Characterization of Primary Action Mode of Eight Essential Oils and Evaluation of Their Antibacterial Effect against Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Inoculated in Turkey Meat
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibacterial Effect of Essential Oils
2.2. Characterization of the Mode of Action in Essential Oils
2.2.1. Time–Kill Studies
2.2.2. Cell Lysis Experiment
2.2.3. Loss of Salt Tolerance
2.2.4. Integration of the Cell Membrane
2.3. Effect of Addition of Essential Oils against Strains of E. coli Inoculated into Turkey Meat
2.3.1. Effect of EOs on Total Germs
2.3.2. Effect of EOs on Yeasts and Molds
2.3.3. Effect of EOs on Total Coliforms
2.3.4. Effect of EOs on Escherichia coli
3. Material and Methods
3.1. Essential Oil
3.2. Bacterial Strains and Growth Conditions
3.3. Evaluation of Antimicrobial Activity
3.4. Primary Mode of Action of Two EOs
3.4.1. Time–Kill Studies
3.4.2. Bacteriolysis
3.4.3. Loss of Cytoplasmic Material
3.4.4. Loss of Salt Tolerance
3.5. Effect of Essential Oils against E. coli Inoculated in Meat
3.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yigin, A. Antimicrobial resistance and extended-spectrum β-Lactamase (ESBL) genes in E. coli isolated from equine fecal samples in Turkey. J. Equine Vet. Sci. 2021, 101, 103461. [Google Scholar] [CrossRef] [PubMed]
- Kyo, J.J.; Sukdong, Y.; Song, J.S.; Kim, H.S.; Park, S.E. Non-carbapenem antimicrobial therapy in young infant with urinary tract infections caused by community-acquired extended-spectrum β-lactamase-producing Escherichia coli. Pediatr. Neonatol. 2021, 62, 271–277. [Google Scholar]
- Jouini, A.; Ben Slama, K.; Klibi, N.; Ben Sallem, R.; Estepa, V.; Vinue, L.; Sáenz, Y.; Ruiz-Larrea, F.; Boudabous, A.; Torres, C. Lineages and Virulence Gene Content among Extended-Spectrum β-Lactamase-Producing Escherichia coli Strains of Food Origin in Tunisia. J. Food Prot. 2013, 76, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Klibi, A.; Jouini, A.; El Andolsi, R.B.; Kmiha, S.; Ben Hamda, C.; Ghedira, K.; Hamrouni, S.; Ghram, A.; Maaroufi, A. Epidemiology of β-Lactamase-Producing Staphylococci and Gram Negative Bacteria as Cause of Clinical Bovine Mastitis in Tunisia. BioMed. Res. Int. 2019, 2019, 2165316-9. [Google Scholar] [CrossRef] [Green Version]
- Lay, K.K.; Jeamsripong, S.; Sunn, K.P.; Angkititrakul, S.; Prathan, R.; Srisanga, S.; Chuanchuen, R. Colistin resistance and ESBL production in Salmonella and from pigs and pork in the Thailand, Cambodia, Lao PDR, and Myanmar border area. Antibiotics 2021, 10, 657. [Google Scholar] [CrossRef]
- Aouadhi, C.; Ghazghazi, H.; Dallali, S.; Sebei, H.; Maaroufi, A.; Hasnaoui, B. Comparison of chemical composition, antioxidant and antimicrobial activities of Thymus capitatus L. essential oils from two Tunisian localities (Sousse and Bizerte). Tun. J. Med. Plants Nat. Prod. 2013, 4, 1772–1781. [Google Scholar]
- Ghazghazi, H.; Aouadhi, C.; Weslati, M.; Trakhn, F.; Houssine, S.; Maaroufi, A.; Hasnaoui, B. Chemical composition and the biological activities of Mentha pulegium leaves extracts against foodborne pathogens. J. Food Safety. 2013, 33, 239–246. [Google Scholar] [CrossRef]
- Jingjing, S.H.S.; Lianjie, G.; Fang Qiu, L.; Liu, X. Antibacterial and antibiofilm activity of Lagotis brachystachya extract against extended-spectrum β-lactamases-producing Escherichia coli from broiler chickens. Poult. Sci. 2022, 101, 1101555. [Google Scholar]
