Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits
Abstract
:1. Introduction
2. In Vitro Antioxidant Potential and Total Amounts of Phytochemicals
2.1. Evaluation of Crude Extracts and Their Fractions
2.2. Evaluation of Polysaccharides and Some Other Compounds
2.3. Evaluation of Proteins and Their Hydrolysis Products
2.4. Effects of Processing and Various Treatments
2.5. Application of Dioscorea spp. Ingredients for Increasing Product Antioxidant Properties
3. In Vitro Assays in Cell Cultures and In Vivo Assays with Animals
4. Phytochemicals of Dioscorea
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Yang, M.H.; Yoon, K.D.; Chin, Y.W. Phytochemical and pharmacological profiles of Dioscorea species in Korea, China and Japan. Korean J. Pharmacogn. 2009, 40, 257–279. [Google Scholar]
- Lake, E.C.; Smith, M.C.; Dray, F.A., Jr.; Pratt, P.D. Ecological host-range of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of Dioscorea bulbifera. Biol. Control 2015, 85, 18–24. [Google Scholar] [CrossRef]
- Georgia Exotic Pest Plant Council: GA-EPPC. List of Non-Native Invasive Plants in Georgia—Georgia Exotic Pest Plant Council. Available online: http://www.gaeppc.org/list/ (accessed on 11 November 2021).
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants: Modified Stems, Roots, Bulbs; Springer: Berlin/Heidelberg, Germany, 2016; Volume 10, pp. 218–225. [Google Scholar]
- Food and Agricultural Organization of the United Nations (FAO). Available online: http://www.fao.org/ (accessed on 11 November 2021).
- Early Detection and Distribution Mapping System. (EDDMapS). Available online: http://www.eddmaps.org (accessed on 12 November 2021).
- Global Invasive Species Database Species Profile: Dioscorea oppositifolia. Available online: http://www.iucngisd.org/gisd/species.php?sc=296 (accessed on 22 November 2021).
- Obidiegwu, J.E.; Lyons, J.B.; Chilaka, C.A. The Dioscorea Genus (Yam)—An Appraisal of Nutritional and Therapeutic Potentials. Foods 2020, 9, 1304. [Google Scholar] [CrossRef]
- Adeloye, J.B.; Aluko, P.A.; Oluwajuyitan, T.D. In vitro α-amylase and α-glucosidase inhibitory activities, antioxidant activity, in vivo glycemic response and nutritional quality of dough meals from Dioscorea alata and Vernonia amygdalina. J. Food Meas. 2021, 15, 4083–4097. [Google Scholar] [CrossRef]
- Djeukeu, W.A.; Gouado, I.; Leng, M.S.; Vijaykrishnaraj, M.; Prabhasankar, P. Effect of dried yam flour (Dioscorea schimperiana) on cooking quality, digestibility profile and antioxidant potential of wheat based pasta. Food Meas. 2017, 11, 1421–1429. [Google Scholar] [CrossRef]
- Hwang, S.-J. Antioxidant activities and quality characteristics of yanggaeng added with Yam (Dioscorea japonica Thunb) powder. Culin. Sci. Hosp. Res. 2021, 27, 178–188. [Google Scholar]
- Kundu, B.B.; Vanni, K.; Farheen, A.; Jha, P.; Pandey, D.K.; Kumar, V. Dioscorea bulbifera L. (Dioscoreaceae): A review of its ethnobotany, pharmacology and conservation needs. S. Afr. J. Bot. 2020, 140, 365–374. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, D.H.; Zhang, C.; Liu, S.M.; Lu, F. Total saponins from Discorea nipponica ameliorate urate excretion in hyperuricemic mice. Planta Med. 2014, 80, 1259–1268. [Google Scholar] [CrossRef]
- Dutta, B. Food and medicinal values of certain species of Dioscorea with special reference to Assam. J. Pharmacogn. Phytochem. 2015, 3, 15–18. [Google Scholar]
- Surarit, W.; Nuengchamnong, N.; Hansakul, P. Protective effects of Dioscorea birmanica extract against oxidative stress-induced damage in cultured normal hepatocytes and its phytochemical constituents. Food Biosci. 2021, 41, 101030. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Xiang, T.; Sun, B.; Luo, H.; Liu, M.; Chen, Z.; Zhang, S.; Wang, C. Total saponins from Dioscorea septemloba Thunb. reduce serum uric acid levels in rats with hyperuricemia through OATP1A1 up-regulation. J. Huazhong Univ. Sci. Technol. Med. Sci. 2016, 36, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Lim, J.H.; Jeong, H.J.; Seo, E.W. Protective effects of crude mucin and saponin from Dioscorea rhizoma on gastric ulcer induced by alcohol in rats. J. Life Sci. 2014, 24, 1200–1208. [Google Scholar] [CrossRef]
- Zhang, X.; Ito, Y.; Liang, J.; Liu, J.; He, J.; Sun, W. Therapeutic effects of total steroid saponin extracts from the rhizome of Dioscorea zingiberensis C.H.Wright in Freund’s complete adjuvant induced arthritis in rats. Int. Immunopharmacol. 2014, 23, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuniastuti, A.; Iswari, R.S.; Susanti, R. Antioxidant Acitivity in Various Processed Products of Inferior Local Tubers (Dioscorea sp. L.). KnE Life Sci. 2017, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.; Debnath, A.; Chakraborty, K.; Ghosh, S.; Bhattacharjee, A.; Debnath, B. Sex-specific variations in phytochemicals and antimicrobial potentiality of Dioscorea. Future J. Pharm. Sci. 2020, 6, 60. [Google Scholar] [CrossRef]
- Hazrin-Chong, N.H.; Azeem, A.M.; Nik Mat Zin, N.N.I.; Shah Mat Lazim, M.A. Effectiveness of Dioscorea hispida Dennst as antibacterial and antibiofilm agent. Malays. J. Microbiol. 2018, 14, 462–467. [Google Scholar] [CrossRef]
- Miah, M.M.; Das, P.; Ibrahim, Y.; Shajib, M.S.; Rashid, M.A. In vitro antioxidant, antimicrobial, membrane stabilization and thrombolytic activities of Dioscorea hispida Dennst. Eur. J. Integr. Med. 2018, 19, 121–127. [Google Scholar] [CrossRef]
- Feng, J.F.; Tang, Y.N.; Ji, H.; Xiao, Z.G.; Zhu, L.; Yi, T. Biotransformation of Dioscorea nipponica by Rat Intestinal Microflora and Cardioprotective Effects of Diosgenin. Oxidative Med. Cell. Longev. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Dong, M.; Meng, Z.; Kuerban, K.; Qi, F.; Liu, J.; Wei, Y.; Wang, Q.; Jiang, S.; Feng, M.; Ye, L. Diosgenin promotes antitumor immunity and PD-1 antibody efficacy against melanoma by regulating intestinal microbiota. Cell Death Dis. 2018, 9, 1039. [Google Scholar] [CrossRef] [Green Version]
- Min, H.Y.; Jang, H.J.; Park, K.H.; Hyun, S.Y.; Park, S.J.; Kim, J.H.; Son, J.; Kang, S.S.; Lee, H.Y. The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II. Cell Death Dis. 2019, 10, 810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, X.; Yin, L.; Xu, L.; Peng, J. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol. Res. 2018, 137, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Choi, R.C.Y.; Li, J.; Bi, C.W.C.; Ran, W.; Chen, X.; Dong, T.T.X.; Bi, K.; Tsim, K.W.K. Trillin, a steroidal saponin isolated from the rhizomes of Dioscorea nipponica, exerts protective effects against hyperlipidemia and oxidative stress. J. Ethnopharmacol. 2012, 139, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhou, B.; Miao, J.; Li, X.; Jing, S.; Zhang, D.; Yijia Wang, J.; Li, X.; Huang, L.; Gao, W. Multicomponent analysis and activities for evaluation of Dioscorea oppositifolia and Dioscorea hamiltonii. Food Agric. Immunol. 2019, 30, 1148–1161. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.; Vasas, A.; Hohmann, J. Natural phenanthrenes and their biological activity. Phytochemistry 2008, 69, 1084–1110. [Google Scholar] [CrossRef]
- Boudjada, A.; Touil, A.; Bensouici, C.; Bendif, H.; Rhouati, S. Phenanthrene and dihydrophenanthrene derivatives from Dioscorea communis with anticholinesterase, and antioxidant activities. Nat. Prod. Res. 2019, 33, 3278–3282. [Google Scholar] [CrossRef]
- Kim, J.S.; Lim, J.; Han, D.; Gu, M.J.; Oh, J.; Lee, J.S. Anti-inflammatory and antioxidant effects of phenanthrene derivatives isolated from Dioscorea batatas Decne. Free Radic. Biol. Med. 2019, 139, S10–S57. [Google Scholar]
- Padhan, B.; Panda, D. Potential of neglected and underutilized yams (Dioscorea spp.) for improving nutrional security and health Benefits. Front. Pharmacol. 2020, 11, 496. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Das, G.; Shin, H.S.; Patra, J.K. Dioscorea spp. (A Wild Edible Tuber): A Study on Its Ethnopharmacological Potential and Traditional Use by the Local People of Similipal Biosphere Reserve, India. Front. Pharmacol. 2017, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- George, T.T.; Obilana, A.O.; Oyeyinka, S.A. The prospects of African yam bean: Past and future importance. Heliyon 2020, 6, e05458. [Google Scholar] [CrossRef]
- Salehi, B.; Sener, B.; Kilic, M.; Sharifi-Rad, J.; Naz, R.; Yousaf, Z.; Mudau, F.N.; Fokou, P.V.T.; Ezzat, S.M.; El Bishbishy, M.H.; et al. Dioscorea Plants: A Genus Rich in Vital Nutra-pharmaceuticals—A Review. Iran. J. Pharm. Res. 2019, 18, 68–89. [Google Scholar] [PubMed]
- Bhujbal, A.S.; Baokar, S.; Mane, K.; Patil, G.; Patil, R.; Jain, P.; Pandey, A. Review on Pharmacological Activity of Dioscorea floribunda. J. Pharm. Res. Int. 2021, 33, 191–198. [Google Scholar] [CrossRef]
- Semwal, P.; Painuli, S.; Cruz-Martins, N. Dioscorea deltoidea wall. Ex Griseb: A review of traditional uses, bioactive compounds and biological activities. Food Biosci. 2021, 41, 100969. [Google Scholar] [CrossRef]
- Huang, R.; Xie, J.; Yu, Y.; Shen, M. Recent progress in the research of yam mucilage polysaccharides: Isolation, structure and bioactivities. Int. J. Biol. Macromol. 2020, 155, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.; Birch, E.J.; Ding, Y.; Bekhit, A.E. Water-soluble non-starch polysaccharides of root and tuber crops: Extraction, characteristics, properties, bioactivities, and applications. Crit. Rev. Food Sci. Nutr. 2020, 9, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ng, T.B.; Lam, J.K.W.; Wang, S.W.; Lao, L.; Zhang, K.Y.; Sze, S.C.W. Research and Development of Proteins and Peptides with Therapeutic Potential from Yam Tubers. Curr. Prot. Pept. Sci. 2019, 20, 277–284. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Sampaio, S.L.; Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Ferreira, I. Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants 2019, 8, 617. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ren, S.; Xu, F.; Ma, Z.; Liu, X.; Wang, L. Recent Advances in the Pharmacological Activities of Dioscin. BioMed Res. Int. 2019, 2019, 5763602. [Google Scholar] [CrossRef] [Green Version]
- Tóth, B.; Hohmann, J.; Vasas, A. Phenanthrenes: A Promising Group of Plant Secondary Metabolites. J. Nat. Prod. 2018, 81, 661–678. [Google Scholar] [CrossRef]
- Kwon, J.B.; Kim, M.S.; Sohn, H.Y. Evaluation of antimicrobial, antioxidant, and antithrombin activities of the rhizome of various Dioscorea species. Korean J. Food Preserv. 2010, 17, 391–397. [Google Scholar]
