, W.; Modlinska, K.; Goncikowska, K.; Chrzanowska, A. Can the Hole–Board Test Predict a Rat’s Exploratory Behavior in a Free-Exploration Test? Animals 2021, 11, 1068. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Tsuji, M.; Matsumiya, T. Changes in Head-Dipping Behavior in the Hole-Board Test Reflect the Anxiogenic and/or Anxiolytic State in Mice. Eur. J. Pharmacol. 1998, 350, 21–29. [Google Scholar] [CrossRef]
- de Brouwer, G.; Fick, A.; Harvey, B.H.; Wolmarans, D.W. A Critical Inquiry into Marble-Burying as a Preclinical Screening Paradigm of Relevance for Anxiety and Obsessive–Compulsive Disorder: Mapping the Way Forward. Cogn. Affect. Behav. Neurosci. 2019, 19, 1–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himanshu; Dharmila; Sarkar, D.; Nutan. A Review of Behavioral Tests to Evaluate Different Types of Anxiety and Anti-Anxiety Effects. Clin. Psychopharmacol. Neurosci. 2020, 18, 341–351. [Google Scholar] [CrossRef] [PubMed]
- File, S.E.; Seth, P. A Review of 25 Years of the Social Interaction Test. Eur. J. Pharmacol. 2003, 463, 35–53. [Google Scholar] [CrossRef]
- Balsamo, M.; Romanelli, R.; Innamorati, M.; Ciccarese, G.; Carlucci, L.; Saggino, A. The State-Trait Anxiety Inventory: Shadows and Lights on Its Construct Validity. J. Psychopathol. Behav. Assess. 2013, 35, 475–486. [Google Scholar] [CrossRef]
- Kim, K.Y.; Seo, H.J.; Min, S.S.; Park, M.; Seol, G.H. The Effect of 1,8-Cineole Inhalation on Preoperative Anxiety: A Randomized Clinical Trial. Evid.-Based Complement. Altern. Med. 2014, 2014, 820126. [Google Scholar] [CrossRef] [Green Version]
- Labaste, F.; Ferré, F.; Combelles, H.; Rey, V.; Foissac, J.C.; Senechal, A.; Conil, J.M.; Minville, V. Validation of a Visual Analogue Scale for the Evaluation of the Postoperative Anxiety: A Prospective Observational Study. Nurs. Open 2019, 6, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Wewers, M.E.; Lowe, N.K. A critical review of visual analogue scales in the measurement of clinical phenomena. Res. Nurs. Heal. 1990, 13, 227–236. [Google Scholar] [CrossRef]
- Ahearn, E.P. The Use of Visual Analog Scales in Mood Disorders: A Critical Review. J. Psychiatr. Res. 1997, 31, 569–579. [Google Scholar] [CrossRef]
- Athanasou, J. The Background, Psychometric Qualities and Clinical Application of the Visual Analog Mood Scales: A Review and Evaluation. Psychol. Thought 2019, 12, 117–128. [Google Scholar] [CrossRef]
- Searight, H.R.; Montone, K. Encyclopedia of Personality and Individual Differences. Encycl. Personal. Individ. Differ. 2020, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chaves Neto, G.; Braga, J.E.F.; Alves, M.F.; De Morais Pordeus, L.C.; Dos Santos, S.G.; Scotti, M.T.; Almeida, R.N.; Diniz, M.D.F.F.M. Anxiolytic Effect of Citrus aurantium L. in Crack Users. Evid.-Based Complement. Altern. Med. 2017, 2017, 7217619. [Google Scholar] [CrossRef] [Green Version]
- Norris, H. The Action of Sedatives on Brain Stem Oculomotor Systems in Man. Neuropharmacology 1971, 10, 181–191. [Google Scholar] [CrossRef]
- Narayan, V.K.; Samuel, S.R. Appropriateness of Various Behavior Rating Scales Used in Pediatric Dentistry: A Review. J. Glob. Oral. Health 2019, 2, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, H.; Niven, N. Validation of a Facial Image Scale to Assess Child Dental Anxiety. Int. J. Paediatr. Dent. 2002, 12, 47–52. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Godwin, J. Flumazenil in Benzodiazepine Overdose. CMAJ 2016, 188, E537. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.A.R.D.A.; Kohn, D.O.; De Lima, V.M.; Gargano, A.C.; Flório, J.C.; Costa, M. The GABAergic System Contributes to the Anxiolytic-like Effect of Essential Oil from Cymbopogon citratus (Lemongrass). J. Ethnopharmacol. 2011, 137, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Nóbrega, F.F.F.; Salvadori, M.G.S.S.; Masson, C.J.; Mello, C.F.; Nascimento, T.S.; Leal-Cardoso, J.H.; De Sousa, D.P.; Almeida, R.N. Monoterpenoid Terpinen-4-Ol Exhibits Anticonvulsant Activity in Behavioural and Electrophysiological Studies. Oxid. Med. Cell. Longev. 2014, 2014, 703848. [Google Scholar] [CrossRef]
- Deutch, A.Y.; Roth, R.H. Pharmacology and Biochemistry of Synaptic Transmission: Classical Transmitters. In From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience, 3rd ed.; Academic Press: New York, NY, USA, 2014; pp. 207–237. [Google Scholar] [CrossRef]
- Koo, B.S.; Park, K.S.; Ha, J.H.; Park, J.H.; Lim, J.C.; Lee, D.U. Inhibitory Effects of the Fragrance Inhalation of Essential Oil from Acorus gramineus on Central Nervous System. Biol. Pharm. Bull. 2003, 26, 978–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muroi, Y.; Theusch, C.M.; Czajkowski, C.; Jackson, M.B. Distinct Structural Changes in the GABAA Receptor Elicited by Pentobarbital and GABA. Biophys. J. 2009, 96, 499–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of Essential Oils and Factors Influencing Their Constituents. ScienceDirect 2017, 1968, 379–419. [Google Scholar] [CrossRef]