- Jayari, A.; Jouini, A.; Boukhris, H.; Hamrouni, S.; Damergi, C.; Ahmed, S.B.H.; Maaroufi, A. Essential Oils from Thymus capitatus and Thymus algeriensis as Antimicrobial Agents to Control Pathogenic and Spoilage Bacteria in Ground Meat. J. Food Qual. 2021, 2021, 5599374. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- Rossi, P.-G.; Berti, L.; Panighi, J.; Luciani, A.; Maury, J.; Muselli, A.; Serra, D.D.R.; Gonny, M.; Bolla, J.M. Antibacterial Action of Essential Oils from Corsica. J. Essent. Oil Res. 2007, 19, 176–182. [Google Scholar] [CrossRef]
- Gergis, V.; Spiliotis, V.; Poulos, C. Antimicrobial activity of essential oils from Greek Sideritis species. Pharmazie 1990, 45, 70. [Google Scholar] [PubMed]
- Panizzi, P.L.; Flamini, G.; Gioni, P.L.; Morelli, I. Composition and antimicrobial properties of essential oils of four Mediterranean lamiaceases. J. Ethnopharm. 1993, 39, 169–170. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Lambert, P.A. Bacterial resistance to antibiotics: Modified target sites. Adv. Drug Deliv. Rev. 2005, 57, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Juven, B.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Derwich, E.; Benziane, Z.; Boukir, A. GC/MS analysis of volatile constituents and antibacterial activity of the essential oil of the leaves of Eucalyptus globulus in atlas median from Morocco. Adv. Nat. Appl. Sc. 2009, 3, 305. [Google Scholar]
- Murata, M.; Yamakodhi, Y.; Homma, S.; Arai, K.; Nakamura, Y. Macrocarpals, antibacterial compounds from Eucalyptus, inhibit aldose reductase. Biosci. Biotechnol. Biochem. 1992, 56, 2062–2063. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; Satrani, B.; Fechtal, M.; Abdelaziz Chaouch, A.; Talbi, M. Composition chimique et activités antibactérienne et antifongique des huiles essentielles extraites des feuilles d’Eucalyptus camaldulensis et de son hybride naturel (clone 583). Acta Bot. Gall. 2001, 148, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Bouanoun, D.; Hilan, C.; Garabeth, F.; Sfeir, R. Etude de l’activité antimicrobienne de l’huile essentielle d’une plante sauvage Prangos asperula Boiss. Phytothérapie 2007, 5, 129–134. [Google Scholar] [CrossRef]
- Amakura, Y.; Umino, Y.; Tsuji, S.; Ito, H.; Hatano, T.; Yoshida, T.; Tonogai, Y. Constituents and their antioxidative effects in Eucalyptus leaf extract used as a natural food additive. Food Chem. 2002, 77, 47–56. [Google Scholar] [CrossRef]
- Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008, 119, 325–327. [Google Scholar] [CrossRef]
- Ladjel, S.; Gherraf, N.; Hamada, D. Antimicrobial effect of essential oils from the Algerian medicinal plant Mentha Rotundifolia, L. J. Appl. Sc. Res. 2011, 7, 1665–1667. [Google Scholar]
- Riahi, L.; Ghazghazi, H.; Ayari, B.; Aouadhi, C.; Klay, I.; Chograni, H.; Cherif, A.; Zoghlami, N. Effect of environmental conditions on chemical polymorphism and biological activities among Artemisia absinthium L. essential oil provenances grown in Tunisia. Ind. Crop. Prod. 2015, 66, 96–102. [Google Scholar] [CrossRef]
- Chebaibi, A.; Marouf, Z.; Rhazi-Filali, F.; Fahim, M.; Ed-Dra, A. Evaluation du pouvoir antimicrobien des huiles essentielles de sept plantes médicinales récoltées au Maroc. Phytothérapie 2015, 14, 355–362. [Google Scholar] [CrossRef]
- Satrani, B.; Abdellah, F.; Talbpoi, M. Effet de la distillation fractionnée sur la composition chimique et l’activité antimicrobienne des huiles essentielles du Myrte (Myrtus communis L.). Acta Bot. Gall. 2006, 153, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Zulfa, Z.; Chia, C.; Rukayadi, Y. In-vitro antimicrobial activity of cymbopogon citratus (lemongrass) extracts against selected foodborne pathogens. Int. Food Res. J. 2016, 23, 1262. [Google Scholar]