- Chaudhury, S.; Habibur Rahaman, C.; Singh, H.; Chaudhuri, K.; Seal, T. Nutritional and Medicinal Importance of Dioscorea glabra R. Baron, a Potent Wild Edible Plant Consumed by the Lodha Tribal Community of West Bengal, India. Curr. Nutr. Food Sci. 2020, 16, 284–295. [Google Scholar] [CrossRef]
- Adedayo, B.C.; Ademiluyi, A.O.; Oboh, G.; Akindahunsi, A.A. Interaction of aqueous extracts of two varieties of Yam tubers (Dioscorea spp.) on some key enzymes linked to type 2 Diabetes in vitro. Int. J. Food Sci. Technol. 2012, 47, 703–709. [Google Scholar] [CrossRef]
- Larief, R.; Dirpan, A. Theresia Purple Yam Flour (Dioscorea alata L.) Processing Effect on Anthocyanin and Antioxidant Capacity in Traditional Cake “Bolu Cukke” Making. IOP Conf. Ser. Earth Environ. Sci. 2018, 207, 012043. [Google Scholar] [CrossRef]
- Ratnaningsih, R.; Richana, N.; Suzuki, S.; Fujii, Y. Effect of soaking treatment on anthocyanin, flavonoid, phenolic content and antioxidant activities of Dioscorea alata flour. Indones. J. Chem. 2018, 18, 656. [Google Scholar] [CrossRef] [Green Version]
- Anisuzzman, M.; Zilani, M.N.H.; Khushi, S.S.; Asaduzzman, M. Antioxidant, antibacterial potential and HPLC analysis of Dioscorea alata Bulb. Indones. J. Pharm. 2016, 27, 9–14. [Google Scholar]
- Chiu, H.W.; Peng, J.C.; Tsai, S.J.; Lui, W.B. Effect of extrusion processing on antioxidant activities of corn extrudates fortified with various Chinese Yams (Dioscorea sp.). Food Bioprocess Technol. 2012, 5, 2462–2473. [Google Scholar] [CrossRef]
- Guo, X.; Sha, X.; Cai, S.; Wang, O.; Ji, B. Antiglycative and antioxidative properties of ethyl acetate fraction of Chinese Purple Yam (Dioscorea alata L.) extracts. Food Sci. Technol. Res. 2015, 21, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.Y.; Tu, Y.X.; Wu, C.T.; Jong, T.T.; Chang, C.M.J. Continuous hot pressurized solvent extraction of 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging compounds from Taiwan Yams (Dioscorea alata). J. Agric. Food Chem. 2004, 52, 1945–1949. [Google Scholar] [CrossRef]
- Kim, M.; Gu, M.J.; Lee, J.G.; Chin, J.; Bae, J.S.; Hahn, D. Quantitative analysis of bioactive phenanthrenes in Dioscorea batatas Decne peel, a discarded biomass from postharvest processing. Antioxidants 2019, 8, 541. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Kim, G.H.; Kim, H.S. Antioxidant activities of various extracts from Korean Yam (Dioscorea batatas DECNE.). J. Korean Appl. Sci. Technol. 2016, 33, 324–332. [Google Scholar] [CrossRef]
- Duan, Y.; Kim, G.H.; Kim, H.S. Determination of bioactive compounds and antioxidant activity of Yam (Dioscorea batatas DECNE.) on thermal treatment. J. Korean Appl. Sci. Technol. 2015, 32, 302–311. [Google Scholar] [CrossRef]
- Duan, Y.; Kim, G.H.; Seong, J.H.; Chung, H.S.; Kim, H.S. Antioxidant activities of n-butanol and ethyl acetate extracts from Yam (Dioscorea batatas DECNE.). J. Korean Appl. Sci. Technol. 2015, 32, 599–606. [Google Scholar] [CrossRef]
- Duan, Y.; Kim, H.S.; Kim, G.H. Evaluation of antioxidative activity of Korean Yam (Dioscorea batatas DECNE.) by n-butanol and ethyl acetate extracts. J. Korean Appl. Sci. Technol. 2015, 32, 312–319. [Google Scholar] [CrossRef]
- Duan, Y.; Kim, G.H.; Kim, H.S. Study on antioxidant activity of thermal treatment Yam (Dioscorea batatas DECN) by n-butanol and ethyl acetate extracts. J. Korean Appl. Sci. Technol. 2015, 32, 631–638. [Google Scholar]
- Duan, Y.; Kim, G.H.; Kim, H.S. Investigation of n-butanol and ethyl acetate Extracts from thermal treatment Yam (Dioscorea batatas DECNE.) for they antioxidant activity. J. Korean Appl. Sci. Technol. 2015, 32, 363–371. [Google Scholar] [CrossRef]
- Odeghe, O.; Adikwu, E.; Ojiego, C. Phytochemical and antioxidant assessments of Dioscorea bulbifera stem tuber. Biomed. Biotechnol. Res. J. 2021, 4, 305–311. [Google Scholar] [CrossRef]
- Chaniad, P.; Tewtrakul, S.; Sudsai, T.; Langyanai, S.; Kaewdana, K. Anti-inflammatory, wound healing and antioxidant potential of compounds from Dioscorea bulbifera L. bulbils. PLoS ONE 2020, 15, e0243632. [Google Scholar] [CrossRef]
- Mainasara, M.M.; Abu Bakar, M.F.; Md Akim, A.; Linatoc, A.C.; Abu Bakar, F.I.; Ranneh, Y.K.H. Secondary Metabolites, Antioxidant, and Antiproliferative Activities of Dioscorea bulbifera Leaf Collected from Endau Rompin, Johor, Malaysia. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Ghosh, S.; Derle, A.; Ahire, M.; More, P.; Jagtap, S.; Phadatare, S.D.; Patil, A.B.; Jabgunde, A.M.; Sharma, G.K.; Shinde, V.S.; et al. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS ONE 2013, 8, e82529. [Google Scholar] [CrossRef] [Green Version]
- Savi, A.; Calegari, G.C.; Santos, V.A.Q.; Pereira, E.A.; Teixeira, S.D. Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera. J. King Saud Univ. Sci. 2020, 32, 636–642. [Google Scholar] [CrossRef]
- Jo, H.M.; Kim, H.Y.; Heo, Y.J.; Song, D.H.; Kim, G.J.; Kim, I.S.; Yoon, J.A.; Chung, K.H.; An, J.H. Quality characteristics and antioxidant activity of Dioscorea bulbifera, under various oligosaccharide pre-soaking condition. Korean J. Food Nutr. 2017, 30, 1176–1183. [Google Scholar]
- Adeniran, A.A.; Sonibare, M.A. In vitro antioxidant activity, brine shrimp lethality and assessment of bioactive constituents of three wild Dioscorea species. Food Meas. 2017, 11, 685–695. [Google Scholar] [CrossRef]
- Adomėnienė, A.; Kazernavičiūtė, R.; Venskutonis, P.R. Vaistinių augalų paieška cukrinio diabeto prevencijai. Health Sci. 2020, 30, 65–68. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, D.; Ma, Y.; Zhang, Y.; Zhao, X. Yellow pigment formation, pigment composition, and quality of fresh-cut yam (Dioscorea opposita) slices. RSC Adv. 2020, 10, 1104–1113. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhao, X.; Ma, Y.; Zhang, Y.; Wang, D. DNA Binding Characteristics and Protective Effects of Yellow Pigment from Freshly Cut Yam (Dioscorea opposita). Molecules 2020, 25, 175. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H. Convergence dietary effects and antioxidant activity of Poria cocos, Dioscorea opposita, Nelumbo nucifera and Euryale ferox. J. Digit. Converg. 2016, 14, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Li, X.; Miao, J.; Jing, S.; Li, X.; Huang, L.; Gao, W. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi. Int. J. Biol. Macromol. 2017, 102, 847–856. [Google Scholar] [CrossRef]
- Luo, D. Identification of structure and antioxidant activity of a fraction of polysaccharide purified from Dioscorea nipponica Makino. Carbohydr. Polym. 2008, 71, 544–549. [Google Scholar] [CrossRef]
- Luo, D. Structural investigation of a polysaccharide (DMB) purified from Dioscorea nipponica Makino. Carbohydr. Polym. 2014, 103, 261–266. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Fan, Y.; Man, S.; Liu, Z.; Gao, W.; Wang, T. Antioxidant and antitumor activities of the extracts from Chinese Yam (Dioscorea opposite Thunb.) Flesh and peel and the effective Compounds. J. Food Sci. 2016, 81, H1553–H1564. [Google Scholar] [CrossRef]
- Mondal, M.; Hossain, M.M.; Das, N.; Rahman, M.A.; Uddin, N.; Hasan, M.R.; Alam, M.J.; Islam, M.N.; Wahed, T.B.; Kundu, S.K. Investigation of bioactivities of methanolic and ethyl acetate extracts of Dioscorea pentaphylla leaf along with its phenolic composition. Food Meas. 2019, 13, 622–633. [Google Scholar] [CrossRef]
- Kumar, S.; Mahanti, P.; Singh, N.R.; Rath, S.K.; Jena, P.K.; Patra, J.K. Antioxidant activity, antibacterial potential and characterization of active fraction of Dioscorea pentaphylla L. tuber extract collected from Similipal Biosphere Reserve, Odisha, India. Braz. J. Pharm. Sci. 2018, 53, e17006. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.C.; Youn, Y.H.; Ko, C.I.; Ha, Y.S.; Lee, I.A. Antioxidant and anti-inflammatory effects of Dioscorea japonica and Chenopodium album. J. Soc. Cosmet. Sci. Korea 2017, 43, 337–347. [Google Scholar]
- Mentha, M. Chromatographic fingerprinting, antioxidant, and anti-inflammatory potential of Dioscorea villosa (wild yam) leaves. Int. J. Green Pharm. 2018, 12, 102–106. [Google Scholar]
- Yang, M.H.; Yoon, K.D.; Chin, Y.W.; Park, J.H.; Kim, J. Phenolic compounds with radical scavenging and cyclooxygenase-2 (COX-2) inhibitory activities from Dioscorea opposita. Bioorg. Med. Chem. 2009, 17, 2689–2694. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N.; Nagashima, T. Antioxidative activity of water extracts from the yam (Dioscorea opposita Thunb.) tuber mucilage tororo. Eur. J. Lipid Sci. Technol. 2006, 108, 526–531. [Google Scholar] [CrossRef]
- Leng, M.S.; Tobit, P.; Demasse, A.M.; Wolf, K.; Gouado, I.; Ndjouenkeu, R.; Schweigert, F.J. Nutritional and anti-oxidant properties of yam (Dioscorea schimperiana) based complementary food formulation. Sci. Afr. 2019, 5, e00132. [Google Scholar] [CrossRef]
- Kim, K.M.; Kang, M.K.; Kim, J.S.; Kim, G.C.; Choi, S.Y. Physicochemical composition and antioxidant activities of Korean Dioscorea species. J. East Asian Soc. Diet. Life 2015, 25, 880–886. [Google Scholar] [CrossRef]
- Kim, H.S.; Duan, Y.; Ryu, J.Y.; Kim, S.W.; Jang, S.H. Chemical Composition of Thermal Treatment Yam (Dioscorea batatas DECNE.). J. Korean Appl. Sci. Technol. 2015, 32, 7–15. [Google Scholar] [CrossRef]
- 85 Nagai, T.; Suzuki, N.; Kai, N.; Tanoue, Y. Functional properties of autolysate and enzymatic hydrolysates from yam tsukuneimo (Dioscorea opposita Thunb.) tuber mucilage tororo: Antioxidative activity and antihypertensive activity. J. Food Sci. Technol. 2014, 51, 3838–3845. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; In, J.; Jang, H.S.; Sohn, H.Y. Evaluation of antimicrobial, antithrombin, and antioxidant activity of Dioscorea batatas Decne. Microbiol. Biotechnol. Lett. 2009, 37, 133–139. [Google Scholar]
- Ahn, S.M.; Jang, H.S.; Kwun, I.S.; Sohn, H.Y. Evaluation of Antimicrobial, Antithrombin, and Antioxidant Activity of Aerial Bulbils of Dioscorea batatas Decne. Microbiol. Biotechnol. Lett. 2009, 37, 266–272. [Google Scholar]