- Teschke, R.; Xuan, T.D. Viewpoint: A Contributory Role of Shell Ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for Human Longevity in Okinawa, Japan? Nutrients 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S.; Matsuura, M.; Satou, T.; Hayashi, S.; Koike, K. Effects of the Essential Oil from Leaves of Alpinia zerumbet on Behavioral Alterations in Mice. Nat. Prod. Commun. 2009, 4, 129–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagci, E.; Aydin, E.; Ungureanu, E.; Hritcu, L. Anthriscus Nemorosa Essential Oil Inhalation Prevents Memory Impairment, Anxiety and Depression in Scopolamine-Treated Rats. Biomed. Pharmacother. 2016, 84, 1313–1320. [Google Scholar] [CrossRef]
- Takemoto, H.; Ito, M.; Shiraki, T.; Yagura, T.; Honda, G. Sedative Effects of Vapor Inhalation of Agarwood Oil and Spikenard Extract and Identification of Their Active Components. J. Nat. Med. 2008, 62, 41–46. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, L.; Feng, L.; Yao, L. The Anxiolytic Effect of Essential Oil of Cananga Odorata Exposure on Mice and Determination of Its Major Active Constituents. Phytomedicine 2016, 23, 1727–1734. [Google Scholar] [CrossRef]
- Kasuya, H.; Hata, E.; Satou, T.; Yoshikawa, M.; Hayashi, S.; Masuo, Y.; Koike, K. Effect on Emotional Behavior and Stress by Inhalation of the Essential Oil from Chamaecyparis obtusa. Nat. Prod. Commun. 2013, 8, 1934578X1300800428. [Google Scholar] [CrossRef] [Green Version]
- Wolffenbüttel, A.N.; Zamboni, A.; Becker, G.; dos Santos, M.K.; Borille, B.T.; de Cássia Mariotti, K.; Fagundes, A.C.; de Oliveira Salomón, J.L.; Coelho, V.R.; Ruiz, L.V.; et al. Citrus Essential Oils Inhalation by Mice: Behavioral Testing, GCMS Plasma Analysis, Corticosterone, and Melatonin Levels Evaluation. Phyther. Res. 2018, 32, 160–169. [Google Scholar] [CrossRef]
- Leite, M.P.; Fassin, J.; Baziloni, E.M.F.; Almeida, R.N.; Mattei, R.; Leite, J.R. Behavioral Effects of Essential Oil of Citrus aurantium L. Inhalation in Rats. Brazilian J. Pharmacogn. 2008, 18, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Hasheminia, D.; Kalantar Motamedi, M.R.; Karimi Ahmadabadi, F.; Hashemzehi, H.; Haghighat, A. Can Ambient Orange Fragrance Reduce Patient Anxiety during Surgical Removal of Impacted Mandibular Third Molars? J. Oral Maxillofac. Surg. 2014, 72, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, F.C.F.; Alves, M.F.; Pimenta, M.B.F.; Melo, S.A.L.; De Almeida, A.A.F.; Leite, J.R.; Pordeus, L.C.D.M.; Diniz, M.D.F.F.M.; De Almeida, R.N. Anxiolytic Effect of Citrus aurantium L. on Patients with Chronic Myeloid Leukemia. Phyther. Res. 2016, 30, 613–617. [Google Scholar] [CrossRef]
- Namazi, M.; Amir Ali Akbari, S.; Mojab, F.; Talebi, A.; Alavi Majd, H.; Jannesari, S. Aromatherapy with Citrus aurantium Oil and Anxiety during the First Stage of Labor. Iran. Red Crescent Med. J. 2014, 16, e18371. [Google Scholar] [CrossRef] [Green Version]
- Moslemi, F.; Alijaniha, F.; Naseri, M.; Kazemnejad, A.; Charkhkar, M.; Heidari, M.R. Citrus aurantium Aroma for Anxiety in Patients with Acute Coronary Syndrome: A Double-Blind Placebo-Controlled Trial. J. Altern. Complement. Med. 2019, 25, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Saiyudthong, S.; Marsden, C.A. Acute Effects of Bergamot Oil on Anxiety-Related Behaviour and Corticosterone Level in Rats. Phyther. Res. 2011, 25, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Komiya, M.; Takeuchi, T.; Harada, E. Lemon Oil Vapor Causes an Anti-Stress Effect via Modulating the 5-HT and DA Activities in Mice. Behav. Brain Res. 2006, 172, 240–249. [Google Scholar] [CrossRef]
- Klimek-szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, I.; Lariviere, W.R.; Fiorenzani, P.; Sacerdote, P.; Aloisi, A.M. Effects of Long-Term Exposure of Lemon Essential Oil Odor on Behavioral, Hormonal and Neuronal Parameters in Male and Female Rats. Brain Res. 2004, 1001, 78–86. [Google Scholar] [CrossRef]
- Johnson, C.E. Effect of Aromatherapy on Cognitive Test Anxiety Among Nursing Students. Altern. Complement. Ther. 2014, 20, 84–87. [Google Scholar] [CrossRef]
- Johnson, C.E. Effect of Inhaled Lemon Essential Oil on Cognitive Test Anxiety among Nursing Students. Holist. Nurs. Pract. 2019, 33, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Faturi, C.B.; Leite, J.R.; Alves, P.B.; Canton, A.C.; Teixeira-Silva, F. Anxiolytic-like Effect of Sweet Orange Aroma in Wistar Rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Lehrner, J.; Eckersberger, C.; Walla, P.; Pötsch, G.; Deecke, L. Ambient Odor of Orange in a Dental Office Reduces Anxiety and Improves Mood in Female Patients. Physiol. Behav. 2000, 71, 83–86. [Google Scholar] [CrossRef]
- Pour, F.; Arman, S.; Jaafarzadeh, M. Effect of Aromatherapy with Orange Essential Oil on Salivary Cortisol and Pulse Rate in Children during Dental Treatment: A Randomized Controlled Clinical Trial. Adv. Biomed. Res. 2013, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Goes, T.C.; Antunes, F.D.; Alves, P.B.; Teixeira-Silva, F. Effect of Sweet Orange Aroma on Experimental Anxiety in Humans. J. Altern. Complement. Med. 2012, 18, 798–804. [Google Scholar] [CrossRef] [Green Version]
- Koga, Y. Effects of Odors on Brain Function. J. Int. Soc. Life Inf. Sci. 2004, 22, 179–186. [Google Scholar]