- Bin, S.; Yi-Zhong, C.; John, D.B.; Harold, C. The in-vitro antibacterial activity of dietary spice and medical herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar]
- Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Revi. 1992, 56, 395–411. [Google Scholar] [CrossRef]
- Hogg, S. Essential Microbiology; John Wiley and Sons Ltd.: Chichester, UK, 2005; Volume 481, pp. 184–189. [Google Scholar]
- Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, F.; Ji, B.-P.; Pei, R.-S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Horne, D.; Holm, M.; Oberg, C.; Chao, S.; Young, D.G. Antimicrobial Effects of Essential Oils on Streptococcus pneumoniae. J. Essent. Oil Res. 2001, 13, 387–392. [Google Scholar] [CrossRef]
- Razzaghi-Abyaneh, M.; Shams-Ghahfarokhi, M.; Kawachi, M. Ultrastructural evidences of growth inhibitory effects of a novel biocide, akacidplus, on an aflatoxigenic aspergillus parasiticus. Toxicon 2006, 48, 1075–1082. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined Par Time-Kill, Lysis, Leakage and Salt Tolerance Assays and Electron Microscopy. Ant. Agents. Chem. 2002, 46, 1914–1920. [Google Scholar]
- Gilbert, P. The Revival of Micro-Organisms Sublethally Injured by Chemical Inhibitors. In The Revival of Injured Microbes; Andrew, M.H.E., Russell, A.D., Eds.; Society for Applied Bacteriology Symposium: Cambridge, UK, 1984; Volume 12, pp. 175–197. [Google Scholar]
- Landolo, J.J.; Ordal, Z.J. Repair of thermal injury of Staphylococcus aureus. J. Bacteriol. 1966, 91, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Tsigarida, E.; Skandamis, P.N.; Nychas, G.J.E. Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 °C. J. Appl. Microbiol. 2000, 89, 901–909. [Google Scholar] [CrossRef]
- Sokovic, M.; Marin, P.D.; Brkic, D.; van Griensven, L.J. Chemical composition and antibacterial activity of essential oils of ten aromatic plants against human pathogenic bacteria. Food 2007, 1, 1–7. [Google Scholar]
- El-Desouky, A.I.; Bahlol, H.E.M.; Sharoba, A.M.A. Effect of some essential oils of some essential oils and preservatives on the growth of E. coli O157/H7 and quality of refrigerated minced meat. Annals Agric. Sc. Moshtohor. 2006, 44, 1675–1695. [Google Scholar]
- El Abed, N.; Kaabi, B.; Smaali, I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M.N.; Ahmed, S.B.H. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat. Evid. Based Complement. Altern. Med. 2014, 2014, 152487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Akrem Hayounia, E.A.; Chraief, I.; Manaf Abedrabbac, M.; Bouixe, M.; Leveaue, J.; Mohammed, H.; Hamdi, M. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbio. 2008, 125, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.A.; Badeka, M.; Kontominas, G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef]
- NCCLS (National Committee for Clinical Laboratory Standards). Performance Standards for Antimicrobial Disk Susceptibility Test, 6th ed.; Approved Standard M2-A6; NCCLS: Wayne, PA, USA, 1997. [Google Scholar]
- Aouadhi, C.; Ghazghazi, H.; Hasnaoui, B.; Maaroufi, A. Total phenolic content, antioxidant and antibacterial activities of Marrubium vulgare methanolic extract. Tun. J. Med. Plants Nat. Prod. 2014, 11, 37–79. [Google Scholar]