- Chung, Y.C.; Chiang, B.H.; Wei, J.H.; Wang, C.K.; Chen, P.C.; Hsu, C.K. Effects of blanching, drying and extraction processes on the antioxidant activity of yam (Dioscorea alata). Int. J. Food Sci. Technol. 2008, 43, 859–864. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.H.; Bang, K.S. Evaluation of antioxidant capacity and antimutagen activity of bulbil extracts of the Dioscorea japonica Decaisne and Dioscorea batatas Decaisne. Korean J. Plant Res. 2012, 25, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.D.J.L.; Canto, H.K.F.; da Silva, L.H.M.; Rodrigues, A.M.D.C. Characterization and properties of purple yam (Dioscorea trifida) powder obtained by refractance window drying. Dry. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Muñoz, A.M.; Alvadaro-Ortiz, U.C.; Yáñez, J.A. Anthocyanins, polyphenols, antioxidant activity of purple sachapapa (Dioscorea trifida L.) and evaluation of lipid peroxidation in human serum. Rev. Soc. Química Perú 2010, 76, 61–72. [Google Scholar]
- Ochoa, S.; Durango-Zuleta, M.M.; Felipe Osorio-Tobón, J. Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food Bioprod. Process. 2020, 122, 111–123. [Google Scholar] [CrossRef]
- Srivichai, S.; Hongsprabhas, P. Profiling anthocyanins in Thai Purple Yams (Dioscorea alata L.). Int. J. Food Sci. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Chaudhury, S.; Habibur Rahaman, C.; Singh, H.; Chaudhuri, K.; Pillai, B.; Seal, T. Dioscorea alata: A potent wild edible plant consumed by the Lodha Tribal community of West Bengal, India. J. Pharmacogn. Phytochem. 2018, 7, 654–663. [Google Scholar]
- Chen, T.; Hu, S.; Zhang, H.; Guan, Q.; Yang, Y.; Wang, X. Anti-inflammatory effects of Dioscorea alata L. anthocyanins in a TNBS-induced colitis model. Food Funct. 2017, 8, 659–669. [Google Scholar] [CrossRef]
- Bhandari, M.R.; Kawabata, J. Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal. Food Chem. 2004, 88, 163–168. [Google Scholar] [CrossRef]
- Lee, Y.K.; Jung, B.; Chung, S. The Effect of Water-soluble chitosan on enhancing antioxidant activity of Dioscorea quinqueloba Thunb. extract. J. Chitin Chitosan 2015, 20, 196–201. [Google Scholar]
- Lu, F.C.; Lee, C.Y.; Wang, C.L. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. PeerJ 2015, 3, e1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lula, N.; Wirakartakusumah, A.M.; Andarwulan, N.; Purnomo, H.E.; Noda, T.; Ishiguro, K. Chemical Characterization of flour fractions from five Yam (Dioscorea alata) cultivars in Indonesia. J. Eng. Technol. Sci. 2015, 47, 92–103. [Google Scholar]
- Hsu, C.C.; Huang, Y.C.; Yin, M.C.; Lin, S.J. Effect of Yam (Dioscorea alata) compared to Dioscorea japonica) on gastrointestinal function and antioxidant activity in mice. J. Food Sci. 2006, 71, S513–S516. [Google Scholar] [CrossRef]
- Padhan, B.; Nayak, J.K.; Panda, D. Natural antioxidant potential of selected underutilized wild yams (Dioscorea spp.) for health benefit. J. Food Sci. Technol. 2020, 57, 2370–2376. [Google Scholar] [CrossRef]
- Barman, P.; Bhat, K.V.; Geeta, R. Phylogenetic analysis of Indian Dioscorea and comparison of secondary metabolite content with sampling across the tree. Genet. Resour. Crop Evol. 2018, 65, 1003–1012. [Google Scholar] [CrossRef]
- Jimenez-Montero, M.; Silvera, S.S. Nutritional evaluation of air potato (Dioscorea bulbifera L.) grown in Panama. Arch. Latinoam. Nutr. 2017, 67, 62–67. [Google Scholar]
- Alsawalha, M.; Al-Subaie, A.M.; Al-Jindan, R.; Bolla, S.R.; Salahuddin, M.F.; Veeraraghavan, V.P.; Sen, D.; Balakrishna, J.P.; Ravi, P.; Joseph, J.; et al. Dioscorea villosa leaf extract enhances in vitro wound healing and expression of extra cellular matrix factors transforming growth factor-beta 1 and collagen-1 in L929 cell lines. Pharmacogn. Mag. 2019, 15, 483–494. [Google Scholar]
- Zhang, Z.; Wang, X.; Liu, C.; Li, J. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydr. Polym. 2016, 150, 227–231. [Google Scholar] [CrossRef]
- Xia, G.; Liu, W.; Song, J.; Zuo, J.; Zhang, Q.; Xue, C.; Zang, H.; Li, Y. Effective composition extraction and antioxidant activity of Dioscorea nipponica. Int. J. Agric. Biol. 2018, 20, 2251–2256. [Google Scholar]
- Adeniran, A.A.; Sonibare, M.A.; Rajacharya, G.H.; Kumar, S. Assessment of genetic fidelity of Dioscorea bulbifera L. and Dioscorea hirtiflora Benth. and medicinal bioactivity produced from the induced tuberous roots. Plant Cell Tissue Organ Cult. 2018, 132, 343–357. [Google Scholar] [CrossRef]
- Jirakiattikul, Y.; Rithichai, P.; Songsri, O.; Ruangnoo, S.; Itharat, A. In vitro propagation and bioactive compound accumulation in regenerated shoots of Dioscorea birmanica Prain & Burkill. Acta Physiol. Plant. 2016, 38, 249. [Google Scholar]
- Zhi, F.; Yang, T.L.; Wang, Q.; Jiang, B.; Wang, Z.P.; Zhang, J.; Chen, Y.Z. Isolation, structure and activity of a novel water-soluble polysaccharide from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 2019, 133, 1201–1209. [Google Scholar] [CrossRef]
- Wang, T.S.; Lii, C.K.; Chang, J.Y.; Kuo, C.I.; Chen, H.P. Anti-Fenton reaction activity of three taxa of water yam (Dioscorea alata L.). Int. J. Food Sci. Technol. 2007, 42, 1107–1113. [Google Scholar] [CrossRef]
- Ma, F.; Li, X.; Ren, Z.; Särkkä-Tirkkonen, M.; Zhang, Y.; Zhao, D.; Liu, X. Effects of concentrations, temperature, pH and co-solutes on the rheological properties of mucilage from Dioscorea opposita Thunb. and its antioxidant activity. Food Chem. 2021, 360, 130022. [Google Scholar] [CrossRef]
- Shi, G.; Li, F.; Wang, G.; Lei, X.; Guo, T. Antioxidant activity of diosgenin from Dioscorea. Oxid. Commun. 2016, 39, 91–98. [Google Scholar]
- Ramos-Escudero, F.; Santos-Buelga, C.; Pérez-Alonso, J.J.; Yáñez, J.A.; Dueñas, M. HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). Eur. Food Res. Technol. 2010, 230, 745–752. [Google Scholar] [CrossRef]
- Hou, W.C.; Lee, M.H.; Chen, H.J.; Liang, W.L.; Han, C.H.; Liu, Y.W.; Lin, Y.H. Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. J. Agric. Food Chem. 2001, 49, 4956–4960. [Google Scholar] [CrossRef]
- Hou, W.C.; Hsu, F.L.; Lee, M.H. Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Med. 2002, 68, 1072–1076. [Google Scholar] [CrossRef]
- Lee, M.H.; Lin, Y.S.; Lin, Y.H.; Hsu, F.L.; Hou, W.C. The mucilage of yam (Dioscorea batatas Decne) tuber exhibited angiotensin converting enzyme inhibitory activities. Bot. Bull. Acad. Sin. 2003, 44, 267–273. [Google Scholar]
- Nagai, T.; Suzuki, N.; Nagashima, T. Autolysate and enzymatic hydrolysates fro yam (Dioscorea opposita Thunb.) tuber mucilage tororo have antioxidant and angiotensin I-converting enzyme inhibitory activities. J. Food Agric. Environ. 2007, 5, 39–43. [Google Scholar]
- Nagai, T.; Nagashima, T.; Suzuki, N. Purification and Partial Characterization of Major Viscous Protein from Yam (Dioscorea opposita Thunb.) Tuber Mucilage tororo. Int. J. Food Prop. 2007, 10, 515–526. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N.; Tanoue, Y.; Kai, N. Antioxidant and antihypertensive activities of autolysate and enzymatic hydrolysates from yam (Dioscorea opposita Thunb) ichyoimo tubers. J. Food Agric. Environ. 2007, 5, 64–68. [Google Scholar]
- Nagai, T.; Nagashima, T. Functional properties of dioscorin, a soluble viscous protein from Japanese yam (Dioscorea opposita Thunb.) tuber mucilage Tororo. Z. Nat. C 2006, 61, 792–798. [Google Scholar] [CrossRef]
- Myoda, T.; Matsuda, Y.; Suzuli, T.; Nakagawa, T.; Nagai, T.; Nagashima, T. Identification of soluble proteins and interaction with mannan in mucilage of Dioscorea opposita Thunb. (Chinese yam tuber). Food Sci. Technol. Res. 2006, 12, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Liang, H.J.; Cheng, H.C.; Liu, Y.W.; Hou, W.C. Comparisons of in vitro antioxidant activities of storage proteins in tuber of two Dioscorea species. Bot. Stud. 2006, 47, 231–237. [Google Scholar]
- Oh, P.S.; Lim, K.T. Antioxidant activity of Dioscorea batatas Decne glycoprotein. Eur. Food Res. Technol. 2008, 226, 507–515. [Google Scholar] [CrossRef]
- Setyawan, N.; Maninang, J.S.; Suzuki, S.; Fujii, Y. Variation in the physical and functional properties of Yam (Dioscorea spp.) Flour produced by different processing techniques. Foods 2021, 10, 1341. [Google Scholar] [CrossRef]
- Li, X.; Gao, X.; Lu, J.; Mao, X.; Wang, Y.; Feng, D.; Cao, J.; Huang, L.; Gao, W. Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures. Food Sci. Technol. 2019, 101, 130–137. [Google Scholar] [CrossRef]
- Ghosh, S.; Nitnavare, R.; Dewle, A.; Tomar, G.B.; Chippalkatti, R.; More, P.; Kitture, R.; Kale, S.; Bellare, J.; Chopade, B.A. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: Anticancer and antioxidant activities. Int. J. Nanomed. 2015, 10, 7477–7490. [Google Scholar]
- Jaleel, C.A.; Manivannan, P.; Gomathinayagam, M.; Sridharan, R.; Panneerselvam, R. Responses of antioxidant potentials in Dioscorea rotundata Poir. following paclobutrazol drenching. Comptes Rendus Biol. 2007, 330, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Simões, A.D.N.; Freire, C.S.; Silva, E.F.D.; Barros Junior, A.P.; Ferreira-Silva, S.L. Quality of minimaly processed Yam (Dioscorea sp.) stored at two different temperatures. Rev. Caatinga 2016, 29, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Singthonh, J. Functional properties of purple Yam (Dioscorea alata) flou. Suranaree J. Sci. Technol. 2018, 25, 165–176. [Google Scholar]
- Pacheco-Delahaye, E.; Techeira, N.; García, A.D. Elaboration and evaluation of powders for instant drinks based upon extruded flour of yam (Dioscorea alata). Rev. Chil. Nutr. 2008, 35, 452–459. [Google Scholar]
- Tan, F.J.; Liao, F.Y.; Jhan, Y.J.; Liu, D.C. Effect of replacing pork backfat with yams (Dioscorea alata) on quality characteristics of Chinese sausage. J. Food Eng. 2007, 79, 858–863. [Google Scholar] [CrossRef]
- Li, Q.M.; Li, Y.; Zou, J.H.; Guo, S.Y.; Wang, F.; Yu, P.; Su, X.J. Influence of Adding Chinese Yam (Dioscorea opposita Thunb.) Flour on Dough Rheology, Gluten Structure, Baking Performance, and Antioxidant Properties of Bread. Foods 2020, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Roy Chowdhuri, S.; Sarkar, M.P.; Chaudhuri, T.K. Evaluation of anti-inflammatory activity and standardisation of hydro-methanol extract of underground tuber of Dioscorea alata. Pharm. Biol. 2016, 54, 1474–1482. [Google Scholar] [CrossRef] [Green Version]
- Estiasih, T.; Umaro, D.; Harijono. Hypoglycemic effect of crude water soluble polysaccharide extracted from tubers of purple and yellow water yam (Dioscorea alata L.) on alloxan-induced hyperglycemia Wistar rats. Prog. Nutr. 2018, 20, 59–67. [Google Scholar]