- Zhong, Y.; Zheng, Q.; Hu, P.; Huang, X.; Yang, M.; Ren, G.; Du, Q.; Luo, J.; Zhang, K.; Li, J.; et al. Sedative and Hypnotic Effects of Compound Anshen Essential Oil Inhalation for Insomnia. BMC Complement. Altern. Med. 2019, 19, 306. [Google Scholar] [CrossRef]
- Matsubara, E.; Kawai, S. VOCs Emitted from Japanese Cedar (Cryptomeria japonica) Interior Walls Induce Physiological Relaxation. Build. Environ. 2014, 72, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, E.; Ohira, T. Inhalation of Japanese Cedar (Cryptomeria japonica) Wood Odor Causes Psychological Relaxation after Monotonous Work among Female Participants. Biomed. Res. 2018, 39, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Goes, T.C.; Ursulino, F.R.C.; Almeida-Souza, T.H.; Alves, P.B.; Teixeira-Silva, F. Effect of Lemongrass Aroma on Experimental Anxiety in Humans. J. Altern. Complement. Med. 2015, 21, 766–773. [Google Scholar] [CrossRef]
- Yayla, E.M.; Ozdemir, L. Effect of Inhalation Aromatherapy on Procedural Pain and Anxiety after Needle Insertion into an Implantable Central Venous Port Catheter: A Quasi-Randomized Controlled Pilot Study. Cancer Nurs. 2019, 42, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Satou, T.; Matsuura, M.; Takahashi, M.; Umezu, T.; Hayashi, S.; Sadamoto, K.; Koike, K. Anxiolytic-like Effect of Essential Oil Extracted from Abies sachalinensis. Flavour Fragr. J. 2011, 26, 416–420. [Google Scholar] [CrossRef]
- Hossain, S.J.; Aoshima, H.; Koda, H.; Kiso, Y. Fragrances in Oolong Tea That Enhance the Response of GABAA Receptors. Biosci. Biotechnol. Biochem. 2004, 68, 1842–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, A.G.; Ito, M. Sedative Effect of Vapor Inhalation of Essential Oil from Heracleum afghanicum Kitamura Seeds. J. Essent. Oil Res. 2012, 24, 571–577. [Google Scholar] [CrossRef]
- Mohammed Sur, T.; Akbaba, E.; Hassan, S.A.; Bagci, E. Neuropharmacological Profile of Hypericum scabrum L. Essential Oil in Rats. J. Essent. Oil Res. 2020, 32, 84–92. [Google Scholar] [CrossRef]
- Miyagawa, M.; Satou, T.; Yukimune, C.; Ishibashi, A.; Seimiya, H.; Yamada, H.; Hasegawa, T.; Koike, K. Anxiolytic-like Effect of Illicium Verum Fruit Oil, Trans-Anethole and Related Compounds in Mice. Phyther. Res. 2014, 28, 1710–1712. [Google Scholar] [CrossRef]
- Kuo, T. A Study about the Inhibition Effect of Jasmine Essential Oil on the Central Nervous System. J. Health Sci. 2017, 7, 67–72. [Google Scholar] [CrossRef]
- Jirovetz, L.; Buchbauer, G.; Schweiger, T.; Denkova, Z. Chemical Composition, Olfactory Evaluation and Antimicrobial Activities of Jasminum grandiflorum L. Absolute from India. Nat. Prod. Commun. 2007, 2, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Dougnon, G.; Ito, M. Sedative Effects of the Essential Oil from the Leaves of Lantana Camara Occurring in the Republic of Benin via Inhalation in Mice. J. Nat. Med. 2020, 74, 159–169. [Google Scholar] [CrossRef]
- Chioca, L.R.; Ferro, M.M.; Baretta, I.P.; Oliveira, S.M.; Silva, C.R.; Ferreira, J.; Losso, E.M.; Andreatini, R. Anxiolytic-like Effect of Lavender Essential Oil Inhalation in Mice: Participation of Serotonergic but Not GABAA/Benzodiazepine Neurotransmission. J. Ethnopharmacol. 2013, 147, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological Activities of Lavender Essential Oil. Phyther. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Arslan, I.; Aydinoglu, S.; Karan, N.B. Can Lavender Oil Inhalation Help to Overcome Dental Anxiety and Pain in Children? A Randomized Clinical Trial. Eur. J. Pediatr. 2020, 179, 985–992. [Google Scholar] [CrossRef] [PubMed]
- AOSHIMA, H.; HAMAMOTO, K. Potentiation of GABA A Receptors Expressed in Xenopus Oocytes by Perfume and Phytoncid. Biosci. Biotechnol. Biochem. 1999, 63, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An Overview. Pharmacogn. Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Miura, T.; Mimaki, Y.; Sashida, Y. Effect of Inhalation of Chamomile Oil Vapour on Plasma ACTH Level in Ovariectomized-Rat under Restriction Stress. Biol. Pharm. Bull. 1996, 19, 1244–1246. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Ito, M. Sedative Effects of Vapor Inhalation of the Essential Oil of Microtoena patchoulii and Its Related Compounds. J. Nat. Med. 2011, 65, 336–343. [Google Scholar] [CrossRef]
- Takemoto, H.; Ito, M.; Asada, Y.; Kobayashi, Y. Inhalation Administration of the Sesquiterpenoid Aristolen-1(10)-En-9-Ol from Nardostachys chinensis Has a Sedative Effect via the Gabaergic System. Planta Med. 2015, 81, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Hirai, M.; Ito, M. Sedative Effects of the Essential Oil and Headspace Air of Ocimum Basilicum by Inhalation in Mice. J. Nat. Med. 2019, 73, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Gradinariu, V.; Cioanca, O.; Hritcu, L.; Trifan, A.; Gille, E.; Hancianu, M. Comparative Efficacy of Ocimum sanctum L. and Ocimum basilicum L. Essential Oils against Amyloid Beta (1–42)-Induced Anxiety and Depression in Laboratory Rats. Phytochem. Rev. 2015, 14, 567–575. [Google Scholar] [CrossRef]
- Tankam, J.M.; Ito, M. Sedative, Anxiolytic and Antidepressant-like Effects of Inhalation of the Essential Oil of Ocimum gratissimum L. from Cameroon in Mice. J. Pharmacogn. Phytochem. 2014, 2, 1–9. [Google Scholar]