- Klepser, M.E.; Ernst, E.J.; Lewis, R.E.; Ernst, M.E.; Pfaller, M.A. Influence of Test Conditions on Antifungal Time-Kill Curve Results: Proposal for Standardized Methods. Antimicrob. Agents Chemother. 1998, 42, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, A.; van Vuuren, S.; Ernst, E.; Klepser, M.; Demirci, B.; Başer, H.; Van Wyk, B.-E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. J. Ethnopharmacol. 2003, 88, 137–143. [Google Scholar] [CrossRef]
- Guinoiseau, E.; Luciani, A.; de Rocca Serra, D.; Quilichini, Y.; Berti, L.; Lorenzi, V. Primary Mode of Action of Cistus ladaniferus L. Essential Oil Active Fractions on Staphyloccocus aureus strain. Adv. Microbiol. 2015, 5, 881–890. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of analysis. The association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005; p. 481. [Google Scholar]
Strains | Control | E. globulus | E. camaldulensis | A. absinthium | M. communis | M. pulegium | T. ammi | C. citratus | T. capitatus |
---|---|---|---|---|---|---|---|---|---|
C930 | 20 ± 2.4 | 15 ± 1.73 | 21.33 ± 2.08 | 11.67 ± 0.58 | 12.67 ± 1.15 | 13 ± 2.65 | 21.33 ± 0.84 | 11 ± 0.58 | 25 ± 5 |
C923 | 21 ± 1.84 | 17.33 ± 1.03 | 20.33 ± 3.21 | 11.67 ± 1.15 | 12 ± 2 | 13.33 ± 1.15 | 20 ± 4.36 | 9.67 ± 1 | 25 ± 5 |
C920 | 21 ± 3.3 | 18 ± 2 | 20.67 ± 2.08 | 12.00 ± 1 | 13 ± 1 | 17 ± 5.29 | 21 ± 7.81 | 11 ± 1 | 27 ± 3.61 |
C924 | 23 ± 2.23 | 17.67 ± 1.53 | 20.33 ± 4.51 | 11.67 ± 1.15 | 11.67 ± 0.58 | 15 ± 1 | 21 ± 0.58 | 11.67 ± 1.53 | 24 ± 6.56 |
C926 | 22 ± 1.64 | 17 ± 1.73 | 20.67 ± 2.31 | 12 ± 2 | 13.33 ± 0.58 | 14 ± 1 | 21.66 ± 2.56 | 11.67 ± 0.58 | 22.33 ± 1.53 |
C921 | 23 ± 2.45 | 17 ± 1.73 | 20.67 ± 2.08 | 11.67 ± 1.15 | 11.67 ± 0.58 | 13 ± 1.73 | 20.67 ± 8.50 | 10.33 ± 0.38 | 23.67 ± 1.53 |
C928 | 22 ± 2.71 | 18.33 ± 0.58 | 21.33 ± 0.58 | 12.33 ± 0.58 | 12 ± 1 | 14.3 ± 1.15 | 22.67 ± 0.58 | 12.67 ± 1.53 | 25 ± 7 |
Strains | Minimum Inhibitory Concentrations | |||||||
---|---|---|---|---|---|---|---|---|
E. globulus | E. camaldulensis | A. absinthium | M. communis | M. pulegium | T. capitatus | T. ammi | C. citratus | |
C930 | 0.78 | 0.39 | 0.78 | 1.56 | 0.39 | 0.0975 | 0.39 | 0.78 |
C923 | 0.78 | 0.39 | 0.78 | 0.78 | 0.39 | 0.0975 | 0.39 | 0.78 |
C920 | 0.39 | 0.78 | 0.78 | 0.78 | 0.39 | 0.0975 | 0.39 | 0.78 |
C924 | 0.39 | 0.78 | 0.78 | 0.195 | 0.195 | 0.0975 | 0.39 | 0.78 |
C926 | 0.195 | 0.39 | 0.78 | 0.39 | 0.78 | 0.0975 | 0.39 | 0.78 |
C921 | 0.78 | 0.78 | 0.78 | 1.56 | 0.195 | 0.0975 | 0.39 | 0.78 |
C928 | 0.78 | 0.78 | 0.78 | 0.39 | 0.39 | 0.0975 | 0.39 | 0.78 |
Strains | Minimum Bactericidal Concentrations | |||||||
E. globulus | E. camaldulensis | A. absinthium | M. communis | M. pulegium | T. capitatus | T. ammi | C. citratus | |
C930 | 1.56 | 0.78 | 1.56 | 3.12 | 1.56 | 0.39 | 0.78 | 1.56 |
C923 | 1.56 | 0.78 | 1.56 | 0.78 | 1.56 | 0.39 | 0.78 | 1.56 |
C920 | 0.78 | 1.56 | 1.56 | 0.39 | 1.56 | 0.39 | 0.78 | 1.56 |
C924 | 0.39 | 0.78 | 1.56 | 0.78 | 0.39 | 0.39 | 0.78 | 1.56 |
C926 | 1.56 | 1.56 | 1.56 | 3.12 | 0.78 | 0.39 | 0.78 | 1.56 |
C921 | 1.56 | 1.56 | 1.56 | 0.78 | 1.56 | 0.39 | 0.78 | 1.56 |
C928 | 0.78 | 0.78 | 25 | 0.39 | 1.56 | 0.39 | 0.78 | 25 |
Strains | Percentage of Strain Growth (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | T. capitatus | T. ammi | |||||||
2.5% | 5% | 10% | 2.5% | 5% | 10% | 2.5% | 5% | 10% | |
C920 | 71.37 | 30.87 | 0 | 0 | 0 | 0 | 42.01 | 0 | 0 |
C921 | 100 | 82.23 | 60 | 68.62 | 0 | 0 | 0 | 0 | 0 |
C923 | 82.23 | 77.52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C924 | 82.3 | 81.19 | 0 | 50.3 | 0 | 0 | 70.12 | 0 | 0 |
C926 | 81.74 | 100 | 0 | 72.6 | 0 | 0 | 0 | 0 | 0 |