- Chen, C.T.; Wang, Z.H.; Hsu, C.C.; Lin, H.H.; Chen, J.H. Taiwanese and Japanese yam (Dioscorea spp.) extracts attenuate doxorubicin-induced cardiotoxicity in mice. J. Food Drug Anal. 2017, 25, 872–880. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.; Hahn, D.; Gu, M.J.; Oh, J.; Lee, J.S.; Kim, J.S. Anti-inflammatory and antioxidant effects of 2, 7-dihydroxy-4, 6-dimethoxy phenanthrene isolated from Dioscorea batatas Decne. Appl. Biol. Chem. 2019, 62, 29. [Google Scholar] [CrossRef]
- Ma, J.; Meng, X.; Liu, Y.; Yin, C.; Zhang, T.; Wang, P.; Park, Y.K.; Jung, H.W. Effects of a rhizome aqueous extract of Dioscorea batatas and its bioactive compound, allantoin in high fat diet and streptozotocin-induced diabetic mice and the regulation of liver, pancreas and skeletal muscle dysfunction. J. Ethnopharmacol. 2020, 259, 112926. [Google Scholar] [CrossRef] [PubMed]
- Byeon, S.; Oh, J.; Lim, J.; Lee, J.; Kim, J.S. Protective effects of Dioscorea batatas glesh and peel extracts against Ethanol-Induced gastric ulcer in mice. Nutrients 2018, 10, E1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Suh, S.J.; Yang, J.H.; Lu, Y.; Kim, S.J.; Kwon, S.; Jo, T.H.; Kim, J.W.; Park, Y.I.; Ahn, G.W.; et al. Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF-κB and ERK1/2 inactivation. Food Chem. Toxicol. 2010, 48, 3073–3079. [Google Scholar] [CrossRef]
- Go, H.K.; Rahman, M.D.; Kim, G.B.; Na, C.S.; Song, C.H.; Kim, J.S.; Kim, S.J.; Kang, H.S. Antidiabetic Effects of Yam (Dioscorea batatas) and its active constituent, allantoin, in a rat Model of streptozotocin-Induced diabetes. Nutrients 2015, 7, 8532–8544. [Google Scholar] [CrossRef]
- Silva do Nascimento, E.; Anaya, K.; de Oliveira, J.M.C.; de Lacerda, J.T.J.G.; Miller, M.E.; Dias, M.; Mendes, M.A.; de Azevedo Lima Pallone, J.; Weis Arns, C.; Juliano, M.A.; et al. Identification of bioactive peptides released from in vitro gastrointestinal digestion of yam proteins (Dioscorea cayennensis). Food Res. Int. 2021, 143, 110286. [Google Scholar] [CrossRef]
- Chiu, C.S.; Deng, J.S.; Chang, H.Y.; Chen, Y.C.; Lee, M.M.; Hou, W.C.; Lee, C.Y.; Huang, S.S.; Huang, G.J. Antioxidant and anti-inflammatory properties of taiwanese yam (Dioscorea japonica Thunb. var. pseudojaponica (Hayata) Yamam.) and its reference compounds. Food Chem. 2013, 141, 1087–1096. [Google Scholar] [CrossRef]
- Hsu, W.H.; Lee, B.H.; Pan, T.M. Protection of Monascus-Fermented Dioscorea against DMBA-Induced Oral Injury in Hamster by Anti-inflammatory and Antioxidative Potentials. J. Agric. Food Chem. 2010, 58, 6715–6720. [Google Scholar] [CrossRef]
- Hwang, J.T.; Park, K.S.; Ryuk, J.A.; Kim, H.J.; Ko, B.S. Development of an Oriental Medicine Discrimination Method through Analysis of Steroidal Saponins in Dioscorea nipponica Makino and Their Anti-Osteosarcoma Effects. Molecules 2019, 24, 4022. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Yu, D.; Zhang, N.; Liu, S. Anti-inflammatory Effect of Total Saponin Fraction from Dioscorea nipponica Makino on Gouty Arthritis and Its Influence on NALP3 Inflammasome. Chin. J. Integr. Med. 2019, 25, 663–670. [Google Scholar] [CrossRef]
- Tang, Y.N.; He, X.C.; Ye, M.; Huang, H.; Chen, H.L.; Peng, W.L.; Zhao, Z.Z.; Yi, T.; Chen, H.B. Cardioprotective effect of total saponins from three medicinal species of Dioscorea against isoprenaline-induced myocardial ischemia. J. Ethnopharmacol. 2015, 175, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Han, B.; Bai, X.; Liu, S.; Xing, X.; Zhao, D.; Liu, M.; Wang, S. The cold-soaking extract of Chinese yam (Dioscorea opposita Thunb.) protects against erectile dysfunction by ameliorating testicular function in hydrocortisone-induced KDS-Yang rats and in oxidatively damaged TM3 cells. J. Ethnopharmacol. 2020, 263, 113223. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, D.; You, J.; Lu, Y.; Sun, J.; Pan, J.; Wang, Y.; Wang, A.; Lan, Y.; Li, Y.; et al. Efficacy of water fraction from Dioscorea cirrhosa on oxidative stress and apoptosis in H9c2 cardiomyocytes induced by H2O2. J. Tradit. Chin. Med. 2021, 41, 51–58. [Google Scholar]
- Hwang, K.A.; Hwang, Y.J.; Kim, H.S.; Hwang, H.J.; Song, J.; Kim, Y.J. Anti-inflammatory effect of aerial bulblets of Dioscorea japonica Thunb extract through inhibition of NF-κB and MAPK signalling pathway in RAW 264.7. J. Chin. Med. Assoc. 2019, 82, 251–255. [Google Scholar] [CrossRef]
- Siddiqiu, M.A.; Ali, Z.; Chittiboyina, A.G.; Khan, I.A. Hepatoprotective effect of steroidal glycosides from Dioscorea villosa on hydrogen peroxide-Induced hepatotoxicity in HepG2 Cells. Front. Pharmacol. 2018, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.J.; Cao, Y.G.; Zeng, M.N.; Zhang, B.B.; Liu, Y.L.; Wang, M.N.; Zhang, Y.L.; Feng, W.S.; Zheng, X.K. Two new norsesquiterpenoids with estrogenic activity from the stems and leaves of Dioscorea oppositifolia L. Nat. Prod. Res. 2019, 35, 3018–3025. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, X.; Ren, X.; Qin, Z. Chemical composition and antioxidant activity of phenolic compounds from Dioscorea (Yam) leaves. Pak. J. Pharm. Sci. 2018, 31, 1031–1038. [Google Scholar]
- Zhou, J.; Xi, Y.; Zhang, J.; Tang, J.; Zhou, X.; Chen, J.; Nie, C.; Zhu, Z.; Ma, B. Protective effect of Dioscorea zingiberensis ethanol extract on the disruption of blood–testes barrier in high-fat diet/streptozotocin-induced diabetic mice by upregulating ZO-1 and Nrf2. Andrologia 2020, 52, e13508. [Google Scholar] [CrossRef]
- Fan, Y.; He, Q.; Luo, A.; Wang, M.; Luo, A. Characterization and antihyperglycemic activity of a polysaccharide from Dioscorea opposita Thunb roots. Int. J. Mol. Sci. 2015, 16, 6391–6401. [Google Scholar] [CrossRef] [Green Version]
- Poon, T.Y.C.; Ong, K.L.; Cheung, B.M.Y. Review of the effects of the traditional Chinese medicine Rehmannia Six Formula on diabetes mellitus and its complications. J. Diabetes 2011, 3, 184–200. [Google Scholar] [CrossRef]
- Lim, J.S.; Oh, J.; Byeon, S.; Lee, J.S.; Kim, J.S. Protective Effect of Dioscorea batatas peel extract against intestinal inflammation. J. Med. Food 2018, 21, 1204–1217. [Google Scholar] [CrossRef]
- Seo, E.W.; Lim, J.H.; Park, Y.M. Effect of Dioscorea rhizoma on gastritis by acute gastric ulcer in rats. Korean J. Plant Res. 2015, 28, 1–8. [Google Scholar]
- Son, I.S.; Lee, J.S.; Lee, J.Y.; Kwon, C.S. Antioxidant and anti-inflammatory effects of yam (Dioscorea batatas Decne.) on Azoxymethane-induced colonic Aberrant Crypt Foci in F344 rats. Prev. Nutr. Food Sci. 2014, 19, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Li, T.; Wang, L.; Su, Y.; Xian, C.J. Dioscorea bulbifera polysaccharide and cyclophosphamide combination enhances anti-cervical cancer effect and attenuates immunosuppression and oxidative stress in mice. Sci. Rep. 2016, 5, 19185. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, K.S.; Vasanthi, R.H.; Rajamanickam, R.G. Flavonoid Rich Fraction of Dioscorea bulbifera Linn. (Yam) Enhances Mitochondrial Enzymes and Antioxidant Status, Thereby Protects Heart from Isoproterenol Induced Myocardial Infarction. Curr. Pharm. Biotechnol. 2010, 11, 887–894. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, J.; Liu, J.; Zhao, Y.; Gao, J.; Sun, W.; Ito, Y. Quality control and identification of steroid saponins from Dioscorea zingiberensis C. H. Wright by fingerprint with HPLC-ELSD and HPLC-ESI-Quadrupole/Time-of-fight tandem mass spectrometry. J. Pharm. Biomed. Anal. 2014, 1, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zheng, L.; Yin, L.; Xu, L.; Qi, Y.; Han, X.; Xu, Y.; Liu, K.; Peng, J. Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. Int. Immunopharmacol. 2014, 2, 233–244. [Google Scholar] [CrossRef]
- Amat, N.; Amat, R.; Abdureyim, S.; Hoxur, P.; Osman, Z.; Mamut, D.; Kijjoa, A. Aqueous extract of Dioscorea opposita Thunb. normalizes the hypertension in 2K1C hypertensive rats. BMC Complement. Altern. Med. 2014, 14, 36. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ji, L.; Liu, H.; Wang, Z. Study of the hepatotoxicity induced by Dioscorea bulbifera L. rhizome in mice. Biosci. Trends 2010, 4, 79–85. [Google Scholar]
- Chiu, C.S.; Deng, J.S.; Hsieh, M.T.; Fan, M.J.; Lee, M.M.; Chueh, F.S.; Han, C.K.; Lin, Y.C.; Peng, W.H. Yam (Dioscorea pseudojaponica Yamamoto) ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. Am. J. Chin. Med. 2009, 37, 889–902. [Google Scholar] [CrossRef]
- Son, I.S.; Kim, J.H.; Sohn, H.Y.; Son, K.H.; Kim, J.S.; Kwon, C.S. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of Yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci. Biotechnol. Biochem. 2007, 71, 3063–3071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.C.; Yu, Y.M.; Wu, C.H.; Tseng, Y.H.; Wu, K.Y. Reduction of oxidative stress and atherosclerosis in hyperlipidemic rabbits by Dioscorea rhizome. Can. J. Physiol. Pharmacol. 2005, 83, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, F.; Wang, X.; Chen, W.; Meng, X. Transcriptomic responses to yam (Dioscorea oppositifolia L.) extract dietary supplementation in rainbow trout (Oncorhynchus mykiss) liver. Aquac. Res. 2020, 51, 932–945. [Google Scholar] [CrossRef]
- Szakiel, A.; Grabarczyk, M.; Pączkowski, C.; Mieczkowski, A. Comparison of the profiles of non-glycosylated triterpenoids from leaves of plants of selected species of genus Dioscorea. Phytochem. Lett. 2017, 20, 350–355. [Google Scholar] [CrossRef]
- Yang, G.Y.; Song, J.N.; Chang, Y.Q.; Wang, L.; Zheng, Y.G.; Zhang, D.; Guo, L. Natural deep eutectic solvents for the extraction of bioactive steroidal saponins from Dioscoreae nipponicae rhizoma. Molecules 2021, 26, 2079. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, X.; Li, X.; Dai, D.; Xu, X.; Ge, X.; Li, Y.; Yang, T. Organ- and Age-Specific Differences of Dioscorea polystachya Compounds Measured by UPLC-QTOF/MS. Chem. Biodiver. 2021, 18, e2000856. [Google Scholar] [CrossRef]
- He, T.; Liu, Y.; Xiong, R.F.; Li, X.Y.; Wang, S.F.; Cheng, C.R. A new phenanthropyran and a new biphenanthrene from the rhizomes of Dioscorea septemloba and their antioxidant activities. Nat. Prod. Res. 2019, 34, 2202–2207. [Google Scholar] [CrossRef]
- Liu, H.; Tsim, K.W.K.; Chou, G.X.; Wang, J.M.; Ji, L.L.; Wang, Z.T. Phenolic Compounds from the Rhizomes of Dioscorea bulbifera. Chem. Biodivers. 2011, 8, 2110–2116. [Google Scholar] [CrossRef]
- Ma, C.; Wang, W.; Chen, Y.Y.; Liu, R.N.; Wang, R.F.; Du, L.J. Neuroprotective and Antioxidant Activity of Compounds from the Aerial Parts of Dioscorea opposita. J. Nat. Prod. 2005, 68, 1259–1261. [Google Scholar] [CrossRef]