- Shirzadegan, R.; Gholami, M.; Hasanvand, S.; Birjandi, M.; Beiranvand, A. Effects of Geranium Aroma on Anxiety among Patients with Acute Myocardial Infarction: A Triple-Blind Randomized Clinical Trial. Complement. Ther. Clin. Pract. 2017, 29, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Rashidi Fakari, F.; Tabatabaeichehr, M.; Kamali, H.; Rashidi Fakari, F.; Naseri, M. Effect of Inhalation of Aroma of Geranium Essence on Anxiety and Physiological Parameters during First Stage of Labor in Nulliparous Women: A Randomized Clinical Trial. J. Caring Sci. 2015, 4, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, E.; Hritcu, L.; Dogan, G.; Hayta, S.; Bagci, E. The Effects of Inhaled Pimpinella Peregrina Essential Oil on Scopolamine-Induced Memory Impairment, Anxiety, and Depression in Laboratory Rats. Mol. Neurobiol. 2016, 53, 6557–6567. [Google Scholar] [CrossRef] [PubMed]
- Tankam, J.M.; Ito, M. Inhalation of the Essential Oil of Piper Guineense from Cameroon Shows Sedative and Anxiolytic-like Effects in Mice. Biol. Pharm. Bull. 2013, 36, 1608–1614. [Google Scholar] [CrossRef] [Green Version]
- Nayebi, N.; Khalili, N.; Kamalinejad, M.; Emtiazy, M. A Systematic Review of the Efficacy and Safety of Rosa damascena Mill. with an Overview on Its Phytopharmacological Properties. Complement. Ther. Med. 2017, 34, 129–140. [Google Scholar] [CrossRef]
- De Almeida, R.N.; Motta, S.C.; De Brito Faturi, C.; Catallani, B.; Leite, J.R. Anxiolytic-like Effects of Rose Oil Inhalation on the Elevated Plus-Maze Test in Rats. Pharmacol. Biochem. Behav. 2004, 77, 361–364. [Google Scholar] [CrossRef]
- Satou, T.; Miyagawa, M.; Seimiya, H.; Yamada, H.; Hasegawa, T.; Koike, K. Prolonged Anxiolytic-like Activity of Sandalwood (Santalum album L.) Oil in Stress-Loaded Mice. Flavour Fragr. J. 2014, 29, 35–38. [Google Scholar] [CrossRef]
- Höferl, M.; Hütter, C.; Buchbauer, G. A Pilot Study on the Physiological Effects of Three Essential Oils in Humans. Nat. Prod. Commun. 2016, 11, 1561–1564. [Google Scholar] [CrossRef] [Green Version]
- Satou, T.; Hayakawa, M.; Goto, Y.; Masuo, Y.; Koike, K. Anxiolytic-like Effects of Essential Oil from Thymus vulgaris Was Increased during Stress. Flavour Fragr. J. 2018, 33, 191–195. [Google Scholar] [CrossRef]
- Komori, T.; Matsumoto, T.; Motomura, E.; Shiroyama, T. The Sleep-Enhancing Effect of Valerian Inhalation and Sleep-Shortening Effect of Lemon Inhalation. Chem. Senses 2006, 31, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Safaralie, A.; Fatemi, S.; Sefidkon, F. Essential Oil Composition of Valeriana officinalis L. Roots Cultivated in Iran. Comparative Analysis between Supercritical CO2 Extraction and Hydrodistillation. J. Chromatogr. A 2008, 1180, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.J.; Aoshima, H.; Koda, H.; Kiso, Y. Potentiation of the Ionotropic GABA Receptor Response by Whiskey Fragrance. J. Agric. Food Chem. 2002, 50, 6828–6834. [Google Scholar] [CrossRef] [PubMed]
- Koda, H.; Hossain, S.J.; Kiso, Y.; Aoshima, H. Aging of Whiskey Increases the Potentiation of GABAA Receptor Response. J. Agric. Food Chem. 2003, 51, 5238–5244. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-M.; Sung, H.-M.; Jung, H.-J.; Seo, J.-W.; Wee, J.-H. In Vivo Evaluation of Hot Water Extract of Acorus gramineus Root against Benign Prostatic Hyperplasia. BMC Complement. Altern. Med. 2017, 17, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, S.B.; Shinde, R.B.; Routh, M.M.; Karuppayil, S.M. Anti-Candida Properties of Asaronaldehyde of Acorus gramineus Rhizome and Three Structural Isomers. Chin. Med. 2013, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Chen, S.W.; Xu, N.; Liu, X.H.; Zhang, H.; Wang, Y.Z.; Xu, X.D. Anxiolytic-like Effect of α-Asarone in Mice. Phytother. Res. 2012, 26, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, W.G.; Zhang, X.B.; Wang, L.; Xu, T.L.; Wu, D.; Li, Y. Alpha-Asarone from Acorus gramineus Alleviates Epilepsy by Modulating A-Type GABA Receptors. Neuropharmacology 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Wong, S.K.; Chan, H.T. Alpinia Zerumbet, a Ginger Plant with a Multitude of Medicinal Properties: An Update on Its Research Findings. J. Chin. Pharm. Sci. 2017, 26, 775–788. [Google Scholar] [CrossRef]
- Satou, T.; Murakami, S.; Matsuura, M.; Hayashi, S.; Koike, K. Anxiolytic Effect and Tissue Distribution of Inhaled Alpinia zerumbet Essential Oil in Mice. Nat. Prod. Commun. 2010, 5, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.C.; Turcotte, C.M.; Betts, B.A.; Yeung, W.Y.; Agyeman, A.S.; Burk, L.A. Modulation of Human GABA A and Glycine Receptor Currents by Menthol and Related Monoterpenoids. Eur. J. Pharmacol. 2004, 506, 9–16. [Google Scholar] [CrossRef]
- Milanos, S.; Elsharif, S.A.; Janzen, D.; Buettner, A.; Villmann, C. Metabolic Products of Linalool and Modulation of GABAA Receptors. Front. Chem. 2017, 5, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, R.E.; Campbell, E.L.; Johnston, G.A.R. (+)- And (-)-Borneol: Efficacious Positive Modulators of GABA Action at Human Recombinant A1β2γ2L GABAA Receptors. Biochem. Pharmacol. 2005, 69, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, M.; Petrović, S.; Milenković, M.; Couladis, M.; Tzakou, O.; Niketić, M. Chemical Composition and Antimicrobial Activity of Anthriscus Nemorosa Root Essential Oil. Nat. Prod. Commun. 2011, 6, 271–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lochner, M.; Thompson, A.J. The Muscarinic Antagonists Scopolamine and Atropine Are Competitive Antagonists at 5-HT3 Receptors. Neuropharmacology 2016, 108, 220–228. [Google Scholar] [CrossRef] [Green Version]