C928 | 81.74 | 98.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C930 | 81.74 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Percentage of Initial OD (260) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Control | T. ammi | T.capitatus | |||||||
0 | 30 min | 60 min | 0 | 30 min | 60 min | 0 | 30 min | 60 min | |
C920 | 1 | 1.05 ± 0.011 a | 1.25 ± 0.01 a | 1 | 2.67 ± 0.01 c | 2.89 ± 0.02 d | 1 | 1.25 ± 0.016 a | 2.65 ± 0.02 c |
C921 | 1 | 1.03 ± 0.02 a | 1.2 ± 0.02 a | 1 | 2.4 ± 0.02 c | 2.9 ± 0.018 d | 1 | 1.5 ± 0.015 d | 2.8 ± 0.013 c |
C923 | 1 | 1.04 ± 0.03 a | 1.12 ± 0.01 a | 1 | 2.5 ± 0.01 c | 3.1 ± 0.017 d | 1 | 1.8 ± 0.021 d | 2.78 ± 0.013 c |
C924 | 1 | 1.04 ± 0.02 a | 1.21 ± 0.03 a | 1 | 2.58 ± 0.03 c | 2.9 ± 0.015 d | 1 | 1.87 ± 0.011 d | 2.7 ± 0.012 c |
C926 | 1 | 1.02 ± 0.01 a | 1.11 ± 0.02 a | 1 | 1.99 ± 0.02 b | 2.78 ± 0.022 c | 1 | 1.56 ± 0.015 d | 2.56 ± 0.021 c |
C928 | 1 | 1.01 ± 0.03 a | 1.17 ± 0.015 a | 1 | 1.98 ± 0.02 b | 2.54 ± 0.031 c | 1 | 1.98 ± 0.021 d | 2.67 ± 0.03 c |
C930 | 1 | 1.02 ± 0.02 a | 1.18 ± 0.005 a | 1 | 2.1 ± 0.015 c | 2.89 ± 0.016 d | 1 | 1.78 ± 0.018 d | 2.76 ± 0.017 c |
C920 | 1 | 1.01 ± 0.01 a | 1.2 ± 0.021 a | 1 | 2.3 ± 0.025 c | 3.2 ± 0.015 d | 1 | 1.67 ± 0.017 d | 2.79 ± 0.018 c |
Strains | Origin | b-Lactamase(s) |
---|---|---|
C923 | Beef | CTX-M-1 |
C928 | Chicken | SHV-5 |
C921 | Chicken | CTX-M-8 |
C920 | Beef | CTX-M-1. TEM-1b |
C926 | Turkey meat | CTX-M-1 |
930 | Chicken | CTX-M-14. TEM-1b |
C924 | Beef | CTX-M-1 |
Experiments | Conditions |
---|---|
1 | Three 100 g portions of minced meat were inoculated with E. coli |
2 | Three 100 g portions of minced meat were inoculated with E. coli in the presence of MIC of T. capitatus |
3 | Three 100 g portions of minced meat were inoculated with E. coli in the presence of 2 × MIC of T. capitatus EO |
4 | Three 100 g portions of minced meat were inoculated with E. coli in the presence of 2 × MIC of T. ammi EO |
5 | Three 100 g portions of minced meat were inoculated with E. coli in the presence of 2 × MIC of T. ammi EO |
6 | portion of minced meat of 100 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouadhi, C.; Jouini, A.; Mechichi, D.; Boulares, M.; Hamrouni, S.; Maaroufi, A. Characterization of Primary Action Mode of Eight Essential Oils and Evaluation of Their Antibacterial Effect against Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Inoculated in Turkey Meat. Molecules 2022, 27, 2588. https://doi.org/10.3390/molecules27082588
Aouadhi C, Jouini A, Mechichi D, Boulares M, Hamrouni S, Maaroufi A. Characterization of Primary Action Mode of Eight Essential Oils and Evaluation of Their Antibacterial Effect against Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Inoculated in Turkey Meat. Molecules. 2022; 27(8):2588. https://doi.org/10.3390/molecules27082588
Chicago/Turabian StyleAouadhi, Chedia, Ahlem Jouini, Dhekra Mechichi, Mouna Boulares, Safa Hamrouni, and Abderrazak Maaroufi. 2022. "Characterization of Primary Action Mode of Eight Essential Oils and Evaluation of Their Antibacterial Effect against Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Inoculated in Turkey Meat" Molecules 27, no. 8: 2588. https://doi.org/10.3390/molecules27082588
APA StyleAouadhi, C., Jouini, A., Mechichi, D., Boulares, M., Hamrouni, S., & Maaroufi, A. (2022). Characterization of Primary Action Mode of Eight Essential Oils and Evaluation of Their Antibacterial Effect against Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Inoculated in Turkey Meat. Molecules, 27(8), 2588. https://doi.org/10.3390/molecules27082588