- Itharat, A.; Plubrukan, A.; Kaewpradub, N.; Chuchom, T.; Ratanasuwan, P.; Houghton, P.J. Selective cytotoxicity and antioxidant effects of compounds from Dioscorea membranacea rhizomes. Nat. Prod. Commun. 2007, 2, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Z.; Xu, L.; Shi, W.; Sun, Q.; Ding, C.; Zheng, H.; Wang, F. Dioscorea saponin transforms the structure of truffle exo-polysaccharide and enhances its antioxidant activity. LWT 2020, 127, 109417. [Google Scholar] [CrossRef]
- Lasekan, O.; Teoh, L.S. Contribution of aroma compounds to the antioxidant properties of roasted white yam (Dioscorea rotundata). BMC Chem. 2019, 13, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search Words | WoS | Science Direct | PubMed | |||
---|---|---|---|---|---|---|
Total | Review | Total | Review | Total | Review | |
Dioscorea (topic) | 4779 | 218 | 5171 | 553 | 1665 | 61 |
Dioscorea (title) | 2152 | 24 | 508 | 2 | 937 | 16 |
Dioscorea + antioxidant (topic + topic) | 509 | 26 | 257 | 41 | 203 | 12 |
Dioscorea + antioxidant (title + topic) | 237 | 7 | 109 | 2 | 108 | 1 |
Dioscorea + antioxidant (title + title) | 73 | 1 | na * | na | 0 | 0 |
Species: Plant Part | Solvent, Analyzed Product | Antioxidant Characteristics | Ref. |
---|---|---|---|
D. alata (2)/D. bulbifera/D. batatas/D. nipponica: rhizome | MeOH-E | DPPH• (IC50, µg/mL): 142.30 ± 2.58 and 486.43 ± 8.45/421.70 ± 17.24/432.66 ± 8.07 and 403.16 ± 14.59/371.64 ± 12.59 (AA, 10.77 ± 0.13; α-Toc, 40.24 ± 6.98; BHT, 11.92 ± 10.67) | [45] |
D. alata: dried tubers | EtOH (80%)-E | DPPH• (IC50, mg/gm dw): 0.603 ± 0.010 ABTS•+ (IC50, mg/gm dw): 0.136 ± 0.001 | [46] |
D. alata: flour/paste | H2O 1:10 (w/v) | DPPH• (IC50, mg/mL): 18.52 ± 2.1/17.86 ± 0.9 ABTS•+ (mmol TE/100 g): 1.04 ± 0.00/1.15 ± 0.01 Fe3+ RP (mmol AAE/100 g): 0.96 ± 0.06/1.18 ± 0.10 •OH (%): 49.37 ± 1.52/53.88 ± 4.59 Fe2+ chelating (%): 11.13 ± 2.77/18.10 ± 1.38 | [47] |
D. alata: purple yam | Effect of processing | DPPH• (%): 79.08 (raw), 61.75 (blanched), 40.75 (washed), 32.16 (dried), 30.01 (flour) | [48] |
D. alata: flour of tubers | H2O + AcA (5%)-E | DPPH• (EC50, mg/mL): 2.55 to 8.70, depending on origin and treatment | [49] |
D. alata: bulb | MeOH-E | DPPH• (IC50, μg/mL): 14.68 (AA 24.95) Fe3+ RP (max absorption at 1 mg/mL): 1.317; BHT 1.472 | [50] |
D. alata (2 var); D. doryophora; commercial | Yam flour | ORAC (μmol TE/g): Tai-nung, 119.34; Ta-shan, 65.42 Hang-chun 60.63 103.17 | [51] |
D. alata: dried tubers of Chinese purple yam | EtOH (80%)-E: flesh/peel | DPPH• (IC50, µg de/mL): 183.4 ± 5.3/47.7 ± 2.7; FRAP (mg FeSO4·7H2O/g de): 86.5 ± 1.6/144.5 ± 8.5 ABTS•+ (mg TE/g de): 108.1 ± 2.8/357.7 ± 8.4 •O2− (IC50, μg de/mL): 457.5 ± 20.8/162.2 ± 9.8 ChelA (%): 24.3 ± 1.6/21.4 ± 0.2 | [52] |
EA fr: flesh/peel | DPPH•: 13.9 ± 1.1/8.5 ± 0.2; FRAP: 630.1 ± 19.4/534.4 ± 35.3 ABTS•+: 1326.1 ± 17.3/1578.1 ± 15.5; •O2−: 78.2 ± 1.2/30.3 ± 0.3 ChelA: 15.1 ± 1.1/8.5 ± 1.0 | ||
BuOH fr: flesh/peel | DPPH•: 245.1 ± 32.1/43.8 ± 3.3; FRAP: 83.9 ± 5.3/162.1 ± 3.0; ABTS•+: 111.8 ± 5.5/448.4 ± 9.0; •O2−: 333.2 ± 10.6/147.9 ± 4.1 ChelA: 0.0 ± 0.1/34.3 ± 3.2 | ||
HX fr: flesh/peel | DPPH•: 632.0 ± 26.9/55.0 ± 0.9; FRAP: 42.3 ± 1.2/97.3 ± 11.2; ABTS•+: 39.8 ± 1.6/242.3 ± 14.4; •O2−: 1387.5 ± 110.3/237.9 ± 12.2; ChelA: 32.0 ± 2.2/34.1 ± 1.2 | ||
Remaining H2O fr: flesh/peel | DPPH•: 1532.7 ± 123/225.1 ± 12.9; FRAP: 8.5 ± 0.5/29.1 ± 1.7; ABTS•+: 12.2 ± 0.3/74.0 ± 2.9; •O2−: 874.5 ± 18.2/461.1 ± 14.1 ChelA: 50.4 ± 5.1/29.1 ± 0.6 | ||
D. alata: tubers (3 cultivars from Taiwan) | Hot pressurized EtOH-E: flesh/peel | DPPH• (EC50, µg/mL): ND/86.6–305.4 | [53] |
fr of HX/CF/EA/BuOH/H2O | Flesh: 328–2360/144.6–549.4/112.8–343.6/288.1–1526/ND Peel: 133.0–932.7/45.8–136.6/14.5–38.8/67.2–678.3/ND | ||
D. batatas: tubers, 3 purified phenanthrenes | EtOH (95%)-E flesh/peel | DPPH• (IC50, mg/mL): 7.68/0.944 ABTS•+ (IC50, mg/mL): 3.43/0.771 | [54] |
2,7-dOH-4,6-dMetOP/6,7-dOH -2,4-dMetOP/6-OH-2,4,7-tMetOP | DPPH• (IC50, mg/mL): 0.0645/0.154/0.566 ABTS•+ (IC50, mg/mL): 0.0482/0.153/0.297 | ||
D. batatas: dried and smashed into raw yam meals | EtOH (70%)/MeOH (70%)/CF: MeOH (2:1) | DPPH• (IC50, mg/mL): 1.22 ± 0.03/1.34 ± 0.02/0.71 ± 0.00 ABTS•+ (IC50, mg/mL): 2.08 ± 0.20/2.24 ± 0.10/1.15 ± 0.05 FRAP (μM Fe2+ at 1.0 mg/mL): 108.3 ± 0.0/91.67 ± 0.48/220.6 ± 0.7 | [55] |
EtOH (70%)/MeOH (70%)/CF: MeOH (2:1) | Fe2+ chelating: 0.12 ± 0.02/0.09 ± 0.01/0.97 ± 0.03 NO•: 0.46 ± 0.02/0.45 ± 0.00/0.55 ± 0.02 β-carotene bleaching: 0.15 ± 0.04/0.07 ± 0.01/0.14 ± 0.01 LPI: 0.50 ± 0.01/0.58 ± 0.00/0.05 ± 0.01(IC50, mg/mL for all) | [56] | |
D. batatas: raw yam | BuOH/EA | ABTS•+ (IC50, mg/mL): 0.70 ± 0.01/0.45 ± 0.01 DPPH• (IC50, mg/mL): 0.50 ± 0.00/0.34 ± 0.01; FRAP (μM Fe2+) ~347/~560 at 1 mg/mL | [57] |
D. batatas: raw yam | BuOH/EA | Fe2+ chelating: 0.64 ± 0.01/0.70 ± 0.01 NO•: 0.53 ± 0.01/0.26 ± 0.03; NO2 scavenging: 1.92 ± 0.03/3.92 ± 1.00 β-carotene bleaching: 0.08 ± 0.01/0.05 ± 0.01 LPI: 0.02 ± 0.01/0.01 ± 0.00 (IC50, mg/mL for all assays) | [58] |
D. batatas: thermally treated yam | BuOH/EA | ABTS•+ (IC50, mg/mL) 1.31 ± 0.05/0.98 ± 0.02 DPPH• (IC50, mg/mL) 0.70 ± 0.00/0.74 ± 0.01 FRAP (μM Fe2+): 237.86 ± 4.07/244.05 ± 9.37 | [59] |
D. batatas: tubers (thermally treated yam) | BuOH/EA | Fe2+ chelating: 0.11 ± 0.02/0.81 ± 0.01 •NO: 0.73 ± 0.01/0.45 ± 0.02 NO2 scavenging: 3.78 ± 1.24/3.87 ± 0.40 β-carotene bleaching: 0.11 ± 0.01/0.11 ± 0.00 LPI: 0.02 ± 0.01/0.05 ± 0.01 (IC50, mg/mL for all assays) | [60] |
D. birmanica: freeze-dried rhizomes | EtOH (95%) extract | (EC50, μg/mL) DPPH•, 8.53 ± 1.32; ABTS•+, 21.56 ± 1.72; •O2−, 50.91 ± 0.39; •NO, 26.93 ± 4.79; LPI: 33.37 ± 2.88. FRAP (mg Fe2+ eq/g extract): 406.96 ± 11.33 Fe2+ chelating (EC50, mg/mL): 1.06 ± 0.03 | [16] |
D. bulbifera: tuber | MeOH (80%) | DPPH• (IC50, μg/mL): 261.09; AA, 10.65; •O2−, 2089.3; Q, 17.01 | [61] |
D. bulbifera: bulbils | EtOH/H2O crude extracts | DPPH• (IC50, μM): 34.14 ± 0.68/13.20 ± 0.77 •OH (IC50, μM): 79.00 ± 0.78/>100 | [62] |
CF/EA/H2O fr of EtOH | DPPH•: 13.35 ± 0.37/14.00 ± 0.36/18.83 ± 0.46 •OH: >100/37.04 ± 0.50/39.31 ± 0.42 | ||
D. bulbifera: leaves | MeOH/EA/HX extracts | DPPH• (%): 79.0 ± 0.31/23.2 ± 0.05/11.5 ± 0.31 ABTS•+ (mg AAE/g): 65.6 ± 0.35/59.5 ± 0.10/14.9 ± 0.05 FRAP (mM/Fe2+g dw): 31.34 ± 2.06/10.98 ± 0.64/9.50 ± 0.48 | [63] |
D. bulbifera: bulb | PE/EA/MeOH (sequentially)/EtOH (70%) | DPPH• (%): 61.82 ± 1.55/82.79 ± 1.24/76.11 ± 1.26/80.64 ± 1.24 •O−2 (%): 26.88 ± 1.28/57.60 ± 0.81/59.75 ± 0.98/54.76 ± 1.20 O2− (%): 28.30 ± 0.36/59.24 ± 1.44/59.65 ± 1.41/57.34 ± 1.41 •NO (%): 20.57 ± 0.57/54.55 ± 0.21/57.59 ± 0.64/49.85 ± 0.16 •OH (%): 44.51 ± 0.49/66.67 ± 0.73/76.11 ± 1.26/64.23 ± 1.25 | [64] |
D. bulbifera: tubers | Pre-purified/crude polysaccharide | DPPH• (mg IE/g): 0.28 ± 0.01/0.94 ± 0.02 ABTS•+ (mg TE/g): 623.33 ± 4.71/165.00 ± 2.36 FRAP (mM Fe2+/g): 0.175 ± 0.001/1.056 ± 0.001 | [65] |
D. bulbifera: tubers | Pre-soaking in 0–10% oligosaccharide | DPPH• (0.1 mL): ~17–27% ABTS•+ (0.1 mL): ~23–45% (determined from figure) | [66] |
D. hirtiflora: tubers | Successively DCM/EA/MeOH | DPPH• (IC50, μg/mL): 49.7 ± 0.97/11.9 ± 0.85/11.8 ± 0.23 | [67] |
D. dumetorum | 89.0 ± 5.10/103.2 ± 6.9/137 ± 5.90 | ||
D. bulbifera (mauve) | 46.7 ± 1.57/14.6 ± 0.90/29.9 ± 0.68 | ||
D. bulbifera (yellow) | 57.7 ± 1.32/64.1 ± 0.89/68.6 ± 8.50 (AA, 6.90; GA, 8.60) | ||
D. caucasica: freeze-dried leaves | EtOH (70%) | DPPH• (mg TE/g edw): 279 ± 4 ABTS•+ (mg TE/g edw): 880 ± 10 | [68] |
D. communis: rhizome | DE/EA crude extracts | DPPH•: 8.7 ± 0.9/40.1 ± 0.2; ABTS•+, 7.6 ± 0.0/11.6 ± 0.0; FRAP, 44.8 ± 3.6/79.0 ± 0.0; CUPRAC, 10.01 ± 0.2/20.8 ± 0.5 (all IC50, µg/mL) | [31] |
3 purified phenanthrenes | DPPH•, <200/61.2 ± 1.1/6.0 ± 0.2; ABTS•+, <200/19.60 ± 0.0/2.4 ± 0.1; FRAP, <50/<50/9.9 ± 1.0; CUPRAC, <200/194.0 ± 0/15.0 ± 0.5 (all IC50, µg/mL) | ||
D. opposita: fresh-cut yam | H2O/MeOH/EA-E | ORAC (µmol TE/g): ~33/63/48 (white); ~29/96/73 (yellow) DPPH• (mmol TE/g): ~11/10/8.5 (white); ~9/15/8.5 (yellow) (determined from the figures) | [69] |
D. opposita: purified yellow pigment | MeOH-Amberlite XAD-7-Sep-Pak C18 | •OH scavenging (IC50 mg/mL): 0.098 ± 0.032 (AA, 1.21 ± 0.0) | [70] |
D. hamiltonii: herb | MeOH-E | Fe3+ RP (mg AAE/g): 3.30 at 0.5 g/mL | [29] |
D. opposita: herb | MeOH-E | Fe3+ RP (mg AAE/g): 4.71 at 0.5 g/mL | [29] |
D. opposita: herbal medicine product | EtOH (70%)-E 5 g/50 mL | DPPH• (%, 0.5 mL): 43.2 ± 2.35; ABTS•+ (%, 20 μL): 40.01 ± 3.0; SOD (%, 0.2 mL): 39.97 ± 8.87 | [71] |
D. hemsleyi: rhizome | Cold/warm/hot H2O extracted polysaccharides | DPPH• (IC50, mg/mL): 4.56 ± 0.15/6.95 ± 0.13/8.85 ± 0.16 Fe3+ RP (mg AAE/g): 42.98 ± 0.79/31.78 ± 0.35/25.64 ± 0.24 FRAP (mg AAE/g): 13.88 ± 0.54/8.91 ± 0.18/5.70 ± 0.05 | [72] |
D. nipponica: rhizome | MeOH-E | DPPH• (µg/mL): 371.64 ± 12.30 | [45] |
D. nipponica: rhizome | H2O-soluble polysaccharide | •OH scavenging (%): 3.35–43.73 at 0.25–4 mg •O2− (%): 27.5–35.52 at 0.25 mg and 2 mg | [73,74] |
D. nipponica: leaves | EtOH (70%)-E | (mg TE/g edw) DPPH•: 415 ± 9; ABTS•+: 659 ± 4 | [68] |
D. opposita: rhizome, flesh/peel | Hot H2O-E | DPPH• (IC50, μg/mL): 1008.62 ± 5.96/374.85 ± 6.78 •OH (IC50, μg/mL): 1267.04 ± 5.13/744.25 ± 3.46 | [75] |
EtOH (80%)-E | DPPH• (IC50, μg/mL): 897.14 ± 4.73/415.74 ± 3.79 •OH (IC50, μg/mL): 1155.00 ± 9.64/845.21 ± 14.66 | ||
D pentaphylla: leaves | EA (80%)/MeOH | DPPH• (IC50, μg/mL): 135.12 ± 0.95/85.61 ± 0.64 •NO (IC50, µg/mL): 195.78 ± 0.29/68.13 ± 0.26 | [76] |
D pentaphylla: tubers | MeOH/Ac crude extracts | DPPH• (EC50, μg/mL): 82.07 ± 0.08/89.41 ± 0.39 Metal chelating (EC50, μg/mL): 81.47 ± 0.36/86.52 ± 0.55 | [77] |
D. japonica: tubers | EtOH (70%) | DPPH•: at 0.1–10 mg/mL from 18.01 to 89.64% | [78] |
D. villosa: leaves | H2O/MeOH-E | DPPH• (IC50 μg edw/mL): 21.36/40.24 | [79] |
D. rotundata: flour/paste | H2O 1:10 (w/v) | DPPH• (IC50, mg/mL): 19.26 ± 2.4/19.56 ± 1.5 ABTS•+ (mmol TE/100 g): 0.79 ± 0.00/1.31 ± 0.08 Fe3+ RP (mmol AAE/100 g): 0.93 ± 0.58/1.45 ± 0.47 •OH (%): 56.71 ± 1.51/63.72 ± 2.31 Fe2+ chelating (%): 8.33 ± 2.78/11.11 ± 5.56 | [47] |
D. opposita: rhizomes | 18 compounds from MeOH-E | DPPH• (EC50, µg/mL): 12.3 ± 0.2->100 (AA = 19.2) •O2− (EC50, µg/mL): 38.8 ± 1.3->100 (AA = 16.7) | [80] |
D. opposita: tuber mucilage | H2O-E | (%) DPPH• 38.2 ± 3.14/•O2−, 84.1 ± 6.57/•OH, 79.4 ± 6.42; 1 mM AA: 94.7 ± 3.21/89.9 ± 5.31/16.1 ± 0.64 | [81] |