- López-Sampson, A.; Page, T. History of Use and Trade of Agarwood. Econ. Bot. 2018, 72, 107–129. [Google Scholar] [CrossRef]
- Hashim, Y.Z.H.Y.; Kerr, P.G.; Abbas, P.; Mohd Salleh, H. Aquilaria spp. (Agarwood) as Source of Health Beneficial Compounds: A Review of Traditional Use, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Peng, D.; Liu, X.; Wu, C.; Guo, P.; Wei, J. Agarwood Essential Oil Displays Sedative-Hypnotic Effects through the GABAergic System. Molecules 2017, 22, 2190. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.T.H.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Abdul Kadir, H.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga Odorata (Ylang-Ylang). Evid.-Based Complement. Altern. Med. 2015, 2015, 896314. [Google Scholar] [CrossRef] [Green Version]
- Kessler, A.; Sahin-Nadeem, H.; Lummis, S.C.R.; Weigel, I.; Pischetsrieder, M.; Buettner, A.; Villmann, C. GABAA Receptor Modulation by Terpenoids from Sideritis Extracts. Mol. Nutr. Food Res. 2014, 58, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Satou, T.; Kasuya, H.; Maeda, K.; Koike, K. Daily Inhalation of α-Pinene in Mice: Effects on Behavior and Organ Accumulation. Phyther. Res. 2014, 28, 1284–1287. [Google Scholar] [CrossRef]
- Yang, H.; Woo, J.; Pae, A.N.; Um, M.Y.; Cho, N.C.; Park, K.D.; Yoon, M.; Kim, J.; Lee, C.J.; Cho, S. α-Pinene, a Major Constituent of Pine Tree Oils, Enhances Non-Rapid Eye Movement Sleep in Mice through GABAA-Benzodiazepine Receptors. Mol. Pharmacol. 2016, 90, 530–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarra, M.; Mannucci, C.; Delbò, M.; Calapai, G. Citrus Bergamia Essential Oil: From Basic Research to Clinical Application. Front. Pharmacol. 2015, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrone, L.A.; Rombolà, L.; Pelle, C.; Corasaniti, M.T.; Zappettini, S.; Paudice, P.; Bonanno, G.; Bagetta, G. The Essential Oil of Bergamot Enhances the Levels of Amino Acid Neurotransmitters in the Hippocampus of Rat: Implication of Monoterpene Hydrocarbons. Pharmacol. Res. 2007, 55, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Wierońska, J.M.; Stachowicz, K.; Nowak, G.; Pilc, A. The Loss of Glutamate-GABA Harmony in Anxiety Disorders. Anxiety Disord. 2011, 24, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.S.; Gu, L.J.; Yang, Y.X.; Guo, J.Y. GABA and 5-HT Systems Are Involved in the Anxiolytic Effect of Gan-Mai-Da-Zao Decoction. Front. Neurosci. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Song, Y.; Seo, S.; Lamichhane, S.; Seo, J.; Hong, J.T.; Cha, H.J.; Yun, J. Limonene Has Anti-Anxiety Activity via Adenosine A2A Receptor-Mediated Regulation of Dopaminergic and GABAergic Neuronal Function in the Striatum. Phytomedicine 2021, 83, 153474. [Google Scholar] [CrossRef]
- Costa, C.A.R.A.; Cury, T.C.; Cassettari, B.O.; Takahira, R.K.; Flório, J.C.; Costa, M. Citrus aurantium L. Essential Oil Exhibits Anxiolytic-like Activity Mediated by 5-HT1A-Receptors and Reduces Cholesterol after Repeated Oral Treatment. BMC Complement. Altern. Med. 2013, 13, 1–10. [Google Scholar] [CrossRef]
- Chalmers, T.; Maharaj, S.; Lees, T.; Lin, C.T.; Newton, P.; Clifton-Bligh, R.; McLachlan, C.S.; Gustin, S.M.; Lal, S. Impact of Acute Stress on Cortical Electrical Activity and Cardiac Autonomic Coupling. J. Integr. Neurosci. 2020, 19, 239–248. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Teixeira-Silva, F.; Prado, G.B.; Ribeiro, L.C.G.; Leite, J.R. The Anxiogenic Video-Recorded Stroop Color-Word Test: Psychological and Physiological Alterations and Effects of Diazepam. Physiol. Behav. 2004, 82, 215–230. [Google Scholar] [CrossRef]
- Hayashi, Y.; Sogabe, S.; Hattori, Y.; Tanaka, J. Anxiolytic and Hypnotic Effects in Mice of Roasted Coffee Bean Volatile Compounds. Neurosci. Lett. 2012, 531, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.J.; Aoshima, H.; Koda, H.; Kiso, Y. Effects of Coffee Components on the Response of GABAA Receptors Expressed in Xenopus Oocytes. J. Agric. Food Chem. 2003, 51, 7568–7575. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Zhong, Y.; Ke, G.; Liu, X.; Li, H.; Li, X.; Zheng, Q.; Yang, M. The Mechanism of Compound Anshen Essential Oil in the Treatment of Insomnia Was Examined by Network Pharmacology. Evid.-Based. Complement. Altern. Med. 2019, 2019, 9241403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) Essential Oil: Chemistry and Biological Activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Mizushina, Y.; Kuriyama, I. Cedar (Cryptomeria japonica) Oils; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Wifek, M.; Saeed, A.; Rehman, R.; Nisar, S. Lemongrass: A Review on Its Botany, Properties, Applications and Active Components. IJCBS 2016, 9, 79–84. [Google Scholar]
- Silva, M.R.; Ximenes, R.M.; Da Costa, J.G.M.; Leal, L.K.A.M.; De Lopes, A.A.; De Barros Viana, G.S. Comparative Anticonvulsant Activities of the Essential Oils (EOs) from Cymbopogon winterianus Jowitt and Cymbopogon citratus (DC) Stapf. in Mice. Naunyn. Schmiedebergs. Arch. Pharmacol. 2010, 381, 415–426. [Google Scholar] [CrossRef]
- Hayat, U.; Jilani, M.I.; Rehman, R.; Nadeem, F. A Review on Eucalyptus Globulus: A New Perspective in Therapeutics. Int. J. Chem. Biochem. Sci. 2015, 8, 85–91. [Google Scholar]
- Dougnon, G.; Ito, M. Inhalation Administration of the Bicyclic Ethers 1,8- And 1,4-Cineole Prevent Anxiety and Depressive-like Behaviours in Mice. Molecules 2020, 25, 1884. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Noguchi, M. Growth and Survival of Abies Sachalinensis Seedlings for Three Years after Selection Harvesting in Northern Hokkaido, Japan. Landsc. Ecol. Eng. 2010, 6, 37–42. [Google Scholar] [CrossRef]
- Raza, M.; El-Hadiyah, T.M.; Al-Shabanah, O.A. Nigella Sativa Seed Constituents and Anxiety Relief in Experimental Models. J. Herbs, Spices Med. Plants 2006, 12, 153–164. [Google Scholar] [CrossRef]
- Umezu, T.; Nagano, K.; Ito, H.; Kosakai, K.; Sakaniwa, M.; Morita, M. Anticonflict Effects of Lavender Oil and Identification of Its Active Constituents. Pharmacol. Biochem. Behav. 2006, 85, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Weerawatanakorn, M.; Hung, W.L.; Pan, M.H.; Li, S.; Li, D.; Wan, X.; Ho, C.T. Chemistry and Health Beneficial Effects of Oolong Tea and Theasinensins. Food Sci. Hum. Wellness 2015, 4, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Hinton, T.; Jelinek, H.F.; Viengkhou, V.; Johnston, G.A.; Matthews, S. Effect of GABA-Fortified Oolong Tea on Reducing Stress in a University Student Cohort. Front. Nutr. 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.; Mushtaq, A.; Kazerooni, E.G. Star Anise: A Review on Benefits, Biological Activities and Potential Uses. Int. J. Chem. Biochem. Sci. 2018, 14, 110–114.153. [Google Scholar]
- Chouksey, D.; Upmanyu, N.; Pawar, R.S. Central Nervous System Activity of Illicium Verum Fruit Extracts. Asian Pac. J. Trop. Med. 2013, 6, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Arun, M.; Satish, S.; Anima, P. Phytopharmacological Profile of Jasminum grandiflorum Linn. (Oleaceae). Chin. J. Integr. Med. 2016, 22, 311–320. [Google Scholar] [CrossRef]
- Costa, J.P.; De Oliveira, G.A.L.; De Almeida, A.A.C.; Islam, M.T.; De Sousa, D.P.; De Freitas, R.M. Anxiolytic-like Effects of Phytol: Possible Involvement of GABAergic Transmission. Brain Res. 2014, 1547, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Saxena, M.; Saxena, J.; Khare, S. A Brief Review on: Therapeutical Values of Lantana Camara Plant. Int. J. Harmacy Life Sci. 2012, 3, 1551–1554. [Google Scholar]
- Soni, R.P.; Katoch, M.; Rana, S.S.; Kumar, A. An Overview of the Medical Utility of Lavender. Himachal J. Agric. Res. 2016, 42, 1–8. [Google Scholar]
- Vinkers, C.H.; Van Oorschot, R.; Korte, S.M.; Olivier, B.; Groenink, L. 5-HT1A Receptor Blockade Reverses GABAA Receptor A3 Subunit-Mediated Anxiolytic Effects on Stress-Induced Hyperthermia. Psychopharmacology 2010, 211, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Donelli, D.; Antonelli, M.; Bellinazzi, C.; Gensini, G.F.; Firenzuoli, F. Effects of Lavender on Anxiety: A Systematic Review and Meta-Analysis. Phytomedicine 2019, 65, 153099. [Google Scholar] [CrossRef] [PubMed]
- Buchbauer, G.; Jirovetz, L.; Jáger, W.; Plank, C.; Dietrich, H. Fragrance Compounds and Essential Oils with Sedative Effects upon Inhalation. J. Pharm. Sci. 1993, 82, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Tabari, M.A.; Tehrani, M.A.B. Evidence for the Involvement of the GABAergic, but Not Serotonergic Transmission in the Anxiolytic-like Effect of Bisabolol in the Mouse Elevated plus Maze. Naunyn. Schmiedebergs. Arch. Pharmacol. 2017, 390, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Senpuku, M.; Nonaka, K.; Ito, M.; Honda, G. Chemical Composition of the Essential Oil of Microtoena patchoulii [(C.B. Clarke Ex J.D. Hooker) C.Y. Wu et Hsuan]. J. Essent. Oil Res. 2007, 19, 336–337. [Google Scholar] [CrossRef]
- Rehman, T.; Ahmad, S. Nardostachys Chinensis Batalin: A Review of Traditional Uses, Phytochemistry, and Pharmacology. Phytother. Res. 2019, 33, 2622–2648. [Google Scholar] [CrossRef]
- Purushothaman, B.; Prasannasrinivasan, R.; Suganthi, P.; Ranganathan, B.; Gimbun, J.; Shanmugam, K. A Comprehensive Review on Ocimum Basilicum. J. Nat. Remedies 2018, 18, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Priestley, C.M.; Williamson, E.M.; Wafford, K.A.; Sattelle, D.B. Thymol, a Constituent of Thyme Essential Oil, Is a Positive Allosteric Modulator of Human GABA A Receptors and a Homo-Oligomeric GABA Receptor from Drosophila Melanogaster. Br. J. Pharmacol. 2003, 140, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Asgarpanah, J.; Ramezanloo, F. An Overview on Phytopharmacology of Pelargonium graveolens L. Indian J. Tradit. Knowl. 2015, 14, 558–563. [Google Scholar]