D. schimperiana | MeOH (60%) | ABTS•+ (MTE/100 gMF): 0.153 (yellow); 0.218 (with red dot); 0.151 (red fleshed) | [82] |
D. bulbifera | EtOH (70%) | DPPH• (%): 64.81 ± 2.80; ABTS (%): 72.44 ± 5.28 | [83] |
D. polystachya | DPPH• (%): 77.09 ± 0.00; ABTS (%): 99.89 ± 1.60 | ||
D. batatas | DPPH• (%): 75.74 ± 0.94; ABTS (%): 83.66 ± 9.03 | ||
D. quinqueloba | DPPH• (%): 84.46 ± 0.41; ABTS (%): 95.56 ± 0.96 | ||
D. batatas: thermally treated yam | MeOH (70%)/EtOH (70%)/CF: MeOH (2:1) | DPPH• (IC50, mg/mL): 0.56/0.52/0.43 ABTS•+ (IC50, mg/mL): 1.28/1.05/0.60 | [84] |
D. opposita: tuber mucilage | Autolysis/hydrolysis (pepsin/trypsin/papain) | •O2- (all in % at 100 mg/mL): 60.2 ± 4.01/82.2 ± 5.95 (p)/56.0 ± 4.36 (t)/98.5 ± 3.54 (p)/52.6 ± 4.18 •OH: 90.4 ± 5.25/91.2 ± 5.86 (p)/91.2 ± 5.50 (t)/91.6 ± 5.92 (p)/67.6 ± 4.34 DPPH•: 75.2 ± 4.77/61.7 ± 4.03 (p)/87.1 ± 5.04 (t)/70.2 ± 4.89 (p)/87.6 ± 2.75 (all in mmol α-Toc) | [85] |
D. batatas: yam | MeOH-E and fractions/HX/EA/BuOH/H2O | DPPH• (IC50, µg/mL): 602.2 ± 71.92/510.6 ± 25.02/80.5 ± 12.37/263.0 ± 56.47/>1000 | [86] |
Arial bulbils | MeOH-E and fractions/HX/EA/BuOH/H2O | DPPH• (IC50, µg/mL): 376.3 ± 32.18/180.9 ± 24.77/38.1 ± 5.82/161.4 ± 32.14/>1000 AA: 15.2 ± 2.96; BHT 18.6 ± 4.05; VitE 35.6 ± 5.12 | [87] |
D. alata: yam | EtOH (50%)/hot H2O/H2O | DPPH• (mg α-Toc eq/g): 4.14 ± 0.01/3.71 ± 0.03/3.37 ± 0.04 (peel); 0.73 ± 0.07/0.72 ± 0.03/0.22 ± 0.03 (flesh) Fe3+ RP (mg GAE/g): 41.3 ± 0.8/28.7 ± 0.4/30.6 ± 0.4 (peel); 0.58 ± 0.00/0.83 ± 0.02/0.86 ± 0.01 (flesh) | [88] |
D. japonica: bulbil | MeOH (80%)-E: CF/EA/BuOH/H2O Fr/AA | DPPH• (µg): 200.8 ± 7.9: 38.8 ± 3.6/14.8 ± 0.6/75.4 ± 1.6/>1000/3.3 ABTS•+ (mg): 2.3 ± 0.2: 0.5 ± 0.02/0.13 ± 0.02/0.93 ± 0.1/9.4 ± 0.5/1.2 µg | [89] |
D. batatas: bulbil | DPPH• (µg): 84.0 ± 2.6: 23.6 ± 2.0/9.2 ± 0.2/27.6 ± 0.8/>1000/3.3 ABTS•+ (mg): 0.9 ± 0.04: 0.3 ± 0.04/0.09 ± 0.04/0.42 ± 0.04/7.6 ± 0.4/1.2 µg | ||
D. trifida: dried tubers | ABTS•+ (µmol TE/100 g): 131.14 ± 5.49 to 174.52 ± 0.78 (depending on drying method) | [90] | |
D. trifida: tubers | (IC50, mg/mL) DPPH•: 7.44; ABTS•+: 0.54; •O2−: 13.67 | [91] |
Species: Plant Part | Solvents | Characteritics | Ref. |
---|---|---|---|
D. alata: tubers | MeOH | TPC: male 12.21 ± 0.82; female: 17.53 ± 1.30 TFC: male 14.80 ± 0.69; female 9.17 ± 0.3 | [21] |
EtOH (20%) fr. | TS (%): male: 0.48 ± 0.06; female: 0.93 ± 0.17 | ||
D. alata: soaked flour of tubers | H2O + AcA (5%): in H2O/NaHSO3 0.2%)/AA (0.1%) | TPC: 11.6 ± 0.31/12.7 ± 0.67/11.5 ± 0.13 TFC: 7.0 ± 0.14/7.4 ± 0.21/7.3 ± 0.23 TAC (mg CGE/100 g): 46.7 ± 3.35/74.3 ± 3.83/50.0 ± 2.26 | [49] |
D. alata: tubers | H2O | TPC: 1.00–3.85; TFC: 0.60–1.60; TAC: 0.10–0.90 | [93] |
D. alata: yam | EtOH (50%)/hot H2O/H2O | TPC (peel): 11.14 ± 0.30/6.09 ± 0.08/6.60 ± 0.13 TPC (flesh): 0.25 ± 0.01/0.40 ± 0.02/0.24 ± 0.00 | [88] |
D. alata: tubers | EtOH (80%) | TPC (mg GAE/g edw): 63.85 ± 1.83; TFC (mg RE/g edw): 8.21 ± 0.02; TFL (mg QE/g edw): 17.23 ± 0.19 | [94] |
D. alata: purple yam | Effect of processing | TAC (mg/100 g): 38.12 (raw), 36.73 (blanched), 32.63 (washed), 29.29 (dried), 27.27 (flour) | [48] |
D. glabra: tubers | TPC (mg/100 g): 335.64 ± 3.92; TFC: 65.73; C: 23.49 ± 0.0413; H2O-soluble B: 0.036 to 4.159 | [46] | |
D. alata: tubers | MeOH (50%) + 0.1% HCl | TAC: 3.32 mg/g | [95] |
D. alata: tubers | MeOH (80%) | TPC (mg GAE/g edw): flesh 48.3 ± 4.1; peel 194.8 ± 14.6 | [52] |
EA fr | TPC (mg GAE/g edw): flesh 479.5 ± 33.1; peel 695.1 ± 35.1 | ||
D. alata: tubers | MeOH | TPC (mg GAE/g edw): 222.99; TFC (mg QE/g edw): 98.95 | [50] |
D. batatas: tubers; thermally treated yam | EtOH (70%)/MeOH (70%)/ CHCl3:MeOH (2:1) | TPC (mg CE/g edw): 43.38 ± 0.66/37.62 ± 0.88/67.17 ± 0.12 | [55] |
D. batatas: thermally treated | TS (mg/g dw): 42.52 ± 1.88 TT (mg CE/g dw): 14.95 ± 0.98 | [56] | |
D. batatas: raw yam | BuOH/EA | TPC (mg CE/g edw): 78.68 ± 0.58/111.88 ± 0.66 | [57] |
D. batatas: tubers thermally treated | BuOH/EA | TPC (mg GE/g): 53.83 ± 1.00/51.63 ± 2.63 | [59] |
D. batatas: aerial bulbils | MeOH-E: and fr HX/EA/BuOH/H2O | TPC (mg/g): 60.60: 12.63/27.48/17.18/4.03 TFC (mg/g): 16.4: 32.1/70.1/34.2/1.38 | [87] |
D. batatas: thermally treated yam | MeOH (70%)/EtOH (70%)/CF:MeOH (2:1) | TPC: 63.63 ± 0.33/69.47 ± 1.00/97.49 ± 0.66 | [84] |
D. batatas: rhizome | MeOH: Jang-Ma/Dang-Ma | TPC (mg/g): 34.86 ± 0.15/45.84 ± 0.34; TFC (mg/g): 6.67 ± 0.22/7.33 ± 0.14; Total sugar (mg/g): 281.96 ± 0.08/140.86 ± 0.21 | [45] |
D. alata: rhizome | MeOH: Dungkun-Daema/Jasak-Ma | TPC (mg/g): 87.05 ± 0.0.11/27.98 ± 0.25; TFC (mg/g): 12.67 ± 0.34/7.75 ± 0.23; Total sugar (mg/g): 184.98 ± 0.14/107.61 ± 0.32 | [45] |
D. batatas: yam | MeOH-E: and fr HX/EA/BuOH/H2O | TPC (mg/g): 5.05: 2.61/48.31/8.49/3.81 TFC (mg/g): 4.85: 4.85/42.55/1.71/0.66 | [86] |
D. hispida: | MeOH-E: fr PE/CTC/DCM/H2O | TPC: 160.65 ± 0.18: 280.09 ± 0.54/287.50 ± 0.71/68.98 ± 1.43/22.99 ± 0.54 | [23] |
D. bulbifera: stem tuber | MeOH (80%) | TPC (mg GAE/mg edw): 0.243 ± 0.052; nontannins, 0.632 ± 0.048; tannins, 0.259 ± 0.034. TFL (mg QE/mg edw) 1.399 ± 0.075; TFC, 0.060 ± 0.025 | [61] |
D. bulbifera: rhizome | MeOH: Buchae-Ma | TPC (mg/g): 51.11 ± 0.16; TFC (mg/g): 10.33 ± 0.09; total sugar (mg/g): 179.79 ± 0.14 | [45] |
D. nipponica: rhizome | MeOH: Dungkun-Ma | TPC (mg/g): 52.08 ± 0.24; TFC (mg/g): 13.99 ± 0.11; total sugar (mg/g): 147.67 ± 0.09 | [45] |
D. birmanica: rhizome | EtOH (95%). | TPC (mg GAE/g e): 170.85 ± 3.02 TFC (mg CE/g e): 132.55 ± 3.59 | [16] |
D. birmanica: rhizome | EtOH (95%). | TPC (mg GAE/g e): 170.85 ± 3.02 TFC (mg CE/g e): 132.55 ± 3.59 | [16] |
D. bulbifera: tubers | MeOH | TPC (mg/100 g FW): 67.17 ± 0.12 | [96] |
D. bulbifera: tubers | Soaked in 0–10% oligosaccharide solution | TPC (mg GAE/g): 1.37 ± 0.3–1.41 ± 0.1 TFC (mg RE/g): 0.97 ± 0.1–1.04 ± 0.1 | [66] |
D. bulbifera: bulb | PE/EA/MeOH (sequentially)/EtOH (70%) | TPC (mg/mL): 49.22 ± 0.80/98.00 ± 1.17/145.4 ± 3.29/85.89 ± 1.16 TFC (mg/mL): 4.95 ± 0.1/27.86 ± 0.18/12.76 ± 0.48/12.10 ± 0.05 | [64] |
D. hamiltonii: tuber | MeOH | TPC: male 41.40 ± 2.94; female: 50.70 ± 2.49 | [21] |
TFC: male: 25.67 ± 0.93; female: 36.67 ± 0.99 | |||
EtOH (20%) and its fraction | TS (%): male 0.95 ± 0.14; female 1.16 ± 0.18 | ||
D. hamiltonii (syn D. persimilis): herbs | MeOH | TPC (µg/mL GAE): 158.21; TFC (μg/mL CE): 72.3 | [29] |
Vanillin-CH3COOH and HClO4 mixture 1:5 (v/v) | TS (dioscin equivalents): 257.8 μg/mL | ||
D. hispida | MeOH-E: fr PE/CTC/DCM/H2O | TPC: 160.65 ± 0.18: 280.09 ± 0.54/287.50 ± 0.71/68.98 ± 1.43/22.99 ± 0.54 | [23] |
D. oppositifolia: tubers | MeOH | TPC: male: 11.03 ± 0.60; female: 13.65 ± 0.36 TFC: male: 7.21 ± 0.99; female: 15.03 ± 1.08 | [21] |
EtOH (20%) and its fraction | TS (%): male: 0.45 ± 0.09; female: 0.81 ± 0.15 | ||
D. opposita: tuber mucilage | Autolysis/hydrolysis | TPC (mg/g powder): 6.4 ± 0.08/15.3 ± 1.60 (pepsin)/11.2 ± 1.34 (trypsin)/7.4 ± 0.09 (papain) | [85] |
D. pubera: tubers | MeOH | TPC (mg GAE/gm dw): male: 31.76 ± 0.21; female: 21.83 ± 2.5 | [21] |
EtOH (20%) and its fraction | TFC (mg CAE/gm): male: 19.68 ± 1; female: 22.17 ± 0.2 TS (%): male: 0.88 ± 0.23; female: 0.92 ± 0.17 | ||
D. oppositifolia (syn D. opposita): herb | MeOH-E | TPC (µg/mL GAE): 297.03; TFC (μg/mL CE) 49.6 | [29] |
Vanillin-CH3COOH and HClO4 mixture 1:5 (v/v) | TS (μg/mL dioscin equivalents): 475.5 | ||
D. opposita: rhizome | Hot H2O | TPC: flesh 1.77 ± 0.67; peel:10.97 ± 0.21; TFC (mg rutin/g eq): flesh: 1.03 ± 0.15; peel 1.77 ± 0.07; TC (mg/g): flesh: 324.90 ± 0.82; peel:123.50 ± 0.80 | [75] |
EtOH (80%) | Flesh: TPC 7.77 ± 0.10; TFC (mg RE/g extract): 1.20 ± 0.10; TC (mg/g extract) 23.63 ± 0.45 | ||
Peel: TPC: 15.40 ± 0.10; TFC (mg RE/g extract): 2.62 ± 0.15; TC (mg/g extract) 17.60 ± 0.20 | |||
D. pentaphylla: leaves | MeOH | TPC (mgGAE/g): 213.89 ± 3.93; TFC (mg QE/g): 41.5 ± 2.12 | [76] |
EA | TPC (mgGAE/g): 76.39 ± 3.54; TFC (mg QE/g): 147.5 ± 3.54 | ||
D. schimperiana: tubers flour | EtOH (20%) and its fraction; pasta with 60% yam flour | TPC: traditional process, 2.86 ± 0.02; modified process, 5.04 ± 0.03 | [11] |
D. schimperiana: | MeOH (60%) | TPC (mg/100 g): 10 (yellow); 8 (with red dot); 8 (red fleshed) | [82] |
D. trifida: tubers | Commonly used methods | TPC (mg GAE/100 g): 187.09–513.67 ± 9.49 Total carbohydrate (%): 81.75 ± 0.24 Total starch (%): 74.11 ± 0.55 | [90] |
EtOH (95%):HCl 85:15 (v/v) | TAC (mg C-3-Glc/100 g): 159.11–281.10 ± 0.01 | ||
D. trifida: tubers | Dry powders | TPC (mg GAE/100 g dw): 166.10 ± 1.52; TFC (mg QE/100 g dw) 27.63 ± 2.69; TT (mg GAL/100 g dw) 9.62 ± 0.084; TAC (mg C-3-Glc/100 g dw): 21.59 ± 1.47 | [91] |
D. wallichii: dried powder | MeOH (male/female) | TPC: 10.73 ± 0.25/9.73 ± 0.28 TFC (mg CE/gm): 20.6 ± 0.6/26.00 ± 2.14 | [21] |
D. quinqueloba | H2O/MeOH/EtOH/ EA | TPC (mg/g): 10.16/10.48/14.67/9.91 TFC (mg/g): 7.58/9.91/10.58/16.02 | [97] |
D. rotundata: flour/paste | H2O 1:10 (w/v) | TPC (mg GAE/g): 1.56 ± 0.04/1.34 ± 0.02 TFC (mg QE/g): 0.16 ± 0.01/0.08 ± 0.01 | [47] |
D. alata: flour/paste | TPC (mg GAE/g): 1.38 ± 0.03/1.12 ± 0.02 TFC (mg QE/g): 0.18 ± 0.01/0.10 ± 0.02 | ||
D. japonica: tubers | EtOH (70%) | TPC: 35.15 mg GAE/100 g edw | [78] |
Dioscorea spp.: tubers, 5 cultivars | Inoculated with 6 spp. of arbuscular mycorrhizal fungi; flesh/peel | TPC (mg/kg): Tainung 1: 21.3-44.5/39.0-52.7; Tainung 2: 19.8–38.3/43.9–54.5; Ercih: 11.1–16.9/40.4–50.4 | [98] |
TFC (mg/kg): Tainung 1: 4.1–8.6/9.9–15.1; Tainung 2: 4.4–6.9/9.6-10.4; Ercih: 4.5–5.6/7.8–10.9; Zigyuxieshu: 4.9–6.5/9.3–11.8 Tainung 5: 4.4–5.7/8.3–10.9 | |||
TAC (flesh/peel, mg/kg): Tainung 1, 2, Ercih: nd; Zigyuxieshu: 0.83–1.08/1.93–2.54; Tainung 5: 0.33–0.76/1.52–2.42 | |||
D. bulbifera | EtOH (70%) | TPC: 2.23 ± 0.03; TFC (mg RE/g): 1.99 ± 0.17 | [83] |
D. polystachya | TPC: 3.65 ± 0.11; TFC (mg RE/g): 2.62 ± 0.20 | ||
D. batatas | TPC: 2.25 ± 0.19; TFC (mg RE/g): 1.57 ± 0.06 | ||
D. quinqueloba | TPC: 9.50 ± 0.38; TFC (mg RE/g): 1.30 ± 0.16 | ||
D. batatas: raw | BuOH/EA | TPC (mg CAE/g-E): 78.68 ± 0.58/111.88 ± 0.66 | [57] |
D. alata: flour of 5 cultivars | Small/medium/large particle size fractions | Phenols (%): 0.27–1.39/0.52–2.82/0.48–2.20 TAC (mg/100 g): nd-14.20/nd-15.27/2.25–13.07 Carotenoids (µg/100 g): nd-132.12/nd-129.8/nd-123.1 | [99] |
D. alata: tubers | TPC (mg GAE/100 g): 157.7 ± 7.5; TFC (mg CE/100 g): 190.4 ± 10.9 | [100] | |
D. japonica: tubers | TPC (mg GAE/100 g): 206.4 ± 12.8; TFC (mg CE/100 g): 178.2 ± 8.3 | [100] | |