- Tsunetsugu, Y.; Park, B.J.; Miyazaki, Y. Trends in Research Related to “Shinrin-Yoku” (Taking in the Forest Atmosphere or Forest Bathing) in Japan. Environ. Health Prev. Med. 2010, 15, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a Dominant Spice and Traditional Medicinal Herb for Both Food and Medicinal Purposes. Cogent Biol. 2019, 5, 1673688. [Google Scholar] [CrossRef]
- Besong, E.E.; Balogun, M.E.; Djobissie, S.F.A.; Mbamalu, O.S.; Obimma, J.N. A Review of Piper Guineense (African Black Pepper). Int. J. Pharm. Pharm. Res. 2016, 6, 369–384. [Google Scholar]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The “Trier Social Stress Test”—A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis Spp.: Uses, Chemical Composition and Pharmacological Activities—A Review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus Vulgaris Essential Oil: Chemical Composition and Antimicrobial Activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- Ortiz, J.G.; Nieves-Natal, J.; Chavez, P. Effects of Valeriana officinalis Extracts on [3H]Flunitrazepam Binding, Synaptosomal [3H]GABA Uptake, and Hippocampal [3H]GABA Release. Neurochem. Res. 1999, 24, 1373–1378. [Google Scholar] [CrossRef]
- Santos, M.S.; Ferreira, F.; Cunha, A.P.; Carvalho, A.P.; Macedo, T. An Aqueous Extract of Valerian Influences the Transport of GABA in Synaptosomes. Planta Med. 1994, 60, 278–279. [Google Scholar] [CrossRef]
Aroma | Major Components | Inhalation Duration | Subject | Test/Experiment/ Intervention | Observed Effect | Motor Activity | Mechanism of Action | Reference |
---|---|---|---|---|---|---|---|---|
Acorus gramineus | β-asarone euasarone α-uasarone | 3 h twice daily for 7, 14 & 30 days respectively | Mice | Assays | Inhibitory CNS effects Anxiolytic-like ↑ PB induced sleep duration | Reduced | Inhibiting GABA transaminase, ↑ GABA levels, ↓ glutamate levels | [46] |
Alpinia zerumbet | α-pinene p-cymene 1,8-cineole limonene | 90 min | Mice | EPM LDB OFT | Anxiolytic-like | Increased | [49,50] | |
Anthriscus nemorosa | Caryophyllene trans-pinocarveol germacrene D β-elemene α-terpineol | 15 min for 21 Continual days | Rats | EPM | Anxiolytic-like | Increased | [51] | |
Aquilaria spp. | Benzylacetone α-gurjunene (+)-calarene | 60 min | Mice | OFT | Sedative | Reduced | [52] | |
Cananga odorata | Benzyl benzoate linalool benzyl salicylate benzyl alcohol | 10 min for 7 consecutive days | Mice | EPM, LDB, OFT | Anxiolytic-like | No effect | 5-HTnergic & DAnergic pathways (↑ 5-HT, ↓ DA) | [53] |
Chamaecyparis obtusa | δ-cadinene α-pinene | 90 min | Mice | EPM Stress biomarkers within the brain | Anxiolytic-like, Stress reducing | Not evaluated | ↑ NGFR ↑ Arc gene expression | [54] |
Citrus aurantium | Limonene linalyl acetate linalool | 7 min | Rats | EPM, OFT, Social interaction test | Anxiolytic | No change | [55,56] | |
30–35 min | Dental patients (n = 56) | BP, PR, RR | Anxiolytic | N/A | [57] | |||
30 min |
CML patients (n = 42) | STAI BP, CF, RF | Anxiolytic | N/A | [58] | |||
30 min |
Pregnant women (n = 126) | STAI Vital signs | Anxiolytic | N/A | [59] | |||
5 min | 5 min Crack users (n = 51) | STAI HAS TEMP, ESC, BP, HR | Anxiolytic | N/A | [38] | |||
20 min 2 days after hospitilisation | ACS Patients (n = 140) | STAI | Anxiolytic | N/A | [60] | |||
Citrus bergamia | Limonene linalool linalyl acetate | 7 min | Rats | EPM, HBT | Anxiolytic Stress reducing | Increased | ↓ corticosterone | [61] |
Citrus limon | Limonene sabinene citronellal | 90 min | Rats | EPM, FST, OFT | Anxiolytic-like, Sedative Stress reducing | Reduced | 5-HTnergic & DAnergic pathways | [62,63] |
Continual for 2 weeks | Rats | EPM | Anxiogenic | Reduced | [64] | |||
25 min | Nursing students (n = 39) | CTAS | Anxiolytic | N/A | [65] | |||
Ad libitum | Nursing students (n = 31) | CTAS | None | N/A | [66] | |||
Citrus sinensis | Limonene | 5 min | Rats | EPM, LDB | Anxiolytic-like | Not evaluated | [67] | |
30 min | Mice | LDB | Anxiolytic-like Sedative | Reduced | [55] | |||
Not specified | Dental patients (n = 72) | STAI | Sedative Relaxant | N/A | [68] | |||
30 min 2 min activation every 10 min |
Child (n = 30) mins | Salivary cortisol PR | Anxiolytic | N/A | ↓ cortisol | [69] | ||
5 min |
Healthy males (n = 40) | STAI HR, EMG | Anxiolytic | N/A | [70] | |||
Coffee | Not specified | Healthy women (n = 9) | EEG–alpha waves | Relaxant | N/A | [71] | ||
Compound Anshen | D-limonene linalool linalyl acetate α-Pinene α-Santalol | 60 min for 7 consecutive days | Mice | OFT Assays | Anxiolytic Sedative Hypnotic Prolonged sleep time | Reduced | ↑ 5-HT ↑ GABA | [72] |
Coriander sativium | Linalool | 60 min for 21 consecutive days | Rats | EPM, FST | Anxiolytic | Increased | [20] | |
Cryptomeria japonica VOC | δ-cadinene α-murolene | 30 min |
Healthy male students (n = 16) | Salivary stress markers (α-amylase, cortisol, IgA, CgA) ECG | Relaxant Stress reducing | N/A | ↓ α-amylase Inhibiting ↑ CgA | [73] |
Cryptomeria japonica | δ-cadinene 4-epi-cubebol cubebol | 30 min |
Female participants (n = 29) | Salivary stress markers (cortisol, DHEA-s, α-amylase, CgA), POMS | Relaxant Stress reducing | N/A | ↓ cortisol ↓ DHEA-s ↓ α-amylase | [74] |
Cymbopogon citratus | Geranial neral geranyl acetate | Not specified | Healthy male graduate students (n = 40) | STAI SPIN Self-evaluation of tension level EMG, HR | ↓ basal levels of anxiety ↓ Subjective tension | N/A | [75] | |