D. bulbifera: tuber | TPC (mg GAE/100 g FW): 166 ± 10 | [96] | |
D.versicolor: tuber | TPC (mg GAE/100 g FW): 41 ± 5 | ||
D. deltoidea: tuber | TPC (mg GAE/100 g FW): 15 ± 2 | ||
D. triphylla: tuber | TPC (mg GAE/100 g FW): 13 ± 1 | ||
D. japonica: bulbil | MeOH (80%): fr CF/EA/BuOH/H2O | TPC: 2.2 ± 0.1: 11.5 ± 0.4/33.9 ± 1.8/3.9 ± 0.1/2.4 ± 0.1 | [89] |
D. batatas: bulbil | TPC: 3.9 ± 0.2: 19.6 ± 0.8/39.1 ± 2.2/7.4 ± 0.4/5.8 ± 0.2 | ||
D. hirtiflora: tubers | Successively DCM/EA/MeOH | TPC (mg GAE/g): 0.25 ± 0.01/8.9 ± 0.69/10.1 ± 0.35 TFC (mg QE/g): ND/24.2 ± 0.43/28.1 ± 0.35 | [67] |
D. dumetorum | TPC (mg GAE/g): 1.75 ± 0.02/0.81 ± 0.003/1.04 ± 0.02 TFC (mg QE/g): 8.58 ± 0.14/12.4 ± 0.43/9.6 ± 0.21 | ||
D. bulbifera: mauve | TPC (mg GAE/g): 1.91 ± 0.02/14.0 ± 0.41/5.99 ± 0.09 TFC (mg QE/g): 26.1 ± 0.29/74.4 ± 0.41/54.5 ± 0.73 | ||
D. bulbifera: yellow | TPC (mg GAE/g): 1.0 ± 0.10/12.6 ± 0.34/0.99 ± 0.01 TFC (mg QE/g): 7.87 ± 1.10/52.0 ± 0.14/29.3 ± 0.02 |
Species | Preparation | Study Design | Results | Ref. |
---|---|---|---|---|
D. alata: tuber | H2O-E in plantain and bitter leaf meal | Rat model, 2.0 g dough meal food, consumed within 25 min. | Blood glucose and GI ↓: the potential to be used as functional foods to alleviate postprandial hyperglycemia | [10] |
D. alata: tuber | MeOH-E | Antimicrobial activity | Effective against the Gram-positive bacteria Streptococcus pneumoniae and fungi Candida albicans | [21] |
D. alata: freeze-dried powder | Containing antho-cyanins | TNBS-inducted colitis mice; DACNs at 20, 40, and 80 mg/kg for 3 days, intra-rectally | The levels of pro-inflammatory cytokines, TNF-α and IFN-γ ↓. May be applied as a potential food supplement in inflammatory bowel disease (IBD) therapy | [95] |
D. alata: tuber | MeOH-E | Antibacterial activity using disc diffusion assay | Effective against the bacteria Staphylococcus epidermidis and Gram-negative bacteria: Shigella dysenteriae, Shigella flexneri | [50] |
D. alata: tuber | MeOH (70%)-E | Mice spleen lymphocytes cells | Anti-inflammatory effect by inhibition of the NO and TNF-α expression. | [133] |
D. alata: tuber | H2O (WSP) | Alloxan-induced hyperglycemic rats; 400 mg/kg bw/day, 4 weeks, orally | Fasting blood glucose gradually decreased | [134] |
D. alata tuber | EtOH and H2O | Doxorubicin-induced cardiac damage mice; daily dose 30 mg/mL for 4 weeks; orally | Regulate NF-kB expression at the transcriptional level; cardiac levels of TBARS, ROS, inflammatory factors, the expression of NF-kB, blood pressure ↑; SOD, GPx activity ↑. | [135] |
D. alata: purple yam | EtOH (80%)-E; EA fr of peel and flesh | Methylglyoxal-induced HepG2 cells | Extracts strengthened antioxidant defense system | [52] |
Antiglycation activity in vitro | Could inhibit the formation of dicarbonyl compounds in a dose-dependent manner. | |||
D. batatas: peel | EtOH (95%), DDP | LPS-induced RAW 264.7 cell model | 2, 7-dihydroxy-4, 6-dimethoxy phenanthrene suppressed LPS-induced expression of cytosolic iNOS and COX-2. Could exert anti-inflammatory activity by suppressing NF-κB signaling pathway. | [136] |
D. batatas: rhizome | H2O | STZ-induced diabetic mice; at 500 or 1000 mg/kg 1/day for 4 weeks | Glucose and leptin, total cholesterol, triglycerides, low-density lipoprotein cholesterol ↓. Expression of antioxidant enzymes, and mitochondrial-induced biogenetic factors in the liver, pancreas, and muscle tissue ↑. | [137] |
Allantoin at 20 or 50 mg/kg/day for 4 weeks; orally | ||||
D. batatas: flesh and peel | EtOH (60% and 95% w/w); H2O | EtOH-induced gastric ulcer in mice; a single dose 100 or 200 mg/kg bw, orally | Extracts dissolved in: 5% Tween-80, 10% polyethylene glycol, 10% DMSO, and 10% EtOH saline: inflammatory factors, NO and IL-6, in the serum; COX-2 expression in the gastric tissue ↓ | [138] |
D. batatas: bark | EtOH (BDB) | Anti-inflammatory activity in LPS-induced RAW 264.7 cells | NO production (dose-dependent); iNOS protein induction; regulates inflammation by inhibiting the COX-2 pathway | [139] |
D. batatas: yam | H2O-E; powder | STZ-induced diabetic rats; at 2500 or 1000 mg/kg daily doses for 1-month, orally | Fasting blood glucose and HbAlc ↓; the serum antioxidant activities of tGSH, GSH and SOD ↑; lipid malondialdehyde (MDA), oxidized glutathione (GSSG) ↓ | [140] |
D. birmanica: rhizome | EtOH-E | SNP-induced oxidative stress in liver BNL CL.2 cells | Elevated cell viability in a dose-dependent manner. Can ameliorate oxidative stress | [16] |
D. bulbifera: powder of bulbils | EtOH and H2O-E | Cell culture model; 1–100 μg/mL E | Low cytotoxic effect on the cells | [62] |
CF, EA, H2O fr | LPS-induced RAW macrophage 264.7 cells | Mild anti-inflammatory activity | ||
D. bulbifera: leaves | MeOH-E | MCF-7 and MDA-MB-231 breast cancer cells | Cytotoxic effect in cell lines; prompts apoptosis at various stages and a significant decrease in viable cells | [63] |
D. cayennensis: tubers | Protein conc. 64% | Antibacterial activity | No inhibition of Salmonella sp. and Lysteria monocytogenes; effective against E. coli | [141] |
D. hamiltonii: tuber | MeOH-E | Antimicrobial activity | Effective against Streptococcus pneumoniae | [21] |
D. hamiltonii (D. persimilis): herb | MeOH-E | Xylene-induced ear edema damage mice; 2 and 6 g/kg, 5 days, orally | Decreased the level the inflammatory cytokines and reduced oxidative stress | [29] |
D. hemsleyi: poly-saccharides | Warm and hot H2O | Anti-hyperglycemic activity | Effectively inhibits α-amylase, α-glucosidase | [72] |
D. japonica | EtOH-E | λ-carrageenan-induced paw edema mice; 0.5 and 1.0 g/kg, orally | MDA, NO, TNF-α ↓ after 5th hour; 1.0 g/kg decreased the developments of carr-induced paw edema after 5th hour | [142] |
Acute toxicity, at 10 g/kg | No toxicity observed | |||
LPS-induced RAW 264.7 cells | No effects on viability; suppressed LPS-induced production of NO, TNF-α, expression of iNOS and COX-2 | |||
D. japonica: yam tubers | EtOH and H2O-E | Doxorubicin-induced cardiac damage in mice; a daily dose of 30 mg/mL (w/v) for 4 weeks; orally | Might regulate NF-kB expression at the transcriptional level; cardiac levels of TBARS, ROS, inflammatory factors, expression of NF-kB; blood pressure ↓; SOD, GPX activity ↑ | [135] |
Monascus-fermented D. (red mold D. (RMD)) root | EtOH (95% w/w) dissolved in mineral oil | DMBA-induced hamster buccal pouch carcinogenesis; RMD extracts (50, 100, 200 mg/kg bw, paint for 14 weeks on days alternate to DMBA painting) | Anti-inflammatory and antioxidative activity. Inhibit the pro-inflammatory cytokines TNF-R, IL-1β, IL-6, and IFN-γ, which in turn, leads to oxidative stress. | [143] |
D. nipponica | EtOH (70%)-E | Anti-osteosarcoma activity | Induced apoptosis in human osteosarcoma cells line U2OS | [144] |
D. nipponica: rhizome | Saponins | MSU-inducted gouty arthritis mice; TS at 100, 300, 900 mg/kg every 24 h for 7 days, orally | TS (dioscin, protodioscin, pseudo protodioscin) might restore production of pro-inflammatory cytokines TNF-α, pro-interleukins IL-1β and IL-8 to the normal conditions, regulating antioxidant capacities and NALP3 inflammasome. | [145] |
D. nipponica: rhizome | EtOH (80%)-E and diosgenin in 1% carboxyl methyl-cellulose | ISO-induced myocardial ischemia model in rats; diosgenin at 20, 40, 80 mg/kg for 3 days. 500 mg/kg for 3 days, orally, after ISO injection | Diosgenin protects the myocardium against ischemic insult through increasing enzymatic and nonenzymatic antioxidant levels; decreasing oxidative stress damage; SOD, CAT, GPx activity ↑; lipid peroxidation ↓ Confirms hypothesis that intestinal bacteria produce diosgenin from D. nipponica extract. | [24] |
Dry precipate of saponins | ISO-induced myocardial ischemia model in rats; 150 and 300 mg/kg for 3 days, orally, both before and after ISO injection | SOD, CAT, GPx, total antioxidant capacity (T-AOC) activity ↑; can protect the myocardium against ischemic insult | [146] | |
D. nipponica: rhizome | Dry precipitate of saponins | Rat model; single dose of 160 mg/kg intragastrically | Diosgenin was one of the main metabolites found in plasma and feces. The extract can play an essential role in cardioprotective efficacy. | [146] |
D. nipponica | Crude drug with saponins | Potassium oxonate-induced hyperuricemic mice; 60, 300, 600 mg/kg every 24 h for 6 days, before induction | Total saponins (dioscin, protodioscin, pseudo protodioscin) from RDN had uricosuric effect and could enhance urate excretion and reduce the serum urate levels | [14] |
D. nipponica: rhizome | MeOH-E | Antibacterial activity | Effective against Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Salmonella typhimurium | [45] |
D. opposita: yam | Fresh-cut, MeOH → yellow powder | •OH-induced DNA damage | Can protect against DNA damage (IC50 0.098 ± 0.032 mg/mL); provides a theoretical basis for the application of YP in food and drug industry. | [70] |
D. oppositifolia | MeOH-E | Xylene-induced ear edema damage mice; 2 and 6 g/kg, for 5 days; orally | The inflammatory cytokines, TNF-α, IL-6; oxidative stress ↓ | [29] |
D. oppositifolia: tubers | MeOH-E | Antimicrobial activity | Effective against Klebsiella pneumoniae, Shigella dysenteriae, Candida albicans, Candida tropicalis | [21] |
D. opposita: Chinese yam | Cold-soaking extract (CYCSE) | HCT-induced rat; CYCSE 60 mg/kg and 80 mg/kg for 10 days H2O2-induced Leydig cells (TM3) | Can stimulate the NO/cGMP pathway and protect against induced erectile dysfunction; may protect testis morphology, increase TM3 cell proliferation and stimulate testosterone secretion. Suppressed TGF-β1 in injured cells. Can protect against damage from the oxidative stress response. | [147] |
D. panthaica: rhizome | Precipate of saponins DP-E | ISO-induced myocardial ischemia model in rats; 150 and 300 mg/kg, 3 days; orally | SOD, CAT GPx, total antioxidant capacity (T-AOC) activity ↑; can protect the myocardium against ischemic insult | [146] |
D. purpurea: tuber | EtOH and H2O | Doxorubicin-induced cardiac damage in mice; a daily dose of 30 mg/mL (w/v) for 4 weeks; orally | SOD and GPx activity ↑; might regulate NF-kB expression at the transcriptional level; blood pressure, the cardiac levels of TBARS, ROS, and inflammatory factors, the expression of NF kappa B↓. | [135] |
D. pentaphylla: tuber | MeOH | Antibacterial activity using disc diffusion assay | Effective against Streptococcus mutans, Streptococcus pyogenes, Vibrio cholerae, Shigella flexneri, Salmonella typhi. | [77] |
D. pubera Blume | MeOH | Antimicrobial activity | Effective against Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli, Shigella dysenteriae, Candida albicans, Candida tropicalis | [21] |
D. wallichii | MeOH | Antimicrobial activity | Effective against Klebsiella pneumoniae, Shigella dysenteriae and fungus Candida tropicalis | [21] |
D. zingiberensis: rhizome | Total steroid saponins (TSS) | Adjuvant-induced arthritis (AIA) rat; 50, 100, and 200 mg/kg 1/day, every 3 days, respectively, from day 0 to day 28, orally | The levels of pro-inflammatory cytokines IL-1, IL-1β, IL-6, IL-10, and TNF-α ↓; suppressed production of oxidant stress makers: NO, MDA; could protect an injured ankle joint from further deterioration. | [19] |
LPS-induced RAW 264.7 macrophage cells | TSS suppresses NF-κB activation by inhibiting the phosphorylation of p65 and IκBα | |||
D. villosa: leaf | MeOH | Mouse fibroblast L929 cell line | No cytotoxic effect. Scratch assay: expression of Collagen-1; induction of migration of fibroblasts to the wound site ↑. | [104] |
Species: Plant Part | Solvents | Compounds | Ref. |
---|---|---|---|
D. alata: tubers | MeOH | Vitamins (mg/g): male: C, 13.49 ± 3.64; B1, 1.14 ± 0.16; B2, 1.75 ± 0.26; female: C, 18.26 ± 1.37; B1, 1.26 ± 0.11; B2, 1.87 ± 0.2 | [21] |
D. alata: tubers | EtOH (50%) with 0.1% HCl | Anthocyanins: alatanin C (cyanidin 3-(6-sinapoyl gentiobioside); cyanidin-3-diglucoside; cyanidin-3,5-diglucoside; alatanins B, C; alatanin E, D, F isomers | [93] |
D. alata (purple yam): dried tubers | EtOH (80%) | Phenolic acids (mg/100 g mdw): galic 0.482 ± 0.057; 4-hydroxy benzoic 0.192 ± 0.0024; syringic 0.899 ± 0.0022; sinapic 0.202 ± 0.0501; chlorogenic 0.451 ± 0.0038; ferulic 0.089 ± 0.0005. Flavonoids (mg/100 g mdw): quercetin 0.687 ± 0.0030, apigenin 0.210 ± 0.0041; kaempferol 9.219 ± 0.0043 | [94] |
D. glabra: tubers | mg/100 gm: C, 23.49 ± 0.0413; H2O-soluble B, 0.036 to 4.159 | [46] | |
D. alata (purple yam): freeze-dried tubers | MeOH (50%) with 0.1% HCl | Anthocyanins (% peak area): cyanidin-3,5-diglucoside (31.22); cyanidin-3-diglucoside-5-celery glycosides (28.77); delphinidin-3-glucose-5-rutinoside (16.36); delphinidin-3-glucoside (12.18), delphinidin-3,5-diglucoside (11.31) | [95] |
D. alata: freeze-dried tubers | MeOH (70%) | Phenolic acids (mg/g dw): galic 29.34; 4-hydroxy benzoic 6.48; syringic 2.94; p-coumaric 2.53; myricetin 42.39 | [133] |
D. alata: tubers | MeOH | Myricetin, gallic acid, ellagic acid, vanillic acid, syringic acid, epicatechin, vanillin, p-coumaric acid, trans-cinnamic acid and kaempferol. | [50] |
D. batatas: freeze-dried flesh and peel of tubers | EtOH (95%) | Phenanthrenes (mg/100 g dw): peel: 2,7-dihydroxy-4,6-dimethoxy 47.35 ± 0.25; 6,7-dihydroxy-2,4-dimethoxy 29.29 ± 0.08; 6-hydroxy-2,4,7-trimethoxy (batatasin I) 35.85 ± 0.12 | [54] |
D. batatas: yam | Thermally treated meals | Vitamins (mg/100 g): E, 8.3; C, 3.5; B1, 2.1, B2, 0.03 | [84] |
D. bulbifera: flesh and peel of bulbils/tubers | MeOH | Phenolic acids (µg/g dw). Flesh: gallic 1.69 ± 0.13, isovanillic 1.02 ± 0.06, protocatechuic 0.15 ± 0.01. Peel: gallic 2.30 ± 0.20, isovanillic 0.18 ± 0.02, protocatechuic 0.10 ± 0.02 Flavonoids (μg/g dw). Flesh: catechin: 46.1 ± 0.75, quercetin 0.08 ± 0.01. Peel: catechin: 8.50 ± 1.01, quercetin 0.27 ± 0.05 Ascorbic acid (µg/g dw). Flesh: 26.4 ± 0.51. Peel: 25.03 ± 3.82 | [107] |
EA | Phenolic acids (µg/g dw). Flesh: gallic 0.32 ± 0.14, isovanillic 1.71 ± 0.05, protocatechuic 0.13 ± 0.007. Peel: gallic 0.27 ± 0.03, isovanillic 0.22 ± 0.09, protocatechuic 0.20 ± 0.07 Flavonoids (μg/g dw). Flesh: catechin 108.3 ± 0.69, quercetin 0.99 ± 0.05. Peel: catechin 23.1 ± 0.22, quercetin 1.36 ± 0.16 Ascorbic acid (µg/g dw). Flesh: 4.52 ± 1.18. Peel: 2.8 ± 0.09 | ||
D. japonica: leaves | DE extract fraction | Total triterpenoids (including esters) (mg/g d.w.): Tokyo 734.71; Kanagawa 716.55 | [169] |
D. caucasica: leaves | DE | Total of triterpenoids (including esters) (mg/g dw): 1492.56 | [169] |
D. hispida: leaves | DE extract fraction | Total of triterpenoids (including esters) (mg/g dw): 704.11 | [169] |
D. quinquelobata: leaves | DE extract fraction | Total of triterpenoids (including esters) (mg/g dw): 467.29 | [169] |
D. purpurea: leaves | DE extract fraction | Total of triterpenoids (including esters) (mg/g dw): 628.54 | [169] |
D. nipponica: leaves | DE extract fraction | Total of triterpenoids (including esters) (mg/g dw): 837.83 | [169] |
D. hamiltonii: dried powder of tubers | MeOH | Vitamins (mg/g): male: ascorbic acid 10.31 ± 2.75, thiamine 1.15 ± 0.09, riboflavin 0.82 ± 0.07; female: ascorbic acid 12.7 ± 3.64, thiamine 1.03 ± 0.16, riboflavin 0.98 ± 0.12 | [21] |
D. hamiltonii (syn D. persimilis): dry herb powder | MeOH; HPLC | Phenolic acids (µg/g d.w): gallic 6.24 ± 0.07; protocatechuic 0.65 ± 0.02; chlorogenic 0.93 ± 0.03; syringic 26.26 ± 0.42; p-coumaric 0.96 ± 0.05 Flavonoids (µg/g dw): catechin 17.69 ± 0.03; rutin 7.07 ± 0.22; quercetol 6.8 ± 0.17; kaempferol 5.92 ± 0.13. Saponin content (µg/g dw): protogracillin 60.21 ± 1.04; dioscin 18.21 ± 0.54; diosgenin 25.00 ± 0.08; trillin 107.08 ± 1.12 | [29] |
D. hirtiflora: flesh/peel | MeOH | Phenolic acids (µg/g dw): gallic 0.34 ± 0.00/0.73 ± 0.35, isovanillic 0.28 ± 0.04/0.30 ± 0.06, protocatechuic 0.13 ± 0.02/0.13 ± 0.03. Flavonoids (μg/g dw): catechin 6.91 ± 0.21/4.00 ± 0.23, quercetin 0.47 ± 0.14/0.28 ± 0.009 Ascorbic acid (µg/g d.w): 5.88 ± 0.57/12.0 ± 0.61 | [107] |
EA | Phenolic acids (µg/g dw): gallic 0.19 ± 0.03/0.24 ± 0.04, isovanillic 0.88 ± 0.03/0.93 ± 0.09, protocatechuic 0.42 ± 0.02/0.20 ± 0.02. Flavonoids (μg/g d.w): catechin 23.7 ± 0.42/5.19 ± 0.50, quercetin 0.42 ± 0.09/1.57 ± 0.26. Ascorbic acid (µg/g d.w): 4.26 ± 0.39/2.72 ± 0.22 | ||
D. nipponica: rhizomes | NADES containing 30% H2O | Steroidal saponins (%): protodioscin 79.90, protogracillin 68.12, pseudoprotodioscin 67.27, pseudoprotogracillin 74.8 | [170] |
D. nipponica: freeze-dried rhizomes | EtOH (70%) | Saponins (mg/g): protodioscin 159.983 ± 0.064; protogracillin 4.250 ± 0.024; pseudoprotodioscin 13.821 ± 0.037; dioscin 22.999 ± 0.121 | [144] |
D. opposita: rhizome | Hot H2O | Phenolic acids (μg/g): gallic 3.56 ± 0.13; chlorogenic 6.77 ± 0.06; vanillic 8.49 ± 0.36; syringic 2.95 ± 0.14; p-coumaric 16.90 ± 0.17. Flavonoids (μg/g): epicatechin 7.37 ± 0.24; phlorizin 18.90 ± 0.48 | [75] |
EtOH (80%) | Phenolic acids (μg/g): gallic 3.10 ± 0.4; chlorogenic 7.92 ± 0.42; vanillic 12.59 ± 0.51; syringic 6.78 ± 0.46; p-coumaric 16.39 ± 0.37 Flavonoids (μg/g): rutin 9.48 ± 0.40; epicatechin 28.39 ± 0.57; phlorizin 20.29 ± 0.34 | ||
D. oppositifolia.: stems, leaves | AC (50%) → DCM | Norsesquiterpenoids: dioscopposin A, dioscopposin B | [151] |
D. oppositifolia (syn D. opposita) (Chinese yam): herb | MeOH | Phenolic acids (μg/g dw): gallic 3.67 ± 0.10; protocatechuic 0.69 ± 0.02; chlorogenic 1.20 ± 0.04; vanillic 2.08 ± 0.05; syringic 37.35 ± 0.49; p-coumaric 1.65 ± 0.04. Flavonoids (μg/g dw): rutin 11.98 ± 0.16; quercetol 27.76 ± 0.12; kaempferol 18.65 ± 0.08; catechin 4.45 ± 0.07. Saponins (μg/g dw): protogracillin 154.45 ± 2.56; dioscin 23.64 ± 0.27; diosgenin 26.02 ± 0.05; trillin 77.61 ± 0.10 | [29] |
D. quinquelobata: rhizomes | EtOH (70%) | Steroidal saponins (mg/g): protodioscin 3.496 ± 0.018, protogracillin 5.945 ± 0.020, pseudoprotodioscin ND., dioscin 10.002 ± 0.051, gracillin 9.011 ± 0.098 | [144] |
D. pentaphylla: leaves | MeOH | Gallic acid, rutin, quercetin | [76] |
D. polystachya; tubers | MeOH (70%) | Dehydroepiandrosterone, allantoin, 5-hydroxy-7-methoxyflavanone, arnebinone, dioscin, protodioscin | [171] |
D. pubera: tubers | MeOH | Vitamin content (mg/g): male: ascorbic acid 14.29 ± 2.38, thiamine 0.85 ± 0.07, riboflavin 1.02 ± 0.08; female: ascorbic acid 15.88 ± 1.37, thiamine 0.99 ± 0.11, riboflavin 0.94 ± 0.14 | [21] |
D. septemloba: rhizomes | EtOH (75%) | Phenanthropyran: dioscorone B, phenanthrene: 2,2′,6,6′-tetramethoxy-4,4′7,7′-tetrahydroxy-1,1′-biphenanthrenes | [172] |
D. septemloba: rhizomes | EtOH (70%) | Steroidal saponins (mg/g): protodioscin 8.959 ± 0.014, protogracillin 9.902 ± 0.061, pseudoprotodioscin ND, dioscin 9.822 ± 0.014, gracillin 7.123 ± 0.031 | [144] |
D. wallichii: dried powder | MeOH | Vitamins (mg/g): male: ascorbic acid 9.52 ± 2.38, thiamine 1.25 ± 0.13, riboflavin 1.18 ± 0.1; female: ascorbic acid 12.7 ± 1.4, thiamine 1.11 ± 0.12, riboflavin 1.13 ± 0.24 | [21] |
D. bulbifera: rhizomes | Purified from EtOH (80%) E with EA, Sephadex LH-20, and ODS | C22 ω-hydroxy fatty acid, 3-hydroxy-5-methoxybenzoic acid, various phenanthrene derivatives and flavonoids | [173] |
D. trifida: yam tubers | Pelargonidin, cyanidin, peonidin glycosides and other derivatives | [113] | |
D. opposita | Aromatic benzyl compounds, dihydrostilbenes, phenanthrenes: diarylheptanoids, apigenin | [80] | |
D. opposita: aerial parts | EtOH | 6,7-dihydroxy-2-methoxy-1,4-phenanthrenedione; chrysoeriol 4′-O-â-D-glucopyranoside, chrysoeriol 7-O-â-D-glucopyranoside, alternanthin, daucosterol | [174] |
D. communis | Herorensol, 2,3,4-trimethoxy-7,8-methylenedioxyphenanthrene, 2,4-dimethoxy-7,8-methylendioxy-3-phenanthrenol, chrysotoxene, 2,4,8-trimethoxy-3,7-phenanthrenediol, orchinol, and lusianthridin 7 | [31] | |
D. schimperiana: yellow-fleshed/yellow with red dot/red-fleshed | MeOH (60%) | µg/100 g: α-Toc 538.66/275.11/554.86; lutein: 18.06/16.35/18.22; zeaxanthin: 11.62/6.70/11.68; β-kryptoxanthin: 2.37/6.12/2.39; β-carotene: 212.23/197.04/212.98; β-carotene: 560.94/462.30/562.91; lycopene: 0.83/0.84/0.84; Pro-vit A carotenoids: 787.15/672.16/789.95 | [82] |
D. batatas: thermally treated | (mg/100 g dw) Chlorophyll a/b: 0.43 ± 0.01/0.75 ± 0.02; lycopene 0.30 ± 0.00; phytic acid 1.04 ± 0.42 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adomėnienė, A.; Venskutonis, P.R. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. Molecules 2022, 27, 2530. https://doi.org/10.3390/molecules27082530
Adomėnienė A, Venskutonis PR. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. Molecules. 2022; 27(8):2530. https://doi.org/10.3390/molecules27082530
Chicago/Turabian StyleAdomėnienė, Aušra, and Petras Rimantas Venskutonis. 2022. "Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits" Molecules 27, no. 8: 2530. https://doi.org/10.3390/molecules27082530