Eucalyptus globulus | 1,8-cineole, limonene α-pinene | 3 min |
Cancer patients (n = 130) | STAI | No reduction in anxiety | N/A | [76] | |
5 min |
SNRB Patients (n = 62) | STAI POMS A-VAS BP, PR | Anxiolytic | N/A | [32] | |||
Forest Abies sachalinensis | α-pinene camphene | 90 min | Mice | EPM | Anxiolytic- Like | Not Evaluated | [77] | |
Fragrant compounds from Oolong tea | Cis-jasmone, jasmine lactone, linalool oxide methyl jasmonate |
Xenopus laevis
oocytes | Voltage clamp technique | ↑ PB-induced sleep time | N/A | Potentiation of GABAA receptor response | [78] | |
Heracleum afghanicum | Hexyl butyrate octyl acetate | 60 min | Mice | OFT | Sedative | Reduced | [79] | |
Hypericum scabrum | α-pinene β-pinene myrcene | 15 min for 21 continuous days | Rats | EPM, FST | Anxiolytic | Reduced | [80] | |
Illicium verum | Trans-anethole | 90 min | Mice | EPM | No effect on anxiety | Not evaluated | [81] | |
Jasminum grandiflorum |
Benzyl acetate benzyl benzoate phytol linalool | 5 min |
Male & female participants (n = 31) | EEG (α–waves) BP, PR, HR, RR, muscle potential, skin conductance, TEMP | Relaxant | N/A | [82,83] | |
Lantana camara | Sabinene 1,8-cineole | 60 min | Mice | OFT | Sedative | Reduced | [84] | |
Lavandula spp. | Linalyl acetate Linalool 1,8-cineole β-ocimene terpinen-4-ol camphor | 15 min | Mice | EPM, MBT | Anxiolytic-like | No effect | 5-HTnergic neurotransmission–possibly via 5-HT1A receptors | [85,86] |
3 min |
Child dental patients (n = 126) | FIS BP, PR | Anxiolytic | N/A | [87] | |||
3 min | Xenopus laevis oocytes Cancer Pateints (n = 123) | Two-electrode voltage clamp technique STAI-I | No effect on anxiety | N/A N/A | Potentiated GABAA receptor response | [88] [76] | ||
Matricaria chamomilla | α-bisabolol oxides A & B α-bisabolol chamazulene β-farnesene | 60 min twice daily for 3 days | Rats | Restriction stress Plasma ACTH | Anxiolytic effects Sedative | Not evaluated | ↓ ACTH GABAergic neurotransmission | [89,90] |
Microtoena patchouli | 1-octen-3-ol, terpinolene, patchouli alcohol methyl salicylate. | 20 min, 35 min | Mice | OFT | Sedative | Reduced | [91] | |
Nardostachys chinensis | Calarene aristolene | 60 min | Mice | OFT | Sedative | Reduced | [92] | |
Ocimum basilicum & Living plant | Eugenol linalool methyl eugenol | 60 min | Mice | OFT | Sedative | Reduced | [93] | |
Ocimum basilicum | Linalool camphor β-elemene α-bergamo-tene bornyl-acetate estragole eugenol 1,8-cineole | 60 min for 21 continual days | Rats | EPM, FST | Anxiolytic | Increased | [94] | |
Ocimum gratissimum | Thymol p-cymene terpinene-4-ol | 60 min | Mice | OFT, LDB | Anxiolytic-like Sedative | Reduced | [95] | |
Ocimum sanctum | Linalool camphor β-elemene α-bergamo-tene bornyl-acetate estragole eugenol 1,8-cineole | 60 min for 21 continual days | Rats | EPM, FST | Anxiolytic | Increased | [94] | |
Pelargonium graveolens | Citronellol trans-geraniol | 20 min for 2 consecutive Patients | Acute MI Patients (n = 80) | STAI | Anxiolytic | N/A | [96] | |
Not Specified | Pregnant women (n = 100) | STAI BP, RR, PR | Anxiolytic | N/A | [97] | |||
Phytoncides | α-pinene cis-3-hexenol β-thujaplicin | Xenopus laevis oocytes | Two-electrode voltage clamp technique | N/A | Potentiated GABAA receptor response | [88] | ||
Pimpinella peregrine | Trans-pinocarveol pregeijerene α-cubebene | 15 min Rats for 21 continuous days | Rats | EPM | Anxiolytic | Increased | [98] | |
Piper guineense | Linalool 3,5-dimethoxytoluene | 60 min | Mice | LDB, OFT | Anxiolytic Sedative | Decreased | [99] | |
Rosa damascena | β citronellol nonadecane, geraniol henicosane | 7 min | Rats | EPM | Anxiolytic-like | Increased | [100,101] | |
Santalum album | α-santalol β-santalol | 90 min | Mice | EPM | Anxiolytic | Not evaluated | [102] | |
Santalum spicatum | α-santalol β-santalol | Not specified |
Female & male participants (n = 32) | BP Salivary Cortisol | Stress reducing | N/A | ↓ Cortisol | [103] |
Thymus vulgaris | Linalool β-myrcene terpinen-4-ol | 90 min | Mice | EPM | Anxiolytic-like | No change | [104] | |
Valeriana officinalis |
Isovaleric acid valerenic acid bornyl acetate | 60 min | Rats | GABA transaminase assay | ↑ PB-induced sleep time | Not evaluated | ↓ GABA transaminase ↑ GABA | [105,106] |
Whisky fragrance and components | Ethoxy lactone derivatives ethyl-phenylpropanoate | Xenopus laevis oocytes | Voltage clamp technique | ↑ PB-induced sleep time | N/A | Potentiation of GABAA receptor response | [107,108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartley, N.; McLachlan, C.S. Aromas Influencing the GABAergic System. Molecules 2022, 27, 2414. https://doi.org/10.3390/molecules27082414
Hartley N, McLachlan CS. Aromas Influencing the GABAergic System. Molecules. 2022; 27(8):2414. https://doi.org/10.3390/molecules27082414
Chicago/Turabian StyleHartley, Neville, and Craig S. McLachlan. 2022. "Aromas Influencing the GABAergic System" Molecules 27, no. 8: 2414. https://doi.org/10.3390/molecules27082414
APA StyleHartley, N., & McLachlan, C. S. (2022). Aromas Influencing the GABAergic System. Molecules, 27(8), 2414. https://doi.org/10.3390/molecules27082414